TWISTED COHOMOLOGY AND ENUMERATION OF VECTOR BUNDLES

Lawrence L. Larmore

In the present paper we give a technique for completely enumerating real 4 -plane bundles over a 4 -dimensional space, real 5-plane bundles over a 5 -dimensional space, and real 6plane bundles over a 6-dimensional space. We give a complete table of real and complex vector bundles over real projective space P_{k}, for $k \leqq 5$. Some interesting results are:
(0.1.1.) Over P_{5}, there are four oriented 4-plane bundles which could be the normal bundle to an immersion of P^{5} in R^{9}, i.e., have stable class $2 h+2$, where h is the canonical line bundle. Of these, two have a unique complex structure.
(0.1.2.) Over P_{5} there is an oriented 4 -plane bundle which we call C, which has stable class $6 h-2$, which has two distinct complex structures. D, the conjugate of C, i.e., reversed orientation, has no complex structure.
(0.1.3) Over P_{5}, there are no 4 -plane bundles of stable class $5 h-1$ or $7 h-3$.
0.2. In reading the tables (4.5.2) and (4.6), remember that if ξ : $P_{k} \rightarrow B O(n)$ or $\xi: P_{k} \rightarrow B U(n)$ is a locally oriented (i.e., oriented over base-point) real or complex vector bundle, and if

$$
a \in H^{k}\left(P_{k} ; \pi_{k}(B O(n), \xi)\right)
$$

(local coefficients if ξ unoriented) or $a \in H^{k}\left(P_{k} ; \pi_{k}(B U(n))\right.$, then $\xi+a$ is a vector bundle obtained by cutting out a disk in the top cell of P_{k} and joining a sphere with some vector bundle on it.
0.3. Since some of the homotopy groups of $B O(n)$ are acted upon nontrivially by $Z_{2} \cong \pi_{1}(B O(n))$ for n even, we study cohomology with local coefficients in § 3 .
1.2. From here on, we assume that all spaces are connected C. W.-complexes with base-point, all maps are b.p.p. (base-pointpreserving) and that all homotopies are b.p.p.

For any space Y, we choose a Postnikov system for Y, that is: for each integer $n \geqq 0$, a space $(Y)_{n}$ and a map $P_{n}: Y \rightarrow(Y)_{n}$ which induces an isomorphism in homotopy through dimension n, where all homotopy groups of $(Y)_{n}$ are zero above n; for each $n \geqq 1$ a fibration $p_{n}:(Y)_{n} \rightarrow(Y)_{n-1}$ such that $p_{n} P_{n}=P_{n-1}$. The fiber of each p_{n} is then an Eilenberg-MacLane space of type $\left(\pi_{n}(Y), n\right)$. If X is a space of finite dimension m, then $[X ; Y]$, the set of homotopy classes of maps
from X to Y, is in one-to-one correspondence with $\left[X ;(Y)_{m}\right]$.
Definition (1.2.1). For any integer $n \geqq 1$, let $G_{n}(Y)$ be the sheaf over $(Y)_{1}$ whose stalk over every y is defined to be $\pi_{n}\left(p^{-1} y\right)$, which is isomorphic to $\pi_{n}(Y)$ (where $\left.p=p_{2} \cdots p_{n}:(Y)_{n} \rightarrow(Y)_{1}\right)$ if $n \geqq 2$; $\pi_{1}\left((Y)_{1}, y\right)$ if $n=1$. If X is any space and $f: X \rightarrow(Y)_{1}$ is a map, let $\pi_{n}(Y, f)$ be the sheaf $f^{-1} G_{n}(Y)$ over X. This sheaf depends only on the homotopy class of f. If $g: X \rightarrow(Y)_{m}$ is a map for any integer $m \geqq 1$, or if $h: X \rightarrow Y$ is a map, let $\pi_{n}(Y, g)$ denote $\pi_{n}\left(Y, p_{2} \cdots p_{m} g\right)$ and let $\pi_{n}(Y, n)$ denote $\pi_{n}\left(Y, P_{1} h\right)$.

Definition (1.2.2). If f and g are maps from X to $(Y)_{n}$ for any $n \geqq 2$, which agree on A, and if $F: X \times I \rightarrow(Y)_{n-1}$ is a homotopy of $p_{n} f$ with $p_{n} g$ which holds A fixed, let $\delta^{n}(f, g ; F) \in H^{n}\left(X, A ; \pi_{n}(Y, f)\right)$ be the obstruction to lifting F to a homotopy of f with g which holds A fixed.

Remark (1.2.3). If $g: X \rightarrow(Y)_{n}$ is another map which agrees with f on A, and if G is a homotopy of $p_{n} g$ with $p_{n} h$ which holds A fixed, then $\delta^{n}(f, g ; F)+\delta^{n}(g, h ; G)=\delta^{n}(f, h ; F+G)$, where, for each $(x, t) \in X \times I$,

$$
(F+G)(x, t)=\left\{\begin{array}{l}
F(x, 2 t) \quad \text { if } \quad 0 \leqq t \leqq \frac{1}{2} \\
G(x, 2 t-1) \quad \text { if } \frac{1}{2} \leqq t \leqq 1
\end{array}\right.
$$

Definition (1.2.4). Let X be a space, let $A \subset X$ be any subcomplex (possible empty), let $f: X \rightarrow(Y)_{n}$ be a map for some integer $n \geqq 2$, and let a be an element of $H^{n}\left(X, A ; \pi_{n}(Y, f)\right)$. We define $f+a$ to be that map from X to $(Y)_{n}$, unique up to fiber homotopy with A held fixed, such that $p_{n}(f+a)=p_{n} f$ and $\delta^{n}(f, f+a)=a$, where C is the constant homotopy.

Remark (1.2.5). If b is any other element of $H^{n}\left(X, A ; \pi_{n}(Y, f)\right)$, then $f+(a+b)=(f+a)+b$.

Remark (1.2.6). If $g:\left(X^{\prime}, A^{\prime}\right) \rightarrow(X, A)$ is a map, where $\left(X^{\prime} A^{\prime}\right)$ is any other C. W. pair, then $(f+a) g=g f+g^{*} a$.

Main Theorem (1.2.7). For any $a \in H^{n}\left(X, A ; \pi_{n}(Y, f)\right), f+a$ is homotophic to f, rel A, if and only if $\delta^{n}(f, f ; F)=a$ for some homotopy F of $p_{n} f$ with itself which holds A fixed.

Proof. Let C be the constant homotopy of $p_{n} f$ with itself. On the one hand, if F is any homotopy of $p_{n} f$ with itself which holds
A fixed, let $a=\delta^{n}(f, f ; F)$. Then $\delta^{n}(f+a, f ; F)=\delta^{n}(f+a, f ; C)+$ $\delta^{n}(f, f ; F)=-a+a=0$. Thus F may be lifted to a homotopy of $f+a$ with f. On the other hand, if G is a homotopy of $f+a$ with f, then $\delta^{n}\left(f, f ; p_{n} G\right)=\delta^{n}(f, f+a ; C)+\delta^{n}\left(f+a, f ; p_{n} G\right)=a+0=a$.

