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TWISTED COHOMOLOGY AND ENUMERATION
OF VECTOR BUNDLES

LAWRENCE L. LARMORE

In the present paper we give a technique for completely
enumerating real 4-plane bundles over a 4-dimensional space,
real 5-plane bundles over a 5-dimensional space, and real 6-
plane bundles over a 6-dimensional space. We give a complete
table of real and complex vector bundles over real projective
space Pk, for k ^ 5. Some interesting results are:

(0.1.1.) Over P5f there are four oriented 4-plane bundles
which could be the normal bundle to an immersion of P 5 in
R9, i.e., have stable class 2h + 2, where h is the canonical
line bundle. Of these, two have a unique complex structure.

(0.1.2.) Over P5 there is an oriented 4-plane bundle which
we call C, which has stable class βh — 2, which has two distinct
complex structures. D, the conjugate of C, i.e., reversed
orientation, has no complex structure.

(0.1.3) Over P5, there are no 4-plane bundles of stable
class hh — 1 or Ih — 3.

0.2. In reading the tables (4.5.2) and (4.6), remember that if ξ:
Pk~^B0(n) or ξ: Pk—»BU{n) is a locally oriented (i.e., oriented over
base-point) real or complex vector bundle, and if

aeIP(Pk;πk(BO(n)fζ))

(local coefficients if f unoriented) or a e Hk(Pk; πk(BU(n))y then ξ + a
is a vector bundle obtained by cutting out a disk in the top cell of
Pk and joining a sphere with some vector bundle on it.

0.3. Since some of the homotopy groups of B0(n) are acted upon
nontrivially by Z2 = πγ{B0{n)) for n even, we study cohomology with
local coefficients in § 3.

1.2. From here on, we assume that all spaces are connected
C. W.-complexes with base-point, all maps are b.p.p. (base-point-
preserving) and that all homotopies are b.p.p.

For any space Y, we choose a Postnikov system for Y, that is:
for each integer n ^ 0, a space (Y)n and a map Pn: Y-+(Y)n which
induces an isomorphism in homotopy through dimension n, where all
homotopy groups of (Y)n are zero above n; for each n ^ 1 a fibration
pn: (F)n—>(y)n_1 such that pnPn = Pn_ lβ The fiber of each pn is then
an Eilenberg-MacLane space of type (πn(Y),ri). If X is a space of
finite dimension m, then [X; Y], the set of homotopy classes of maps
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from X to F, is in one-to-one correspondence with [X; (Y)m].

DEFINITION (1.2.1). For any integer n ^ 1, let Gn(Y) be the sheaf
over (Y)ι whose stalk over every y is defined to be πn(p~ιy), which
is isomorphic to πn(Y) (where p = p2 pn: (Y)n—> (F)x) if n ^ 2;
fti((Y)u y) if n = 1. If X is any space and f:X-^(Y)ι is a map, let
π n (F,/) be the sheaf f~ιGn{Y) over X. This sheaf depends only on
the homotopy class of /. If g:X—»(F)m is a map for any integer
m ^ 1, or if Λ: X—> F is a map, let π n (F, #) denote πn(Y, p2 pm#)
and let ττΛ(F, n) denote πn(Y,PJί).

DEFINITION (1.2.2). If / and g are maps from X to (F)Λ for any
w ^ 2, which agree on A, and if F: X x 7—•(F)w_1 is a homotopy of
p Λ / with pwflf which holds A fixed, let δ*(/, g; F) e Hn(X, A; πn(Y, /)) be
the obstruction to lifting F to a homotopy of / with # which holds
A fixed.

REMARK (1.2.3). If g: JSΓ—>(F)Λ is another map which agrees with
/ on A, and if G is a homotopy of png with p̂ /z, which holds A
fixed, then <5W(/, 0; F) + <?*(#, A; G) = dn(f, h; F + G), where, for each
(x, t) e X x I,

ί ) i f 0 - ^ *
t-l) if J ^ ί ^ l .

DEFINITION (1.2.4). Let X be a space, let AaX be any subcomplex
(possible empty), let /: X—>(F)Λ be a map for some integer % ^ 2, and
let a be an element of Hn(X, A; πn(Y, /)). We define / + a to be that
map from X to (F)w, unique up to fiber homotopy with A held fixed,
such that pn(f + a) = pn/and Sn(f,f -{- a) = α, where C is the constant
homotopy.

REMARK (1.2.5). If b is any other element of Hn(X, A; πn(Y,f)),
then / + (α + 6) = (/ + α) + 6.

REMARK (1.2.6). If g:(X',A')-+(X,A) is a map, where (XΆ9)
is any other C. W. pair, then (/ + a)g = gf + g*a.

MAIN THEOREM (1.2.7). For any a e Hn(X, A; πn(Y, /)), f + a is
homotophic to f, rel A, if and only if δn(f, f;F) = a for some homotopy
F of pnf with itself which holds A fixed.

Proof. Let C be the constant homotopy of pnf with itself. On
the one hand, if F is any homotopy of pnf with itself which holds
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A fixed, let a = δn(f, f; F). Then δn{f + α, /; F) = δn{f + α, /; C) +
δn(f,f;F) = — a + a = 0. Thus F may be lifted to a homotopy of
f+ a with / . On the other hand, if G is a homotopy of / + α with
/, then <?*(/, /; p.G) - δ (/, / + α; C) + δ*(f + α, /; pnG) = a + 0 = α.

DEFINITION (1.2.8). Let Lf be the subgroup of Hn(X, A; πn(Y,f))
consisting of all a such that / + a is homotopic to /rel A. Then the
set of all homotopy (rel A) classes of liftings of pnf to (Y)n which
agree with / on A is in a one-to-one correspondence with the quotient
group Hn(X, A;πn(Y,f))/Lf; each coset a + Lf corresponds to f + a.
If g: X-+ Y is a map such that png = f, let Ln

g = L/β If Λ: J5Γ->(Γ)m

is a map such that pn+1 pmh = /, for m ̂  n, let L; = Lf.

REMARK (1.2.9). If aeHn(X, A; πn(Y,f)), then Lf+a = Lf.

Proof. Let F be any homotopy of pnf = p n (/ + α) with itself,
and let C be the constant homotopy. Then δn(f + a, f + a; F) =
δn(f+a,f; C) + δ (/,/; F) + δ " ( / , / + α; C) = - a + «•(/,/; F) + α -

1.3. In order to calculate I/7 in specific cases, such as X a
projective space, A = base-point, and Y = B0(m) for some m, we
use a spectral sequence which has the following properties:

(1.3.1) fEr = Etg = H*(X, A;πq(Y,f)) if 2^q^n,l^p^q + 1.
(1.3.2) £#'* = 0 for all other values of p and q.
(1.3.3) dr: E™ -> E?+r>q+r~l for all r ^ 2.
(1.3.4) KΞ * - £Γ (JΓf A;πn(Y,f))/Lf, which, by (1.2.7) and (1.2.8)

can be put into one-to-one correspondence with the set of rel A homotopy
classes of maps X—*(F)n whose projection to (F)Λ_i is rel A homotopic
to p Λ /.

Basically, what is happening is as follows (where, for any space
Z and any map g: A—+ Z, the set of rel A homotopy classes of maps
X-+Z which agree with g on A is denoted (([X; Z: #]"); consider the
function:

[X; (Y)n: f\A]Ά[X;( Y),_i: pnf | A] .

Now (pn\ is just a function of sets, but {PnWVnf) is an Abelian group
with 0 the homotopy class of / itself. This group, E£'n of our spectral
sequence, depends on the choice of / .

We define our spectral sequence via an exact couple:

%-—> A*
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where E2

PfQ is as defined in (1.3.1) and (1.3.2), where i2,j2, and k2 have
bi-degrees ( — 1, —1),(2,1), and (0,0) respectively; and where (for all
t^n,Mt = space of maps from X to (Y)t which agree with pnj on
A, compact-open topology):

(1.3.5) Dlq = πg_p(Mg, pn

qf) if 0 ^ q ^ n, and p ^ q.
(1.3.6) Dp>q = 0 if q < p or q < 0.
(1.3.7) DP'q = ΏΓι>q-1 if q > n.

Note that J9f'9 is only a group if g = p + 1 and only a set if g = p.
This will not affect our computation, however.

We proceed to define the homomorphisms i29j2 and k2.
(1.3.8) If q > n, let i2 be the identity. If q ^ n, let i2 = {pq\.
(1.3.9) lίpSq and 0 ̂  g < w, any xeDP'q represents a map

g: X x J M -> (Y)q, where #(#, v) = pn

qf{x) for all (α?, v) e X x 3/9-^ U i x
Iq-p. Let i2(α;) = (sM)-V+2(flr), where sq~p: HP+2(X, A; πq+1(Y,/)) —
Hq+\X x I 9 - p , X x 3/*-* U A x i*-*; πq+1(Y, g)) is the (g - p)-fold sus-
pension and Ύg+2(g) is the obstruction to finding a lifting h: X x J9"^ —*
(Y)q + 1 of gr such that h(x, v) = pΐ+1f(x) for all (a;, v)eXx dlq+p [jAx Iq~p.
(If p > q or q < 0 or q ^ n, j 2 : Dψq —> Ei+2>q+ι is obviously the zero map,
since E2

p+2'q+1 = 0.) This obstruction is zero if and only if g can be
lifted; it follows immediately that:

(1.3.10) The sequence Dξ+ί>9+1 -^-> Dξ'q - ^ Ep+2>q+1 is exact.
Furthermore, since every homotopy, relA, of pnf with itself

represents a loop in Mn^:
(1.3.11) Lf is the image of j 2 : DΓ2>n~ι -> Ef. For any 2^q^n,

1 ^ p ^ q, and any a e E2

p'q, let

b = sq~pa e Hq(X x I9~p, X x dlq~p U i x / ^ πq(Y, Q) ,

where C(«, v) = 2>;/(α) for every (α?, v) e X x Iq~p. Let ft2(α) e JD?'β be
that element represented by the map C + b (cf. 1.2.2). It follows from
(1.2.3) that k2 is a homomorphism if p < g; if p — g then DPfQ is only
a set anyway. (For other values of p and g, fc2 = 0.) Since pg(C + b) =
pqC, and C represents QeDξ*q:

(1.3.12) Imfc 2c:Keri 2.
If, on the other hand, a map g: X x Ig-p-+(Y)q such that g = C

on X x dlq~p U A x 79"p is a representative of a given α e K e r ί 2 , then
pqg is homotopic, rel X x d/9"*' U A x /, to p9C via a homotopy i*7, then
a = k^-η-^iC, g; F)). Thus:

(1.3.13) Ker i2 c Im k2.
Somewhat more difficult to show is:

(1.3.14) Ker fc2 = Imj2 if p ^ q.

Proof. Let 2 ^ q <; w, 1 ^ p ^ g. Let g(x, v) = pj/(a?) e (Γ) f f for
all (x, v) e X x /*-*; ^ represents 0 e Dξ q. Let 6 e Etq. Then 6 e Ker k2
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if and only if sq~pb e Lg (cf. 1.2,7). If b = j2a, then a represents F, a

homotopy, rel X x dlq~p u A x Iq~p of pqq with itself, and sq~pb =

δg(g, g; F) e Lg. If, on the other hand, sq~pb e Lg, then sq~pb = δq(g, g; F)

f o r s o m e h o m o t o p y F, r e l X x dlq~p U i x i * " * , o f pqg w i t h i t s e l f ; l e t

α = [F] e Dp-2'q~\ and j2a = b.

1.4. Since only finitely many of the E2 terms are nonzero, we
obtain E^ after a finite number of steps. We also have, by straight-
forward algebra, an exact sequence

0 >E»±=-+D.-±+D. , 0 .