Definition (1.2.8). Let L_{f} be the subgroup of $H^{n}\left(X, A ; \pi_{n}(Y, f)\right)$ consisting of all a such that $f+a$ is homotopic to f rel A. Then the set of all homotopy (rel A) classes of liftings of $p_{n} f$ to $(Y)_{n}$ which agree with f on A is in a one-to-one correspondence with the quotient group $H^{n}\left(X, A ; \pi_{n}(Y, f)\right) / L_{f}$; each coset $a+L_{f}$ corresponds to $f+a$. If $g: X \rightarrow Y$ is a map such that $p_{n} g=f$, let $L_{g}^{n}=L_{f}$. If $h: X \rightarrow(Y)_{m}$ is a map such that $p_{n+1} \cdots p_{m} h=f$, for $m \geqq n$, let $L_{h}^{n}=L_{f}$.

Remark (1.2.9). If $a \in H^{n}\left(X, A ; \pi_{n}(Y, f)\right)$, then $L_{f+a}=L_{f}$.
Proof. Let F be any homotopy of $p_{n} f=p_{n}(f+a)$ with itself, and let C be the constant homotopy. Then $\delta^{n}(f+a, f+a ; F)=$ $\delta^{n}(f+a, f ; C)+\delta^{n}(f, f ; F)+\delta^{n}(f, f+a ; C)=-a+\delta^{n}(f, f ; F)+a=$ $\delta^{n}(f, f ; F)$.
1.3. In order to calculate L_{f} in specific cases, such as X a projective space, $A=$ base-point, and $Y=B O(m)$ for some m, we use a spectral sequence which has the following properties:
(1.3.1) ${ }^{f} E_{2}^{p, q}=E_{2}^{p, q}=H^{p}\left(X, A ; \pi_{q}(Y, f)\right)$ if $2 \leqq q \leqq n, 1 \leqq p \leqq q+1$.
(1.3.2) $E_{2}^{p, q}=0$ for all other values of p and q.
(1.3.3) $\quad d_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q+r-1}$ for all $r \geqq 2$.
(1.3.4) $\quad E_{\infty}^{n, n}=H^{n}\left(X, A ; \pi_{n}(Y, f)\right) / L_{f}$, which, by (1.2.7) and (1.2.8) can be put into one-to-one correspondence with the set of rel A homotopy classes of maps $X \rightarrow(Y)_{n}$ whose projection to ($\left.Y\right)_{n-1}$ is rel A homotopic to $p_{n} f$.

Basically, what is happening is as follows (where, for any space Z and any map $g: A \rightarrow Z$, the set of rel A homotopy classes of maps $X \rightarrow Z$ which agree with g on A is denoted " $[X ; Z: g]$ "); consider the function:

$$
\left[X ;(Y)_{n}: f \mid A\right] \xrightarrow{\left(p_{n}\right)^{*}}\left[X ;(Y)_{n-1}: p_{n} f \mid A\right] .
$$

Now $\left(p_{n}\right)_{\#}$ is just a function of sets, but $\left(p_{n}\right)_{\#}^{-1}\left(p_{n} f\right)$ is an Abelian group with 0 the homotopy class of f itself. This group, $E_{\infty}^{n, n}$ of our spectral sequence, depends on the choice of f.

We define our spectral sequence via an exact couple:

where $E_{2}^{p, q}$ is as defined in (1.3.1) and (1.3.2), where i_{2}, j_{2}, and k_{2} have bi-degrees $(-1,-1),(2,1)$, and $(0,0)$ respectively; and where (for all $t \leqq n, M_{t}=$ space of maps from X to $(Y)_{t}$ which agree with $p_{t}^{n} f$ on A, compact-open topology):
(1.3.5) $\quad D_{2}^{p, q}=\pi_{q-p}\left(M_{q}, p_{q}^{n} f\right)$ if $0 \leqq q \leqq n$, and $p \leqq q$.
(1.3.6) $D_{2}^{p, q}=0$ if $q<p$ or $q<0$.
(1.3.7) $\quad D_{2}^{p, q}=D_{2}^{p-1, q-1}$ if $q>n$.

Note that $D_{2}^{p, q}$ is only a group if $q=p+1$ and only a set if $q=p$. This will not affect our computation, however.

We proceed to define the homomorphisms i_{2}, j_{2} and k_{2}.
(1.3.8) If $q>n$, let i_{2} be the identity. If $q \leqq n$, let $i_{2}=\left(p_{q}\right)_{\#}$.
(1.3.9) If $p \leqq q$ and $0 \leqq q<n$, any $x \in D_{2}^{p, q}$ represents a map $\mathrm{g}: X \times I^{q-p} \rightarrow(Y)_{q}$, where $g(x, v)=p_{q}^{n} f(x)$ for all $(x, v) \in X \times \partial I^{q-p} \cup A \times$ I^{q-p}. Let $j_{2}(x)=\left(s^{q-p}\right)^{-1} \gamma^{q+2}(g)$, where $s^{q-p}: H^{p+2}\left(X, A ; \pi_{q+1}(Y, f)\right) \rightarrow$ $H^{q+2}\left(X \times I^{q-p}, X \times \partial I^{q-p} \cup A \times I^{q-p} ; \pi_{q+1}(Y, g)\right)$ is the ($q-p$)-fold suspension and $\gamma^{q+2}(g)$ is the obstruction to finding a lifting $h: X \times I^{q-p} \rightarrow$ $(Y)_{q+1}$ of g such that $h(x, v)=p_{q+1}^{n} f(x)$ for all $(x, v) \in X \times \partial I^{q+p} \cup A \times I^{q-p}$. (If $p>q$ or $q<0$ or $q \geqq n, j_{2}: D_{2}^{p, q} \rightarrow E_{2}^{p+2, q+1}$ is obviously the zero map, since $E_{2}^{p+2, q+1}=0$.) This obstruction is zero if and only if g can be lifted; it follows immediately that:
(1.3.10) The sequence $D_{2}^{p+1, q+1} \xrightarrow{i_{2}} D_{2}^{p, q} \xrightarrow{j_{2}} E^{p+2, q+1}$ is exact.

Furthermore, since every homotopy, rel A, of $p_{n} f$ with itself represents a loop in M_{n-1} :
(1.3.11) L_{f} is the image of $j_{2}: D_{2}^{n-2, n-1} \rightarrow E_{2}^{n, n}$. For any $2 \leqq q \leqq n$, $1 \leqq p \leqq q$, and any $a \in E_{2}^{p, q}$, let

$$
b=s^{q-p} a \in H^{q}\left(X \times I^{q-p}, X \times \partial I^{q-p} \cup A \times I^{q-p} ; \pi_{q}(Y, C)\right),
$$

where $C(x, v)=p_{q}^{n} f(x)$ for every $(x, v) \in X \times I^{q-p}$. Let $k_{2}(a) \in D_{2}^{p, q}$ be that element represented by the map $C+b$ (cf.1.2.2). It follows from (1.2.3) that k_{2} is a homomorphism if $p<q$; if $p=q$ then $D_{2}^{p, q}$ is only a set anyway. (For other values of p and $q, k_{2}=0$.) Since $p_{q}(C+b)=$ $p_{q} C$, and C represents $0 \in D_{2}^{p, q}$:
(1.3.12) $\quad \operatorname{Im} k_{2} \subset \operatorname{Ker} i_{2}$.