Consider now the commutative diagram with exact columns:

JDΓ' "-1 = ̂ (Mn_u pj) [F]

, A; π%( Y, /)) δ (/, /; F)

mono Ikoo \kz X

?•" =[X;(Y).:f\A] \

kepi I ioo I io / + x

mono

A typical element of D2~
2tn~ι is a r e l l x 9 / U i x / homotopy class

of homotopies of pnf with itself; if F is such a homotopy, j2[F] =
δ (/,/; F) f by (1.3.9). If a? e #*(X, A; πw(F,/)), k2x = / + x, by (1.3.11).
Thus I m i ^ L , , and EZn = H*(X, A\π%(Y,f))ILf, the set of rel A
homotopy classes of liftings of p n /.

1.5. If g: (X\ A')-+(X,A) is a map, # induces a map of spectral
sequences.

(1.5.1) g*:fE?>q-^f9E?>q for all p, q, r. If fe: F ~ > ^ is a map,
where Z is any other space, h determines a map hm: (Y)m —> (Z)m for
each m ^ O [1]. Then fe#: πx( F, ̂ /0) —> πx(Z, 0̂) induces a sheaf homo-
morphism from Gn(Y) to (h^~ιGn(Z) which in turn induces a homo-
morphism.

(1.5.2) K:H*(X,A;πm(Y,f))-*H*(X,A;πm(Z,hf)) for all m^O
and a map of spectral sequences

(1.5.3) h*: fEr — *ΛEV'* for all p, q, r.

2* Nonbase-point-preserving homotopies*

2.1. Using the techniques of § 1, we can compute all b.p.p.
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homotopy classes of maps from a finite-dimensional space X to a
space Y. What if we want to know, instead, all free homotopy
classes of maps?

2.2. Let /: X —> Y be any b.p.p. map, and let aeπ^Y, y0). By
the homotopy extension property, we can find a free homotopy F:
X x J-+ Y of f such that F\{x0} x I represents a. Let fa(x) = F(x, 1)
for any xeX;fa is unique up to b.p.p. homotopy, and fab(fa)b for
any other b e πx(F, y0).

THEOREM (2.2.1). If f and g are any b.p.p. maps from X to Y,
then f is freely homotopic to g if and only if fa is b.p.p. homotopic
to g for some a e π^Y, y0).

Proof. If fa is b.p.p. homotopic to g, then / is obviously freely
homotopic to g since / is freely homotopic to fa. If, on the other
hand, F: X x I—• Y is a free homotopy of / with g, let a be that
element of πx( Y, y0) represented by the loop F ({x0} x /. Then fa — g
(up to b.p.p. homotopy).

THEOREM (2.2.2). If n^ 2,/: X-> (Y)n is a map,

aeH«(X,xo;πn(Y,f)) ,

and beπ^Y^yo), then ( / + a)b = fb + l*(α), where It is the homo-
morphism induced by the map lh (cf. 1.5.2), where 1 is the identity
map on (Y)n.

Proof. The theorem follows from naturality of obstruction theory.

3* Sheaves of local coefficients*

3.1. The homotopy groups of BO(n) are sometimes acted on
nontrivially by 7Γ1# We must therefore study twisted sheaves.

DEFINITION (3.1.1). A twisted group is an ordered pair (G, T), G
an Abelian group, T:G—>G an automorphism of order 2. If X is a
space, a (G, Γ)-sheaf over X is a fiber bundle over X with fiber G
and structural group Z2, action determined by T. Let Gτ[u] be the
((?, T)-sheaf over PTO obtained by identifying (x, g) with (Tx, Tg) for
all (x, g) e S°° x G, where Γ: S°° —> S°° is the antipodal map.

DEFINITION (3.1.2). If a<zH\X,xQ\Z2) and f:(X,x0)^(Poo,*) is
a map where f*u = a (u = fundamental class of PJ), let Gτ[a] =
f-ιGτ[u]. We call a the twisting class of Gτ[a\.
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PROPOSITION (3.1.3). Gτ[u] is universal in the sense of Steenrod
[6], that is, if G is a (G, T)-sheaf over a space X, G = Gτ[a] for
some unique a e Hι(X, xo; Z2).

Proof. PTO = BZ2.

REMARK (3.1.4). If F: X x I-^P*, is a free homotopy of / with
itself, where f*u = a, then F induces an automorphism of Gτ[a]; 1
or T depending on whether F | {x0} x / is a trivial loop in Pw or not.

3.2. If X is a space, BaAczX are closed, and S is a sheaf
over X, we have a long exact sequence:

> Hn(X, A; S) > Hn(X, B; S) > Hn(A, B; S)

— H"+1(X, A; S) >

PROPOSITION (3.2.1). If S is a sheaf over a space X, and AaX
is closed, we may find an isomorphism

s: H*(X, A; S) > H*(X x /, X x dl U A x I; S x I) ,

called the suspension, of degree 1, where S x I = p^S; p: X x /—* X
being the projection.

Proof. Let S' be that subsheaf of S such that S ' | A = 0 and
S' | (X - A) = S I (X - A). According to Bredon [1],

H*(X, A; S) = H*(X; S')

and

H*(X x I, X x dl\j A x I; S x I) = H*(X x I, X x dl; S' x I).

Now H*(X x /, X x {t}; Sf) = 0 for any tel [1], and by the long

exact sequence of (X x I, X x dl, X x {1}) and excision we have an

isomorphism H*(X x {0}; S' x I) -=-> H*(X xI,Xx dl; S' x I) of degree

1; the left group is isomorphic to H*(X; S').

3.3. Let X be a space, AczX closed. If a: S —> S' is a homo-
morphism of sheaves over X, we get a homomorphism a*:H*(X, A; S) —>
H*(X, A; S'). If S and S' are sheaves over X and

E: 0 > S -^-> S" -£-> S' > 0

is an extension of S' by S, then £7 determines a long exact sequence
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> Hn(X, A; S) — H"(X, A; S") ~ Hn(X, A; S')

-?L> H*+ί(X, A; S) . . . .

where δE is called the Bockstein of E.

PROPOSITION (3.3.1). If S and S' are sheaves over X and if

E: 0 > S - ϊ-> S" -^-> S' > 0

and

F:0 >S-̂ -> U-^S' >0

are elements of Ext (£', S), then δE+F = δE + δF.

Proof. We use the Baer sum construction to find

E + F: 0 > S > V > S' > 0;

our result follows from the commutative diagram, where each row is
exact:

!• 1 V
0 > S x S > W > S' > 0

._ 1 _ i - ί _o
3.4. As Abelian groups Ext (Z2, Z2) = Z2; the nonzero extension

is ZA. Fix a space X; we study Ext of sheaves over X.

PROPOSITION 3.4.1. As sheaves over X,

Ext (Z2, Z2) = Z2 + H\X, xo; Z2) .

For any a e H\X, xo; Z2), (0, a) corresponds to the extension

El: 0 > Z2 -^-> (Z2 + Z2)
τ[a] - ^ Z2 > 0 ,

where T(x, y) = (x + y, y), i^x) = (x, 0), αwd p2(x, y) = y; (1, α) corres-
ponds to

Ei: 0 > Z 2 ̂ - > Z 4

Γ [ α ] - ^ Z2 > 0 ,

where T(x) = — x for all x e Z4, m(l) = 2, cmd e(l) = 1.

Proof. Routine computation shows that El + Eg = Ex

a%l for any
x,yeZ2 and α, b e Hι(X, xQ; Z%). On the other hand, suppose that
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E: 0 > Z2 - U G — Z2 > 0

is some extension. Then the stalk of G at x0 is Z4, in which case
G = Z[[a] for some aeH\X, xo; Z2), or it is Z2 + Z2. In that case,
we have an exact sequence of stalks at x0:

0 • Z2 > Z2 + Z2 > Z2 > 0 .

Since G is locally isomorphic t o Z2-\-Z2, i t is a fiber bundle w i t h fiber
Z2 + Z2 and s t r u c t u r a l g r o u p A u t {Z2 + Z2). B u t t h e only nontr iv ia l
a u t o m o r p h i s m which commutes w i t h it: Z2—>Z2 + Z2 and p2: Z2 + Z2-+
Z2 is T g iven above. So t h e s t r u c t u r a l g r o u p of G m a y be reduced
t o Z2) G = (Z2 + Z2)

τ[a] for some α e H\X, xo; Z2). This gives us t h e
isomorphism.

We h a v e t h e following c o m m u t a t i v e d i a g r a m w i t h b o t h rows exact ,
for a n y a e H\X, xQ; Z2):

0 > Zτ[a] > Zτ[a] > Z2 > 0

m 4 e

DEFINITION (3.4.2). Let βτ[a] (or simply βτ, when α is understood)
denote the Bockstein of the top row of the above diagram, and let
(Sι

q)
τ[a] (or (Sι

q)
τ) denote the Bockstein of the bottom row.

REMARK (3.4.3). Π*βτ = (Sq)
τ .

PROPOSITION (3.4.4). For any n ^ 0 and any x e Hn(X, A: Z2),
{Sι

q)
τx = Sι

qx + x U a.

Proof. Samelson [5].

P R O P O S I T I O N (3.4.5). For any n^O and any x e Hn(X, A) Z2)
S(x) = x\ja9 where d is the Bockstein of E°a: 0—> Z2—> {Z2 + Z2)

τ[a] —>

Proof. The result follows immediately from (3.3.1), (3.4.1), and
(3.4.4).

3.5. Let T(n, m) = (m — n, m) for any (n, m)e Z + Z. If S and
S' are sheaves over a space X, and if μ: S ® S' —> S" is a sheaf
homomorphism, then we have a cup product defined from

H*(X,A;S)®H*(X,B;S')

to #*(X, A U B; S") for any closed Aa X and Ba X. We have thus
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cup products generated by the following relations:

Zτ[a] <g) Zτ[b] = Zτ[a + δ], Z2 <g) (Z2 + Z2)
τ[a]

= (Z2 + Z2)
Γ[α], Z®(Z+ Z)τ[a]

= (Z + Z)Γ[α], ZΓ[α] <g) (Z + Z)Γ[α] = (Z + Z)Γ[α]

(where w 0 (p, g) = (wp, 2np — nq)), Z[[a] ® i£f[δ] = i£f [α + δ],

and many others.

Let (X, A) be a C. W.-pair. Let a e H\X, xo; Z2) and

a = βτ[a]{l) e iΓ(X; £Γ[α]) .

We have the following commutative diagram; where

iyX = (x, 0), T(x, y) = (y - x, y), j\x = (x, 2x)f

and q2(x, y) = y - 2x.

Λ y yτ\π\ %ι > (7 4- y^Xύλ ^2

 > y > o

I" I"
11

 ) (Z + Z )τ\a] Q2 > Z > 0

0 > ^ J ^ > (Z + Z) Γ [α] - ^ Z Γ [ α ] > 0 .

PROPOSITION (3.5.1). The Bocksteίn homomorphisms ^ and δ2 are
both cup products with a.

Proof. By (3.4.3) and (3.4.4) we may compute that

and is generated by ΰ = /5Γ(1).
Let xe Hn(X, A; Z). If n = 0, then the universal example is

X = P^, A = 0 , # = 1. Then α = ΰ. Now H\P^\ Zτ) = 0, so (JΊ)*:

iϊ°(P ro; Z) <- iϊ°(Pco; (Z + ^) Γ ) is an isomorphism, and p2j\ = 2. Thus
l g Im(ί>2)^, so ^(1) = ΰ. If n ^ 1, the universal example is X =
iΓ(Z, w) x Pβo, A = * x PTO, x = vn x 1. Then α = p*ΰ, where p: X—^P^
is projection onto the second factor. Now routine computations using
(3.4.3) and (3.4.4) show that Hn+1(X, A; Zτ) ~ Z2 and is generated by
(vn x 1) U p*ΰ, which is mapped onto Π*vn x u under Π*: H*{; Zτ)—+
H*(; Z2). The result follows from (3.4.5).