If, on the other hand, a map $\mathrm{g}: X \times I^{q-p} \rightarrow(Y)_{q}$ such that $g=C$ on $X \times \partial I^{q-p} \cup A \times I^{q-p}$ is a representative of a given $a \in \operatorname{Ker} i_{2}$, then $p_{q} g$ is homotopic, rel $X \times \partial I^{q-p} \cup A \times I$, to $p_{q} C$ via a homotopy F, then $a=k_{2}\left(\left(s^{q-p}\right)^{-1} \delta^{q}(C, g ; F)\right)$. Thus:
(1.3.13) $\quad \operatorname{Ker} i_{2} \subset \operatorname{Im} k_{2}$.

Somewhat more difficult to show is:
(1.3.14) $\operatorname{Ker} k_{2}=\operatorname{Im} j_{2}$ if $p \leqq q$.

Proof. Let $2 \leqq q \leqq n, 1 \leqq p \leqq q$. Let $g(x, v)=p_{q}^{n} f(x) \in(Y)_{q}$ for all $(x, v) \in X \times I^{q-p} ; g$ represents $0 \in D_{2}^{p, q}$. Let $b \in E_{2}^{p, q}$. Then $b \in \operatorname{Ker} k_{2}$
if and only if $s^{q-p} b \in L_{g}$ (cf. 1.2.7). If $b=j_{2} a$, then a represents F, a homotopy, rel $X \times \partial I^{q-p} \cup A \times I^{q-p}$ of $p_{q} q$ with itself, and $s^{q-p} b=$ $\delta^{q}(g, g ; F) \in L_{g}$. If, on the other hand, $s^{q-p} b \in L_{g}$, then $s^{q-p} b=\delta^{q}(g, g ; F)$ for some homotopy F, rel $X \times \partial I^{q-p} \cup A \times I^{q-p}$, of $p_{q} g$ with itself; let $a=[F] \in D^{p-2, q-1}$, and $j_{2} a=b$.
1.4. Since only finitely many of the E_{2} terms are nonzero, we obtain E_{∞} after a finite number of steps. We also have, by straightforward algebra, an exact sequence

$$
0 \longrightarrow E_{\infty} \xrightarrow{k_{\infty}} D_{\infty} \xrightarrow{i_{\infty}} D_{\infty} \longrightarrow 0 .
$$

Consider now the commutative diagram with exact columns:

A typical element of $D_{2}^{n-2, n-1}$ is a rel $X \times \partial I \cup A \times I$ homotopy class of homotopies of $p_{n} f$ with itself; if F is such a homotopy, $j_{2}[F]=$ $\delta^{n}(f, f ; F)$, by (1.3.9). If $x \in H^{n}\left(X, A ; \pi_{n}(Y, f)\right), k_{2} x=f+x$, by (1.3.11). Thus $\operatorname{Im} j_{2}=L_{f}$, and $E_{\infty}^{n, n}=H^{n}\left(X, A ; \pi_{n}(Y, f)\right) / L_{f}$, the set of $\operatorname{rel} A$ homotopy classes of liftings of $p_{n} f$.
1.5. If $g:\left(X^{\prime}, A^{\prime}\right) \rightarrow(X, A)$ is a map, g induces a map of spectral sequences.
(1.5.1) $g^{*}:{ }^{f} E_{r}^{p, q} \rightarrow{ }^{f g} E_{r}^{p, q}$ for all p, q, r. If $h: Y \rightarrow Z$ is a map, where Z is any other space, h determines a map $h_{m}:(Y)_{m} \rightarrow(Z)_{m}$ for each $m \geqq 0$ [1]. Then $h_{\sharp}: \pi_{1}\left(Y, y_{0}\right) \rightarrow \pi_{1}\left(Z, z_{0}\right)$ induces a sheaf homomorphism from $G_{n}(Y)$ to $\left(h_{1}\right)^{-1} G_{n}(Z)$ which in turn induces a homomorphism.
(1.5.2) $\quad h_{*}: H^{*}\left(X, A ; \pi_{m}(Y, f)\right) \rightarrow H^{*}\left(X, A ; \pi_{m}(Z, h f)\right)$ for all $m \geqq 0$ and a map of spectral sequences
(1.5.3) $\quad h_{*}:{ }^{f} E_{r}^{p, q} \rightarrow{ }^{h f} E_{r}^{p, q}$ for all p, q, r.

2. Nonbase-point-preserving homotopies.

2.1. Using the techniques of $\S 1$, we can compute all b.p.p.
homotopy classes of maps from a finite-dimensional space X to a space Y. What if we want to know, instead, all free homotopy classes of maps?
2.2. Let $f: X \rightarrow Y$ be any b.p.p. map, and let $a \in \pi_{1}\left(Y, y_{0}\right)$. By the homotopy extension property, we can find a free homotopy F : $X \times I \rightarrow Y$ of f such that $F \mid\left\{x_{0}\right\} \times I$ represents a. Let $f^{a}(x)=F(x, 1)$ for any $x \in X$; f^{a} is unique up to b.p.p. homotopy, and $f^{a b}\left(f^{a}\right)^{b}$ for any other $b \in \pi_{1}\left(Y, y_{0}\right)$.

Theorem (2.2.1). If f and g are any b.p.p. maps from X to Y, then f is freely homotopic to g if and only if f^{a} is b.p.p. homotopic to g for some $a \in \pi_{1}\left(Y, y_{0}\right)$.

Proof. If f^{a} is b.p.p. homotopic to g, then f is obviously freely homotopic to g since f is freely homotopic to f^{a}. If, on the other hand, $F: X \times I \rightarrow Y$ is a free homotopy of f with g, let a be that element of $\pi_{1}\left(Y, y_{0}\right)$ represented by the loop $F \mid\left\{x_{0}\right\} \times I$. Then $f^{a}=g$ (up to b.p.p. homotopy).

Theorem (2.2.2). If $n \geqq 2, f: X \rightarrow(Y)_{n}$ is a map,

$$
a \in H^{n}\left(X, x_{0} ; \pi_{n}(Y, f)\right),
$$

and $b \in \pi_{1}\left(Y, y_{0}\right)$, then $(f+a)^{b}=f^{b}+1_{*}^{b}(a)$, where 1_{*}^{b} is the homomorphism induced by the map 1^{b} (cf.1.5.2), where 1 is the identity map on $(Y)_{n}$.

Proof. The theorem follows from naturality of obstruction theory.

3. Sheaves of local coefficients.

3.1. The homotopy groups of $B O(n)$ are sometimes acted on nontrivially by π_{1}. We must therefore study twisted sheaves.

Definition (3.1.1). A twisted group is an ordered pair (G, T), G an Abelian group, $T: G \rightarrow G$ an automorphism of order 2. If X is a space, a (G, T)-sheaf over X is a fiber bundle over X with fiber G and structural group Z_{2}, action determined by T. Let $G^{T}[u]$ be the (G, T)-sheaf over P_{∞} obtained by identifying (x, g) with ($T x, T g$) for all $(x, g) \in S^{\infty} \times G$, where $T: S^{\infty} \rightarrow S^{\infty}$ is the antipodal map.

Definition (3.1.2). If $a \in H^{1}\left(X, x_{0} ; Z_{2}\right)$ and $f:\left(X, x_{0}\right) \rightarrow\left(P_{\infty},{ }^{*}\right)$ is a map where $f^{*} u=\alpha\left(u=\right.$ fundamental class of $\left.P_{\infty}\right)$, let $G^{T}[\alpha]=$ $f^{-1} G^{T}[u]$. We call a the twisting class of $G^{T}[a]$.