Let x G Hn(X, A) Zτ). If n = 0, x = 0. If n = 1, the universal
example is X = K(ZT, n), A = PM, and x = vj, where K(Zτ,n) is
obtained as follows:1 Let i£(Z, w) be a topogical group, let T(#, y) =
(flf-1, Γ2/) for all # e K(Z,ri) and 7/ e S°°. Let

1 Personal communication from C. T. C. Wall.
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K(Zτ,n) = K(Z,n) x S°°/T .

We have inclusion and projection

Poo - ^ - > K{ZT, ri) -?-> PT O

where ΐ[τ/] = [*,?/] and p[g, y] = [2/];P«> may thus be considered to be
a subset of K(Zτ,n), and its cohomology group is a direct summand1.
Then v^eHn(K(Zτ,n),Pco;Z

τ[u]) is the fundamental class.

Tint V Λ . ΓΎ \ s^, rχ
JΓL ( A , Ά, ZJ2) = Z/2

is generated by Π*vZ; Hn+1(X, A; Z2) = Z2 generated by Π*vξ U u.
Thus, by (3.4.3) and (3.4.4), Hn+1(X, A; Z) = Z2 generated by vζ{Jΰ,
and the result follows from (3.4.5).

(3.5.2). We summarize the results of (3.4.5) and (3.5.1) in the
following commutative diagram with all rows exact:

> Hn(X, A; .

II*

H"{X, A; Z) ~

^ ^ Hn(X, A; (Z + Zf) ^ > H%X, A; Z) - ^

IU 177*

^ Hn(X, A; (Zz -f Z2)
r) C-^-> Hn(X, A; Z2) - A

JT7* hi*

, A; Zτ)

, A; Z2)

J77*

, (Z + Z)τ) Hn(X, , A; Z)

3.6. Applying the results of 3.4 and 3.5, we compute the coho-

mology of real projective space Pk, for k^l:

(3.6.1) H"(Pk; Z,) =

(3.6.2) Z) ~

Z2, generated by un, if n ^ k

0 if n > k .

Z2, generated by ΰn, if n

even, 0 < n ^ k

Z, generated by 1, if n = 0

0, if n odd, 0 < n < k

Z, generated by t(Pk), the

top class, if n = k odd

0 if n > k .

(3.6.3) H (Pk; Z
τ[u]) ~

Z21 generated by un, if n odd,

0 < n ^ k

0, if n even, 0 < n < k

Z, generated by t(Pk), the top

class, if n = k even

0, if n> k .
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(3.6.4) H*Pk, *; Zτ[u]) s

(3.6.5)

(3.6.6)

(3.6.8)

0, if n = 0

Z, generated by ΰ, if w = 1 .

(3.6.7) H*(Pk; (Z + Z)Γ[u]) =

sH*(Pk\ Zτ[u\) if n > 1

Z2 + Z2) = fl*(Pft; Z2) 0 ^ ( P , ; Z2

; Z+ Z) = H"(Pk; Z) © fl*(P4; Z)

Z, generated by (j\)*

iί n = 0

0, if 0 < n < fe

Z, generated by \(i^

(q2)~iιt(Pk) if w = ft is even

Z, generated by iUi)*t(Pk) =

(p2)ΐ1ί(PA;) if n = ft is odd

0, if ^ > ft

% , generated by (ί j^l

if w = 0

0, if 0 < n < ft

Z2, generated by (p2)^uk

(= ΠM\)*t(Pk)) if ft

even, - Π^(JdΛPk) if ft

odd) if % = ft

θ, if w > ft .

4* Evaluation of the differentials*

4.1. We need two remarks.
(4.1.1) If Y1 and Y2 are spaces, and h: Y1-^ Y2 is a map, h induces

a map (Yi)«_i—•(ϊr

2)n_1 and a sheaf homomorphism λ: τrΛ(YΊ, 1) —•
πn(Y2,h). If ftΓ+1 and ft?+1 are the nth ft-invariants of Y1 and Y2

Zulu]) s

respectively, Ujc^1 - h*kΐ+2 e H^((YX^, πn(Y2, h)).
(4.1.2) Let X and Y be spaces, 2 <̂  m < n integers such that

πk(Y) = 0 for all m < k < n, and / : X - > ( F ) % a map. If the ft-
invariant A;%+1 of Y is based on the relation 0(1, km+1) — 0, where Θ
is a map cohomology operation and 1: (Y)m^ -^ (Y)m-ι is the identity
map, then; for any

x e ; πm{Y, / )) , dr(x) = , s2x), r = n-

where P: X x S2 —• X is projection,

s2: ί ί*(X, a?0) -> ί ί* + 2 (X x S2, X x * U a?0 x S2)
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is suspension and K-i = Vm pn: (Y)»

Proof. Let (S\ *) be a circle, which we think of as the unit
interval with end-points identified. Let C: X x S1 —>(Y)m be the
constant homotopy of pZf with itself. Now pm(C + sx) = pmC, where
C + sx is as defined in (1.2.2) and dr(x) = δn(f,f; C + sx) by (1.3).
Finally, sδ%(/,/; C + sx) = (C + s£)*&w+1 = s~ιθ(pl_JPy s2x).

4.2. Kervaire [3, p. 162] gives us the following table of homotopy
groups:

50(1) £0(2) £0(3) £0(4) £0(5) £0(6) £0(n) for 7 ̂  % ^ «

7Γl

7Γ2

7Γ3

7Γ4

^ 5

Z2

0
0
0
0

z2z
0
0
0

z2Zz
0

z2

z2Zz
0

z + z
Z2 + Z2

z2Z2

0

z
z2

z2z20

z
0

z2^ 2

0

z
0

z2 z2 -\- z2 z2 z o.

Now π^BOin)) = Z2 acts on πk(B0(n)) for all n ^ 1, k ^ 1; this
action is trivial if πk(B0(n)) is stable, that is, k < n; because BO is
simple. For % even, Z2 acts nontrivially on πn(B0(n))> because the
first relative fc-invariant of B0{n) —• 5 0 is

kn+ι = ^ [ w j w . G Hn+1(B0; Zτ\wγ\) .

(Because Π*kn+\ the reduction mod 2, must be wn 4 1). ^ 2 acts trivially
on τr4(BO(3)) because if acts trivially on π^BO) and the map Z ~
π4(BO(S)) —• π4(B0) ~ Z is just multiplication by 2. Since Z2 can only
act trivially on Z2, we need only now examine the action on 7Γ4(BO(4))
for k = 4, 5, 6.

PROPOSITION (4.2.1). We may choose generators x and y of
τr4(SO(4)) such that T(x) — — x, T(y) — x + y, and the maps

and i\: ττ4(i5O(4)) > π,(B0(5))

have the properties i\(ϊ) = x + 2y, i\(x) — 0 and i\(y) = 1.

Proof. We know that i\ is onto. Choose x to be a generator of
Kerί 4, and pick α such that i\a = 1. Now 2α — ij(l) e Keril, since
i\i\ = 2. So 2a — ΐj(l) is a multiple of x. It can't be an even multiple,
because then i\(l) would be divisible by 2, and iX(J5O(3)) is a direct
summand of ττ4(i?O(4)). So for some k, 2a — %\{1) = {2k — l)x. Let y =
α - fcx; then ij(l) = x + 2#, ij(a ) = 0, and i\(y) = 1. Now T(x) G Ker ij,
so T(x) must be - x. T(x + 2y) = x + 2y so T(τ/) = i(x + 2y - Tx) =
a? + 2/- We are done.
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We represent ττ4(50(4)) as ordered pairs of integers, where (p, q)
represents px + qy.

PROPOSITION (4.2.2). 7Γ5(5O(4)) and ττ6(50(4)) may be represented
as ordered pairs of elements of Z2, such that i\(x) = i\(x) = (x, 0),
iί(α, y) = il(®, V) = y, and T{x, y) = (x + y, y) for all x,ye Z2.

Proof. πb(B0(n)) and πQ(B0{n)) are the images, under η and rf
respectively, of πjβθ(n)), for n = 3, 4, or 5. Apply (4.2.1).

REMARK (4.2.3). There are two possible choices of x in (4.2.1) we
retroactively make that choice such that the image of π5(BU(2)) ~ Z2,
under the classifying map of the reallification B 17(2) —•50(4), is generated
by (O,l)eτr5(50(4)).

4.3. We need to describe /^-invariants for B0(n).
(4.3.1) For all n, ¥ of B0(n) is zero, since the projection

P,: B0(n) > (B0(n)\ = K(Z2,1) = £0(1)

has a lifting, namely, the map induced by the inclusion of 0(1) in
O(n). Also ¥ = 0, since πz(B0(n)) = 0.

(4.3.2) For 50(3), kδ = ± β&w2, where /94 is the Bockstein of Z->
Z-^Z4 and ψ: H2(; Z2)-+H4(; Z4) is the Pontrjagin square [2], and ¥
is based on the relation SgΠ^k5 + w2 U Π*¥ = 0.

(4.3.3) For 50(5), λr5 - 2/34^ti;2 - /Swi (see [4]), and A:6 = w6, based
on the relation S2JI*kδ + w2 U Π*¥ = 0.

(4.3.4) Using (4.3.2), (4.3.3), we get that for 50(4), ¥ = cβ&w2,
where c: H*(; Z) -> H*(; (Z + Z)τ) is (j\)* as described in (3.5.2), and
¥ is of order 4 and generates ίf5((5O(4))4; (Z + Zfiw,]). Also, &6 is
based on the relation S'2qΠ*¥ + w2{j Π*¥, where

Si: H*(; (Z2 + Z2)
τ[a\) > H*+2(; (Z2 + Z2)

τ[a])

is that unique operation which is ordinary S% on each factor when
a — 0, and w2 U is as described in (3.5).

(4.3.5) For BO(β), ¥ = 2βJ$w2 = βw\, and ¥ = β^w^w^ based
on the relation βτ(S2

qΠ^¥ + w2 U Π*¥) = 0.

4.4. Using (4.1.1) and (4.1.2) we can now evaluate some differen-
tials dr — dζ for a map /: X—>(Y)k.

(4.4.1) If Y = 50(1) or 50(2), dr - 0.
(4.4.2) If 7 = 50(3) and k < 4, dr = 0. If A = 4, d2 = 0: by

(4.1.2), ds(») = β(x" + » U /*w») e Jϊ4(X; ^ ) for all x e H\X\ Z2). This
was also known to Dold and Whitney [2]. If
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k = 5, d2(x) = SlΠ^x + f*w2 U Π^x e H6(X; Z2) ,

for all x e H\X; Z) by (4.1.2); dz = 0, and dt requires special compu-
tation.

(4.4.3) If Y = £0(4) and k < 4, dr = 0. If k = 4, d2 = 0; and by
(4.1.2),

d3(x) = cβ(x3 + x\J f*wt) e H\X; (Z + ZflΓw,])

for all x e H\X; Z2); if

k = 5, d2(x) = S\Π+x + f*w2 U Π*x e H\X; {Z2 + ^ 2)Γ[/*wJ)

for all x e H\X; {Z + Z)τ[f*w1]) by (4.1.2), d3 = 0, and dt must be
computed specially.

(4.4.4) If Y = BO(5) and k<5,dr = 0. If

k = δ, d2(x) = SI/7^ + /*w2 U Π*x e fZ"5(X; ^ 2)

for all x e iϊ 3(X; Z),d% = 0, and

d4(a>) = ίκ5 + /*W! U x* + f*w2 U xs + f*ws U »2

+ f*wt U * + Im d2 e £;4

5'5 = #"5(X; Z,)/Im rf2

for all x e fl '(X; Z,).

Proo/. We have a map S: ΣK(Z, 1)—BSO, such that S*wi+ί = sw*
for all i ^ l , where u is the fundamental class. Now (BO(5))4 = (BO)t
has the same homotopy as BO up through dimension 7, so we identify
.£P((BO(5))4 with H\BO) for 0 ^ jfc ^ 7. Let Λ: ^ ^ ( Z , , 1)—(BO(5))4 be
given by the commutative diagram:

ΣK(Z2,1) - A , (Z?O(5))4=

> BO .