Proposition (3.1.3). $\quad G^{T}[u]$ is universal in the sense of Steenrod [6], that is, if G is a (G, T)-sheaf over a space $X, G \cong G^{T}[a]$ for some unique $a \in H^{1}\left(X, x_{0} ; Z_{2}\right)$.

Proof. $\quad P_{\infty}=B Z_{2}$.
Remark (3.1.4). If $F: X \times I \rightarrow P_{\infty}$ is a free homotopy of f with itself, where $f^{*} u=a$, then F induces an automorphism of $G^{T}[a] ; 1$ or T depending on whether $F \mid\left\{x_{0}\right\} \times I$ is a trivial loop in P_{∞} or not.
3.2. If X is a space, $B \subset A \subset X$ are closed, and S is a sheaf over X, we have a long exact sequence:

$$
\begin{aligned}
\cdots & \longrightarrow H^{n}(X, A ; S) \longrightarrow H^{n}(X, B ; S) \longrightarrow H^{n}(A, B ; S) \\
& \xrightarrow{\delta} H^{n+1}(X, A ; S) \longrightarrow \cdots
\end{aligned}
$$

Proposition (3.2.1). If S is a sheaf over a space X, and $A \subset X$ is closed, we may find an isomorphism

$$
s: H^{*}(X, A ; S) \longrightarrow H^{*}(X \times I, X \times \partial I \cup A \times I ; S \times I)
$$

called the suspension, of degree 1 , where $S \times I=p^{-1} S ; p: X \times I \rightarrow X$ being the projection.

Proof. Let S^{\prime} be that subsheaf of S such that $S^{\prime} \mid A=0$ and $S^{\prime}|(X-A)=S|(X-A)$. According to Bredon [1],

$$
H^{*}(X, A ; S)=H^{*}\left(X ; S^{\prime}\right)
$$

and

$$
H^{*}(X \times I, X \times \partial I \cup A \times I ; S \times I)=H^{*}\left(X \times I, X \times \partial I ; S^{\prime} \times I\right)
$$

Now $H^{*}\left(X \times I, X \times\{t\} ; S^{\prime}\right)=0$ for any $t \in I$ [1], and by the long exact sequence of ($X \times I, X \times \partial I, X \times\{1\}$) and excision we have an isomorphism $H^{*}\left(X \times\{0\} ; S^{\prime} \times I\right) \xrightarrow{\cong} H^{*}\left(X \times I, X \times \partial I ; S^{\prime} \times I\right)$ of degree 1; the left group is isomorphic to $H^{*}\left(X ; S^{\prime}\right)$.
3.3. Let X be a space, $A \subset X$ closed. If $\alpha: S \rightarrow S^{\prime}$ is a homomorphism of sheaves over X, we get a homomorphism $\alpha_{*}: H^{*}(X, A ; S) \rightarrow$ $H^{*}\left(X, A ; S^{\prime}\right)$. If S and S^{\prime} are sheaves over X and

$$
E: 0 \longrightarrow S \xrightarrow{i} S^{\prime \prime} \xrightarrow{p} S^{\prime} \longrightarrow 0
$$

is an extension of S^{\prime} by S, then E determines a long exact sequence

$$
\begin{aligned}
\cdots & \xrightarrow{i^{E}} \\
& H^{n}(X, A ; S) \xrightarrow{i_{*}} H^{n}\left(X, A ; S^{\prime \prime}\right) \xrightarrow{p_{*}} H^{n}\left(X, A ; S^{\prime}\right) \\
&
\end{aligned}
$$

where δ^{E} is called the Bockstein of E.
Proposition (3.3.1). If S and S^{\prime} are sheaves over X and if

$$
E: 0 \longrightarrow S \xrightarrow{i} S^{\prime \prime} \xrightarrow{p} S^{\prime} \longrightarrow 0
$$

and

$$
F: 0 \longrightarrow S \xrightarrow{j} U \xrightarrow{q} S^{\prime} \longrightarrow 0
$$

are elements of $\operatorname{Ext}\left(S^{\prime}, S\right)$, then $\delta^{E+F}=\delta^{E}+\delta^{F}$.
Proof. We use the Baer sum construction to find

$$
E+F: 0 \longrightarrow S \longrightarrow V \longrightarrow S^{\prime} \longrightarrow 0
$$

our result follows from the commutative diagram, where each row is exact:

3.4. As Abelian groups Ext $\left(Z_{2}, Z_{2}\right) \cong Z_{2}$; the nonzero extension is Z_{4}. Fix a space X; we study Ext of sheaves over X.

Proposition 3.4.1. As sheaves over X,

$$
\operatorname{Ext}\left(Z_{2}, Z_{2}\right) \cong Z_{2}+H^{1}\left(X, x_{0} ; Z_{2}\right)
$$

For any $a \in H^{1}\left(X, x_{0} ; Z_{2}\right),(0, a)$ corresponds to the extension

$$
E_{a}^{0}: 0 \longrightarrow Z_{2} \xrightarrow{i_{1}}\left(Z_{2}+Z_{2}\right)^{T}[a] \xrightarrow{p_{2}} Z_{2} \longrightarrow 0,
$$

where $T(x, y)=(x+y, y), i_{1}(x)=(x, 0)$, and $p_{2}(x, y)=y ;(1, a)$ corresponds to

$$
E_{a}^{1}: 0 \longrightarrow Z_{2} \xrightarrow{m} Z_{4}^{T}[a] \xrightarrow{e} Z_{2} \longrightarrow 0,
$$

where $T(x)=-x$ for all $x \in Z_{4}, m(1)=2$, and $e(1)=1$.
Proof. Routine computation shows that $E_{a}^{x}+E_{b}^{y}=E_{a+b}^{x+y}$ for any $x, y \in Z_{2}$ and $a, b \in H^{1}\left(X, x_{0} ; Z_{2}\right)$. On the other hand, suppose that

$$
E: 0 \longrightarrow Z_{2} \xrightarrow{i} G \xrightarrow{p} Z_{2} \longrightarrow 0
$$

is some extension. Then the stalk of G at x_{0} is Z_{4}, in which case $G=Z_{4}^{T}[a]$ for some $a \in H^{1}\left(X, x_{0} ; Z_{2}\right)$, or it is $Z_{2}+Z_{2}$. In that case, we have an exact sequence of stalks at x_{0} :

$$
0 \longrightarrow Z_{2} \xrightarrow{i_{1}} Z_{2}+Z_{2} \xrightarrow{p_{2}} Z_{2} \longrightarrow 0 .
$$

Since G is locally isomorphic to $Z_{2}+Z_{2}$, it is a fiber bundle with fiber $Z_{2}+Z_{2}$ and structural group Aut $\left(Z_{2}+Z_{2}\right)$. But the only nontrivial automorphism which commutes with $i_{1}: Z_{2} \rightarrow Z_{2}+Z_{2}$ and $p_{2}: Z_{2}+Z_{2} \rightarrow$ Z_{2} is T given above. So the structural group of G may be reduced to $Z_{2} ; G=\left(Z_{2}+Z_{2}\right)^{T}[a]$ for some $a \in H^{1}\left(X, x_{0} ; Z_{2}\right)$. This gives us the isomorphism.