(BO(5))4 has an JT-space structure μ: (JBO(5))4 X (BO(5))4->(SO(5))4 and
/^*^6 = Σ U ^ i x ^6_i. Let QX be the space obtained from X x S1 by-
collapsing x0 x S1; let J : QX—>2TX be the map which collapses X x *,
and let p^.QX—>X be projection onto the first factor. For any
xe(H*X), let qx = p*x and let Qx = J*sx, both in H*{QX). We
showed in [4, 5.1] that qaU qb = q(a U b), qa\J Qb = Q(a (J δ), and
Qα \jQh = 0 for all α, 6 e H*{X). Let C: X->if(Z 2,1) be a classifying
map for a given xeH1(X;Z2)9 and let F : QX-+ (£O(5))4 be a map,
which represents a homotopy of psf with itself, defined by composing
the following maps:
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Λ QX-J^U ΣX x XI^J^ί, ΣK(Z2,1) x (BO(5))4

> (J5O(5))4 x (BO(5))4 - ί U (BO(5))4 .

By (1.3), d4(a?) contains δδ(f,f; F). Now routine computation shows
that f*w6 = Q(x5 + xAf*w, + a?3/*w2 + x2f*w3 + α/*w4), and the result
follows from [4, 5.2].

(4.4.5) If Γ = £0(6) and k < 6, dr = 0. If fc = 6, d2 = 0 and
d3(x) = βτ{SlΠ*x + / * ^ 2 u Π*x) e iϊ6(X; Zτ[f*wx]) for all a? e ίί3(X; ^ ) ;
d4 = 0 and

+ Im d2 e E£>6 = iP(X; ^ [ /

for all xeH'iX ZJ.

Proof, same as (4.4.4).

4.5. We are now ready to classify real vector bundles over Pkf

for k ^ 5.

DEFINITION (4.5.1). A locally oriented real π-dimensional vector
bundle over a space X shall be a b.p.p. homotopy class of maps from
X to B0(n). If f:X-+B0{ri) represents a locally oriented v.b. ξ,
let ~ £, or f conjugate, be that locally oriented v.b. given by a map
g:X—>B0(n) which is connected to / via a free homotopy which
sends the base-point of X around a nontrivial loop of BO(ri). Obviously
~ ξ = ξ, and conjugate classes of locally oriented vector bundles
correspond to equivalence classes of vector bundles.

TABLE (4.5.2). For k ^ 1, let h: Pk-+B0{l) be the canonical line
bundle. Let " φ " denote Whitney sum. We give a complete list of
all locally oriented real ^-dimensional vector bundles over Pk, each n
and k; all bundles are self-con jugate unless otherwise specified.

Let G denote (q^tiP^) = £{ii)*t(Pt) which generates

H\P4; (Z + ZY[u\) .

Also (pi)~ιub generates H5(P5; (Z2 + Z2)
τ[u]). Locally oriented real

^-dimensional vector bundles over Pk, for n — 1 g k ^ 5:

Over

1

h

Pi

2

A 0 1

Over P 2

1

h

2

τP =

2h =

(Λ01)

stable

3 f t - 1

2 + ΰ*

+ pt{

class

if p

Pz),
/14-
odd;

for

1 if
r

all

P

pβZ;

even,

= T-p.

3

h®2

2h@

3h =

1 = 3 + u2

(h © 2) + uz
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Over Pz

1

h
2

hφl
2h

3
h@2
2A01
Sh

4
Λ03
2/^02
3/ι01

Over P 4

1

h

2
h@l
2h

3=3+a4

h®2
(h@2) + 0

/pZj /TNI \ _ι_ v;4

3λ = 3Λ + z74

4=4+(^4,0)
2/ι©2
2Λ02+(w4, 0)

4Λ=4+(0,«4)=4Λ + («4,0)
2/ι©2+(0, w4); stable

class 6A-2
2/ι02+(w4,^4) =

~(2/*02+(O, w4))
^p = feφ3+pG for all

peZ; stable class
/ι+3 if p even, 5Λ-1
if p odd; ~EP = E-P

FP=3h®l + pG for all
pβZ; stable class
3&+1 if p even,
7Λ-3 if p odd;

5
λ©4
2Λ03
3Λ,©2
4/i©l

((2/ιφ2)-r(0, «4))®1;
stably 6λ—1

Fiφl; stable class
lh-2

Over P 5

1 2

fc /iφl
2Λ

3

3+u5

/^©2 + ̂ 5

A=A+it5;

2/i©l
2Λφl+^

B=B+u*;

Sh

4

4 + (u5,0)
4+(0, M5)
4 + ( M 5 , M5) = ~ ( 4 + (0, M5))

2 ^ 2

+ ( ϊ > 2 ) l M 5

2fce2+(0,^»)

3Λ©1

4Λ,-h(w5, 0)
4/z, + (0, it5)

D + ('M.5, 0) =

5=5+^ 5

/^φ4
Λ,φ4+^5

2/̂ φ3
OZj ^TΛO I Λ I 5
ώ / l ' ζ p ΰ ~T~ Hi

Q Ij ^TΛO

Olj/TNO I ΛJ5

4fe01
4Λφl + ^

6

^Φ5
2/tφ4
3/ιφ3
4Λφ2

5Λ01
Gh
C@h@l
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4.6. Similarly, we can classify all complex vector bundles over
Pkf for k ^ 5. We give a table of homotopy groups:

BUQ) BU(2) BU(n) for 3 S n

0

z
0

z
0

0

z
0

z
Z<,

0

z
0

z
0

The only nonzero yfc-invariant in this range is k6 of BU(2), which
is Π^c^) + S2

qΠ*c2, where c{ e H2i(BU(2); Z) are the Chern classes.
We thus have:

REMARK (4.6.1). For any space X, all complex line bundles over
X correspond to H2(X; Z).

REMARK (4.6.2). For any space X of dimension ^ 5, all complex
^-bundles, for n ^ 3, over X correspond to KU(X), satisfying the
exact sequence 0 -> H4(X; Z) -> KU(X) -> H2(X; Z) — 0.

REMARK (4.6.3). If /: X-+(BU(2))δ is a map, then

d2(x) = Π^x) + S2

qΠ*x e H5(X; Z2)

for all x e H\X\ Z); d, = 0; d,(x) = Π*(f*c2 U a) + Im d2 for all

a? e ίίXX; Z) .

Proo/. Let S: S2 = ΣK{Z, 1)-~>BU be the generator of π2(BU);
then S*ct — σ, the fundamental class of S2, and S*c2 = 0. The result
follows just as in (4.4.4).

TABLE (4.6.4). We summarize complex ^-bundles over Pk, 2n —
1 <̂  k ^ 5. The reallification is given in square brackets.

Over P2 Over P 3

1

H

[2]

[2h]

[4]

\2h 0 2]

1

H

[4] [4]
[2h 0 2]

Over P4

1

H

[2]

[2Λ]

2 [4]

# 0 1 [2/* 02]

2# = 2 + w4 [4fr]

iί 0 1 + fί4 [2/t 0 2 + («4, 0)]

3

# 0 $
2 # ©

ZH =

[6]

ί [2A © 4]
1 = 3 + a* f4Λ © 2]

i ί © 2 + zί4 [6Λ]

Stable class 3H - 1
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Over P 5

1 [2]

H [2h]

2

2 + u5

i?01

2H

2H + u*

C

C + tt*

[4]

[4 + (0, u*)]

[2h 0 2]

[2h © 2 + (0, ̂ 5)]

[4fc]

[4Λ + (0, u*)]

[C]

[C]

4.7. We give a few representative examples of evaluating those
difficult differentials. Is /: P5 —> (2?O4)5 is a map representing a 4-plane
bundle ζ, then df(%) is defined if and only if

d{(u) = Ud+βiu* + uf*wΛ) = 0 e # 4 ( P 5 ; (Z + ^ ) r [ / * ^ ] ) .

If d2(u) = 0, then ώ{(^) = 0 if and only if there is a map F: QPδ ->
(BOi)5 which represents a homotopy of / with itself, such that
F*w2 = qf*w2 + Qu, where QX is as given in [4; 5].

EXAMPLE (4.7.1). If ξ = 4 or 4fe, then /*w2 = 0, so d2(u) = (ΰ\ 0)
and d4(u) is not defined. Thus 4, 4 + (u\ 0), 4 + (0, ^ 5 ) , and 4 + (u5, ̂ 5)
are all distinct oriented vector bundles.

EXAMPLE (4.7.2). If ξ = 2h © 2, then /*w2 = u2, so d2(%) = 0.

Let Ύ]ι be that line bundle over QPb such that w^) — qu; now
2-plane bundles over a space X with ^ = x are classified by H\X\ ZΓ[x]);
let 7]2 be that 2-plane bundle over QP5 with w^^) = qu classified by
Qu. Then w2(η2) = Qu. Let c: QPb —> J5O(4) be the classifying map
of Ύ]ι Θ % Θ 1; c*w2 = g ^ + Q U a n d (^ 0 )̂ 2 φ 1) I P 5 = 2Λ 0 2. Thus
F, the projection of c onto (Z?O(4))5, and d{(u) = 0.

EXAMPLE (4.7.3). If f = C, then /*w2 = ^2, so df(w) = 0, and d{(u)
is defined. Now p5C = p5(2A 0 2) + (0, iZ4),

U

and so d4(%) = 0 if and only if we can lift the map
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p
δ
F + q(0, ΰ*): Qp

5
 > ((J3O(4))

4

to (i?O(4))5, where F is the map given in (4.7.2). Now the Λ-invariant
fe6 is based on the relation S2

qίl^k5 + w2 U Π*k5 = 0, and (pδF)*k6 = 0,
so (p5F + α)*/b6 = SJ/7^ + {pbF)*w2 U #*α which, when α = q(0, ΰ4),
equals SJ?(O, u") + (<^2 + Qw) U g(0, u4) = Q(0, u5). So, by [4; 5.2], d,(u) =
(0, u5). Thus C + (0, ̂ 5) - C, but C + (u5, 0) is different. We also
have that there are two complex structures on C, because since C
is the reallification of the complex bundle C, C = C + (0, u5) is the
realliίication of C + w5.

4.8. We would like to know how vector bundles behave under
tensor products. If L is any line bundle over any space, L^L — 1.
Furthermore:

REMARK (4.8.1). If rjl and η2 are locally oriented real w-plane
bundles over a space X, which agree on Xk~\ and if ξ is a locally
oriented real m-plane bundle over X, then i^fa, τj2) = δk(η10 ζ, η10 f)
and j^Sk(rjif rj2) = ̂ ^(^ ® f, ^2 ® ?)> where ΐ: B0(n) —> SO(^ + m) and
^: B0(n) c B0(nm) are the maps induced by the inclusion of O(w) in
O(n + m) and 0(nm). Similarly for complex vector bundles.

REMARK (4.8.2). If ζ is an oriented real vector bundle which has
a complex structure, and if η is any other locally oriented real vector
bundle, then ζ 0 η also has a complex structure.

Proof. Let C(η) be the complexification of η, and let £' be a
complex bundle whose reallification is f. Then we can see routinely
that the reallification of £' 0 C{η) is £ ® 37.

With the above information, we can almost completely determine
the action of " 0 " and "(g)" on all locally oriented real vector bundles
over Pjc, k ^ 5. For example,

A ® h = £, C 0 λ = C, 4 0 h = 4A, (4 + (0, O ) 0 λ = 4fe + (0, u5),

Tp®h= Tp,Ep®h = Fp, (4Λ + (u5, wB)) 0 1 = 4h 0 1 + ̂ 5 .

The only unsolved questions are whether A0/& = 2 ? 0 1 ; i t i s also
possible that A0ft = δ φ l + (O,%5); and whether 5 © 2 equals 2/^03
or 2h 0 3 + ^5.
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