We have the following commutative diagram with both rows exact, for any $a \in H^{1}\left(X, x_{0} ; Z_{2}\right)$:

Definition (3.4.2). Let $\beta^{T}[a]$ (or simply β^{T}, when a is understood) denote the Bockstein of the top row of the above diagram, and let $\left(S_{q}^{1}\right)^{T}[a]$ (or $\left(S_{q}^{1}\right)^{T}$) denote the Bockstein of the bottom row.

Remark (3.4.3). $\quad \Pi_{*} \beta^{T}=\left(S_{q}^{1}\right)^{T}$.
Proposition (3.4.4). For any $n \geqq 0$ and any $x \in H^{n}\left(X, A: Z_{2}\right)$, $\left(S_{q}^{1}\right)^{T} x=S_{q}^{1} x+x \cup a$.

Proof. Samelson [5].
Proposition (3.4.5). For any $n \geqq 0$ and any $x \in H^{n}\left(X, A ; Z_{2}\right)$ $\delta(x)=x \cup a$, where δ is the Bockstein of $E_{a}^{0}: 0 \rightarrow Z_{2} \rightarrow\left(Z_{2}+Z_{2}\right)^{T}[a] \rightarrow$ $Z_{2} \rightarrow 0$.

Proof. The result follows immediately from (3.3.1), (3.4.1), and (3.4.4).
3.5. Let $T(n, m)=(m-n, m)$ for any $(n, m) \in Z+Z$. If S and S^{\prime} are sheaves over a space X, and if $\mu: S \otimes S^{\prime} \rightarrow S^{\prime \prime}$ is a sheaf homomorphism, then we have a cup product defined from

$$
H^{*}(X, A ; S) \otimes H^{*}\left(X, B ; S^{\prime}\right)
$$

to $H^{*}\left(X, A \cup B ; S^{\prime \prime}\right)$ for any closed $A \subset X$ and $B \subset X$. We have thus
cup products generated by the following relations:

$$
\begin{aligned}
& \qquad \begin{aligned}
Z^{T}[a] \otimes Z^{T}[b] & =Z^{T}[a+b], Z_{2} \otimes\left(Z_{2}+Z_{2}\right)^{T}[a] \\
& =\left(Z_{2}+Z_{2}\right)^{T}[a], Z \otimes(Z+Z)^{T}[a] \\
& =(Z+Z)^{T}[a], Z^{T}[a] \otimes(Z+Z)^{T}[a]=(Z+Z)^{T}[a] \\
\text { (where } n \otimes(p, q) & =(n p, 2 n p-n q)), Z_{4}^{T}[a] \otimes Z_{4}^{T}[b]=Z_{4}^{T}[a+b],
\end{aligned}
\end{aligned}
$$ and many others.

Let (X, A) be a C. W.-pair. Let $a \in H^{1}\left(X, x_{0} ; Z_{2}\right)$ and

$$
\alpha=\beta^{T}[a](1) \in H^{1}\left(X ; Z^{T}[a]\right)
$$

We have the following commutative diagram; where

$$
i_{1} x=(x, 0), T(x, y)=(y-x, y), j_{1} x=(x, 2 x)
$$

and $q_{2}(x, y)=y-2 x$.

Proposition (3.5.1). The Bockstein homomorphisms δ_{1} and δ_{2} are both cup products with α.

Proof. By (3.4.3) and (3.4.4) we may compute that

$$
H^{1}\left(P_{\infty} ; Z^{T}[u]\right) \cong Z_{2}
$$

and is generated by $\bar{u}=\beta^{T}(1)$.
Let $x \in H^{n}(X, A ; Z)$. If $n=0$, then the universal example is $X=P_{\infty}, A=\varnothing, x=1$. Then $\alpha=\bar{u}$. Now $H^{0}\left(P_{\infty} ; Z^{T}\right)=0$, so $\left(j_{1}\right)_{*}$: $H^{\circ}\left(P_{\infty} ; Z\right) \leftarrow H^{0}\left(P_{\infty} ;(Z+Z)^{T}\right)$ is an isomorphism, and $p_{2} j_{1}=2$. Thus $1 \notin \operatorname{Im}\left(p_{2}\right)_{*}$, so $\delta_{1}(1)=\bar{u}$. If $n \geqq 1$, the universal example is $X=$ $K(Z, n) \times P_{\infty}, A=* \times P_{\infty}, x=v_{n} \times 1$. Then $\alpha=p^{*} \bar{u}$, where $p: X \rightarrow P_{\infty}$ is projection onto the second factor. Now routine computations using (3.4.3) and (3.4.4) show that $H^{n+1}\left(X, A ; Z^{T}\right) \cong Z_{2}$ and is generated by $\left(v_{n} \times 1\right) \cup p^{*} \bar{u}$, which is mapped onto $\Pi_{*} v_{n} \times u$ under $\Pi_{*}: H^{*}\left(; Z^{T}\right) \rightarrow$ $H^{*}\left(; Z_{2}\right)$. The result follows from (3.4.5).

Let $x \in H^{n}\left(X, A ; Z^{T}\right)$. If $n=0, x=0$. If $n=1$, the universal example is $X=K\left(Z^{T}, n\right), A=P_{\infty}$, and $x=v_{n}^{T}$, where $K\left(Z^{T}, n\right)$ is obtained as follows: ${ }^{1}$ Let $K(Z, n)$ be a topogical group, let $T(g, y)=$ ($g^{-1}, T y$) for all $g \in K(Z, n)$ and $y \in S^{\infty}$. Let

[^0]$$
K\left(Z^{T}, n\right)=K(Z, n) \times S^{\infty} / T
$$

We have inclusion and projection

$$
P_{\infty} \xrightarrow{i} K\left(\boldsymbol{Z}^{T}, n\right) \xrightarrow{p} P_{\infty}
$$

where $i[y]=\left[{ }^{*}, y\right]$ and $p[g, y]=[y] ; P_{\infty}$ may thus be considered to be a subset of $K\left(Z^{T}, n\right)$, and its cohomology group is a direct summand ${ }^{1}$. Then $v_{n}^{T} \in H^{n}\left(K\left(Z^{T}, n\right), P_{\infty} ; Z^{T}[u]\right)$ is the fundamental class.

$$
H^{n}\left(X, A ; Z_{2}\right) \cong Z_{2}
$$

is generated by $\Pi_{*} v_{n}^{T} ; H^{n+1}\left(X, A ; Z_{2}\right) \cong Z_{2}$ generated by $\Pi_{*} v_{n}^{T} \cup u$. Thus, by (3.4.3) and (3.4.4), $H^{n+1}(X, A ; Z) \cong Z_{2}$ generated by $v_{n}^{T} \cup \bar{u}$, and the result follows from (3.4.5).
(3.5.2). We summarize the results of (3.4.5) and (3.5.1) in the following commutative diagram with all rows exact:

3.6. Applying the results of 3.4 and 3.5 , we compute the cohomology of real projective space P_{k}, for $k \geqq 1$:

$$
\begin{align*}
H^{n}\left(P_{k} ; Z_{k}\right) \cong \begin{cases}Z_{2}, & \text { generated by } u^{n}, \text { if } n \leqq k \\
0 & \text { if } n>k .\end{cases} \tag{3.6.1}\\
H^{n}\left(P_{k} ; Z\right) \cong\left(\begin{array}{ll}
Z_{2}, & \text { generated by } \bar{u}^{n}, \text { if } n \\
& \text { even, } 0<n \leqq k \\
Z, & \text { generated by } 1, \text { if } n=0 \\
0, & \text { if } n \text { odd, } 0<n<k \\
Z, & \text { generated by } t\left(P_{k}\right), \text { the } \\
\text { top class, if } n=k \text { odd } \\
0 & \text { if } n>k .
\end{array}\right. \\
H^{n}\left(P_{k} ; Z^{T}[u]\right) \cong \begin{cases}Z_{2}, & \text { generated by } \bar{u}^{n}, \text { if } n \text { odd, } \\
0, & \text { if } n \text { even, } 0<n<k \\
Z, & \text { generated by } t\left(P_{k}\right), \text { the top } \\
\text { class, if } n=k \text { even } \\
0, & \text { if } n>k .\end{cases}
\end{align*}
$$

$$
\left.H^{n} P_{k}, * ; Z^{T}[u]\right) \cong\left\{\begin{array}{l}
0, \tag{3.6.4}\\
Z, \text { if } n=0 \\
Z, \\
H^{n}\left(P_{k} ; Z^{T}[u]\right) \text { if } n>1
\end{array}\right.
$$

(3.6.7)

$$
\begin{align*}
H^{n}\left(P_{k} ; Z_{2}+Z_{2}\right) & \cong H^{n}\left(P_{k} ; Z_{2}\right) \oplus H^{n}\left(P_{k} ; Z_{2}\right) \tag{3.6.5}\\
H^{n}\left(P_{k} ; Z+Z\right) & \cong H^{n}\left(P_{k} ; Z\right) \oplus H^{n}\left(P_{k} ; Z\right) \tag{3.6.6}
\end{align*}
$$

$$
H^{n}\left(P_{k} ;(Z+Z)^{T}[u]\right) \cong \begin{cases}Z, & \text { generated by }\left(j_{1}\right)_{*} 1 \tag{3.6.7}\\ \text { if } n=0 \\ 0, & \text { if } 0<n<k \\ Z, & \text { generated by } \frac{1}{2}\left(i_{1}\right)_{*} t\left(P_{k}\right)= \\ \left(q_{2}\right)_{*}^{-1} t\left(P_{k}\right) \text { if } n=k \text { is even } \\ Z, & \text { generated by } \frac{1}{2}\left(j_{1}\right)_{*} t\left(P_{k}\right)= \\ \left(p_{2}\right)_{*}^{-1} t\left(P_{k}\right) \text { if } n=k \text { is odd } \\ 0, & \text { if } n>k\end{cases}
$$

(3.6.8) $H^{n}\left(P_{k} ;\left(Z_{2}+Z_{2}\right)^{T}[u]\right) \cong \begin{cases}Z_{2}, & \text { generated by }\left(i_{1}\right)_{*} 1 \\ \text { if } n=0 \\ 0, & \text { if } 0<n<k \\ Z_{2}, & \text { generated by }\left(p_{2}\right)_{*}^{-1} u^{k} \\ \left(=\Pi_{* \frac{1}{2}}\left(i_{1}\right)_{*} t\left(P_{k}\right)\right) \text { if } k \\ & \text { even },=\Pi_{* \frac{1}{2}}\left(j_{1}\right)_{*} t\left(P_{k}\right) \text { if } k \\ \text { odd if } n=k \\ 0, & \text { if } n>k .\end{cases}$
4. Evaluation of the differentials.
4.1. We need two remarks.
(4.1.1) If Y_{1} and Y_{2} are spaces, and $h: Y_{1} \rightarrow Y_{2}$ is a map, h induces a map $\left(Y_{1}\right)_{n-1} \rightarrow\left(Y_{2}\right)_{n-1}$ and a sheaf homomorphism $\widetilde{h}: \pi_{n}\left(Y_{1}, 1\right) \rightarrow$ $\pi_{n}\left(Y_{2}, h\right)$. If k_{1}^{n+1} and k_{2}^{n+1} are the $n^{\text {th }} k$-invariants of Y_{1} and Y_{2} respectively, $\widetilde{h}_{*} k_{1}^{n+1}=h^{*} k_{1}^{n+2} \in H^{n+1}\left(\left(Y_{1}\right)_{n-1} ; \pi_{n}\left(Y_{2}, h\right)\right)$.
(4.1.2) Let X and Y be spaces, $2 \leqq m<n$ integers such that $\pi_{k}(Y)=0$ for all $m<k<n$, and $f: X \rightarrow(Y)_{n}$ a map. If the k invariant k^{n+1} of Y is based on the relation $\theta\left(1, k^{m+1}\right)=0$, where θ is a map cohomology operation and $1:(Y)_{m-1} \rightarrow(Y)_{m-1}$ is the identity map, then; for any

$$
x \in H^{m-1}\left(X ; \pi_{m}(Y, f)\right), d_{r}(x)=s^{-2} \theta\left(p_{m-1}^{n} f P, s^{2} x\right), r=n-m+1
$$

where $P: X \times S^{2} \rightarrow X$ is projection,

$$
s^{2}: H^{*}\left(X, x_{0}\right) \rightarrow H^{*+2}\left(X \times S^{2}, X \times * \cup x_{0} \times S^{2}\right)
$$

is suspension and $p_{m-1}^{n}=p_{m} \cdots p_{n}:(Y)_{n} \rightarrow(Y)_{m-1}$.
Proof. Let $\left(S^{1},{ }^{*}\right)$ be a circle, which we think of as the unit interval with end-points identified. Let $C: X \times S^{1} \rightarrow(Y)_{m}$ be the constant homotopy of $p_{m}^{n} f$ with itself. Now $p_{m}(C+s x)=p_{m} C$, where $C+s x$ is as defined in (1.2.2) and $d_{r}(x)=\delta^{n}(f, f ; C+s x)$ by (1.3). Finally, $s \delta^{n}(f, f ; C+s x)=(C+s x)^{*} k^{n+1}=s^{-1} \theta\left(p_{m-1}^{n} f P, s^{2} x\right)$.
4.2. Kervaire [3, p. 162] gives us the following table of homotopy groups:

	$B O(1)$	$B O(2)$	$B O(3)$	$B O(4)$	$B O(5)$	$B O(6)$	$B O(n)$	for $7 \leqq n \leqq \infty$
π_{1}	Z_{2}							
π_{2}	0	Z	Z_{2}	Z_{2}	Z_{2}	Z_{2}	Z_{2}	
π_{3}	0	0	0	0	0	0	0	
π_{4}	0	0	Z	$Z+Z$	Z	Z	Z	
π_{5}	0	0	Z_{2}	$Z_{2}+Z_{2}$	Z_{2}	0	0	
π_{6}	0	0	Z_{2}	$Z_{2}+Z_{2}$	Z_{2}	Z	0.	

Now $\pi_{1}(B O(n))=Z_{2}$ acts on $\pi_{k}(B O(n))$ for all $n \geqq 1, k \geqq 1$; this action is trivial if $\pi_{k}(B O(n))$ is stable, that is, $k<n$; because $B O$ is simple. For n even, Z_{2} acts nontrivially on $\pi_{n}(B O(n))$, because the first relative k-invariant of $B O(n) \rightarrow B O$ is

$$
k^{n+1}=\beta^{T}\left[w_{1}\right] w_{n} \in H^{n+1}\left(B O ; Z^{T}\left[w_{1}\right]\right)
$$

(Because $\Pi_{*} k^{n+1}$, the reduction mod 2, must be w_{n+1}). $\quad Z_{2}$ acts trivially on $\pi_{4}(B O(3))$ because if acts trivially on $\pi_{4}(B O)$ and the map $Z \cong$ $\pi_{4}(B O(3)) \rightarrow \pi_{4}(B O) \cong Z$ is just multiplication by 2 . Since Z_{2} can only act trivially on Z_{2}, we need only now examine the action on $\pi_{4}(B O(4))$ for $k=4,5,6$.

Proposition (4.2.1). We may choose generators x and y of $\pi_{4}(B O(4))$ such that $T(x)=-x, T(y)=x+y$, and the maps

$$
i_{4}^{3}: \pi_{4}(B O(3)) \longrightarrow \pi_{4}(B O(4)) \quad \text { and } \quad i_{4}^{4}: \pi_{4}(B O(4)) \longrightarrow \pi_{4}(B O(5))
$$

have the properties $i_{4}^{3}(1)=x+2 y, i_{4}^{4}(x)=0$ and $i_{4}^{4}(y)=1$.
Proof. We know that i_{4}^{4} is onto. Choose x to be a generator of Ker i_{4}^{4}, and pick a such that $i_{4}^{4} a=1$. Now $2 a-i_{4}^{3}(1) \in \operatorname{Ker} i_{4}^{4}$, since $i_{4}^{4} i_{4}^{3}=2$. So $2 a-i_{4}^{3}(1)$ is a multiple of x. It can't be an even multiple, because then $i_{4}^{3}(1)$ would be divisible by 2 , and $i_{4}^{3} \pi_{4}(B O(3))$ is a direct summand of $\pi_{4}(B O(4))$. So for some $k, 2 a-i_{4}^{3}(1)=(2 k-1) x$. Let $y=$ $a-k x$; then $i_{4}^{3}(1)=x+2 y, i_{4}^{4}(x)=0$, and $i_{4}^{4}(y)=1$. Now $T(x) \in \operatorname{Ker} i_{4}^{4}$, so $T(x)$ must be $-x . \quad T(x+2 y)=x+2 y$ so $T(y)=\frac{1}{2}(x+2 y-T x)=$ $x+y$. We are done.

We represent $\pi_{4}(B O(4))$ as ordered pairs of integers, where (p, q) represents $p x+q y$.

Proposition (4.2.2). $\pi_{5}(B O(4))$ and $\pi_{6}(B O(4))$ may be represented as ordered pairs of elements of Z_{2}, such that $i_{5}^{3}(x)=i_{6}^{3}(x)=(x, 0)$, $i_{5}^{4}(x, y)=i_{6}^{4}(x, y)=y$, and $T(x, y)=(x+y, y)$ for all $x, y \in Z_{2}$.

Proof. $\pi_{5}(B O(n))$ and $\pi_{6}(B O(n))$ are the images, under η and η^{2} respectively, of $\pi_{4}(B O(n))$, for $n=3,4$, or 5 . Apply (4.2.1).

Remark (4.2.3). There are two possible choices of x in (4.2.1) we retroactively make that choice such that the image of $\pi_{5}(B U(2)) \cong Z_{2}$, under the classifying map of the reallification $B U(2) \rightarrow B O(4)$, is generated by $(0,1) \in \pi_{5}(B O(4))$.
4.3. We need to describe k-invariants for $B O(n)$.
(4.3.1) For all n, k^{3} of $B O(n)$ is zero, since the projection

$$
P_{1}: B O(n) \longrightarrow(B O(n))_{1}=K\left(Z_{2}, 1\right)=B O(1)
$$

has a lifting, namely, the map induced by the inclusion of $O(1)$ in $O(n)$. Also $k^{4}=0$, since $\pi_{3}(B O(n))=0$.
(4.3.2) For $B O(3), k^{5}= \pm \beta_{4} \mathfrak{F} F w_{2}$, where β_{4} is the Bockstein of $Z \rightarrow$ $Z \rightarrow Z_{4}$ and $\mathfrak{P}: H^{2}\left(; Z_{2}\right) \rightarrow H^{4}\left(; Z_{4}\right)$ is the Pontrjagin square [2], and k^{6} is based on the relation $S_{q}^{2} \Pi_{*} k^{5}+w_{2} \cup \Pi_{*} k^{5}=0$.
(4.3.3) For $B O(5), k^{5}=2 \beta_{4} \beta \beta w_{2}=\beta w_{2}^{2}$ (see [4]), and $k^{6}=w_{6}$, based on the relation $S_{q}^{2} I I_{*} k^{5}+w_{2} \cup \Pi_{*} k^{5}=0$.
(4.3.4) Using (4.3.2), (4.3.3), we get that for $B O(4), k^{5}=\iota \beta_{4} \mathfrak{P} w_{2}$, where $\iota: H^{*}(; Z) \rightarrow H^{*}\left(;(Z+Z)^{T}\right)$ is $\left(j_{1}\right)_{*}$ as described in (3.5.2), and k^{5} is of order 4 and generates $H^{5}\left((B O(4))_{4} ;(Z+Z)^{T}\left[w_{1}\right]\right)$. Also, k^{6} is based on the relation $S_{q}^{2} \Pi_{*} k^{5}+w_{2} \cup \Pi_{*} k^{5}$, where

$$
S_{q}^{2}: H^{*}\left(;\left(Z_{2}+Z_{2}\right)^{T}[a]\right) \longrightarrow H^{*+2}\left(;\left(Z_{2}+Z_{2}\right)^{T}[a]\right)
$$

is that unique operation which is ordinary S_{q}^{2} on each factor when $a=0$, and $w_{2} \cup$ is as described in (3.5).
(4.3.5) For $B O(6), k^{5}=2 \beta_{4} \beta \beta w_{2}=\beta w_{2}^{2}$, and $k^{T}=\beta^{T}\left[w_{1}\right] w_{6}$, based on the relation $\beta^{T}\left(S_{q}^{2} I I_{*} k^{5}+w_{2} \cup \Pi_{*} k^{5}\right)=0$.
4.4. Using (4.1.1) and (4.1.2) we can now evaluate some differentials $d_{r}=d_{r}^{f}$ for a map $f: X \rightarrow(Y)_{k}$.
(4.4.1) If $Y=B O(1)$ or $B O(2), d_{r}=0$.
(4.4.2) If $Y=B O(3)$ and $k<4, d_{r}=0$. If $k=4, d_{2}=0$: by (4.1.2), $d_{3}(x)=\beta\left(x^{3}+x \cup f^{*} w_{2}\right) \in H^{4}(X ; Z)$ for all $x \in H^{1}\left(X ; Z_{2}\right)$. This was also known to Dold and Whitney [2]. If

$$
k=5, d_{2}(x)=S_{q}^{2} \Pi_{*} x+f^{*} w_{2} \cup \Pi_{*} x \in H^{5}\left(X ; Z_{2}\right),
$$

for all $x \in H^{3}(X ; Z)$ by (4.1.2); $d_{3}=0$, and d_{4} requires special computation.
(4.4.3) If $Y=B O(4)$ and $k<4, d_{r}=0$. If $k=4, d_{2}=0$; and by (4.1.2),

$$
d_{3}(x)=\iota \beta\left(x^{3}+x \cup f^{*} w_{2}\right) \in H^{4}\left(X ;(Z+Z)^{T}\left[f^{*} w_{1}\right]\right)
$$

for all $x \in H^{1}\left(X ; Z_{2}\right)$; if

$$
k=5, d_{2}(x)=S_{q}^{2} \Pi_{*} x+f^{*} w_{2} \cup \Pi_{*} x \in H^{5}\left(X ;\left(Z_{2}+Z_{2}\right)^{T}\left[f^{*} w_{1}\right]\right)
$$

for all $x \in H^{3}\left(X ;(Z+Z)^{T}\left[f^{*} w_{1}\right]\right)$ by (4.1.2), $d_{3}=0$, and d_{4} must be computed specially.
(4.4.4) If $Y=B O(5)$ and $k<5, d_{r}=0$. If

$$
k=5, d_{2}(x)=S_{q}^{2} I_{*} x+f^{*} w_{2} \cup \Pi_{*} x \in H^{5}\left(X ; Z_{2}\right)
$$

for all $x \in H^{3}(X ; Z), d_{3}=0$, and

$$
\begin{aligned}
d_{4}(x)= & x^{5}+f^{*} w_{1} \cup x^{4}+f^{*} w_{2} \cup x^{3}+f^{*} w_{3} \cup x^{2} \\
& +f^{*} w_{4} \cup x+\operatorname{Im} d_{2} \in E_{4}^{5,5}=H^{5}\left(X ; Z_{2}\right) / \operatorname{Im} d_{2}
\end{aligned}
$$

for all $x \in H^{1}\left(X ; Z_{2}\right)$.
Proof. We have a map $S: \Sigma K(Z, 1)-B S O$, such that $S^{*} w_{i+1}=s u^{i}$ for all $i \geqq 1$, where u is the fundamental class. Now $(B O(5))_{4}=(B O)_{4}$ has the same homotopy as $B O$ up through dimension 7 , so we identify $H^{k}\left((B O(5))_{4}\right.$ with $H^{k}(B O)$ for $0 \leqq k \leqq 7$. Let $h: \Sigma K\left(Z_{2}, 1\right)-(B O(5))_{4}$ be given by the commutative diagram:

$(B O(5))_{4}$ has an H-space structure $\mu:(B O(5))_{4} \times(B O(5))_{4} \rightarrow(B O(5))_{4}$ and $\mu^{*} w_{6}=\sum_{i=0}^{6} w_{i} \times w_{6-i}$. Let $Q X$ be the space obtained from $X \times S^{1}$ by collapsing $x_{0} \times S^{1}$; let $J: Q X \rightarrow \Sigma X$ be the map which collapses $X \times{ }^{*}$, and let $p_{1}: Q X \rightarrow X$ be projection onto the first factor. For any $x \in\left(H^{*} X\right)$, let $q x=p_{1}^{*} x$ and let $Q x=J^{*} s x$, both in $H^{*}(Q X)$. We showed in [4, 5.1] that $q a \cup q b=q(a \cup b), q a \cup Q b=Q(a \cup b)$, and $Q a \cup Q b=0$ for all $a, b \in H^{*}(X)$. Let $C: X \rightarrow K\left(Z_{2}, 1\right)$ be a classifying map for a given $x \in H^{1}\left(X ; Z_{2}\right)$, and let $F: Q X \rightarrow(B O(5))_{4}$ be a map, which represents a homotopy of $p_{5} f$ with itself, defined by composing the following maps:

$$
\begin{aligned}
& Q X \xrightarrow{\Delta} Q X \times Q X \xrightarrow{J \times} \stackrel{p_{1}}{ } \Sigma X \times X \xrightarrow{\Sigma C \times p_{5} f} \Sigma K\left(Z_{2}, 1\right) \times(B O(5))_{4} \\
& \xrightarrow{h \times 1}(B O(5))_{4} \times(B O(5))_{4} \xrightarrow{\mu}(B O(5))_{4} .
\end{aligned}
$$

By (1.3), $d_{4}(x)$ contains $\delta^{5}(f, f ; F)$. Now routine computation shows that $f^{*} w_{6}=Q\left(x^{5}+x^{4} f^{*} w_{1}+x^{3} f^{*} w_{2}+x^{2} f^{*} w_{3}+x f^{*} w_{4}\right)$, and the result follows from [4, 5.2].
(4.4.5) If $Y=B O(6)$ and $k<6, d_{r}=0$. If $k=6, d_{2}=0$ and $d_{3}(x)=\beta^{T}\left(S_{q}^{2} \Pi_{*} x+f^{*} w_{2} \cup \Pi_{*} x\right) \in H^{6}\left(X ; Z^{T}\left[f^{*} w_{1}\right]\right)$ for all $x \in H^{3}(X ; Z)$; $d_{4}=0$ and

$$
\begin{aligned}
d_{5}(x)= & \beta^{T}\left(x^{5}+x^{4} f^{*} w_{1}+x^{3} f^{*} w_{2}+x^{2} f^{*} w_{3}+x f^{*} w_{4}\right) \\
& +\operatorname{Im} d_{2} \in E_{5}^{6,6}=H^{6}\left(X ; Z^{T}\left[f^{*} w_{1}\right]\right) / \operatorname{Im} d_{3}
\end{aligned}
$$

for all $x \in H^{1}\left(X ; Z_{2}\right)$.
Proof. same as (4.4.4).
4.5. We are now ready to classify real vector bundles over P_{k}, for $k \leqq 5$.

Definition (4.5.1). A locally oriented real n-dimensional vector bundle over a space X shall be a b.p.p. homotopy class of maps from X to $B O(n)$. If $f: X \rightarrow B O(n)$ represents a locally oriented v.b. ξ, let $\sim \xi$, or ξ conjugate, be that locally oriented v.b. given by a map $g: X \rightarrow B O(n)$ which is connected to f via a free homotopy which sends the base-point of X around a nontrivial loop of $B O(n)$. Obviously $\sim \xi \cong \xi$, and conjugate classes of locally oriented vector bundles correspond to equivalence classes of vector bundles.

Table (4.5.2). For $k \geqq 1$, let $h: P_{k} \rightarrow B O(1)$ be the canonical line bundle. Let " \oplus " denote Whitney sum. We give a complete list of all locally oriented real n-dimensional vector bundles over P_{k}, each n and k; all bundles are self-conjugate unless otherwise specified.

Let G denote $\left(q_{1}\right)_{*}^{-1} t\left(P_{4}\right)=\frac{1}{2}\left(i_{1}\right)_{*} t\left(P_{4}\right)$ which generates

$$
H^{4}\left(P_{4} ;(Z+Z)^{T}[u]\right) .
$$

Also $\left(p_{2}^{*}\right)^{-1} u^{5}$ generates $H^{5}\left(P_{5} ;\left(Z_{2}+Z_{2}\right)^{T}[u]\right)$. Locally oriented real n-dimensional vector bundles over P_{k}, for $n-1 \leqq k \leqq 5$:

Over P_{1}		Over P_{2}		
$\begin{aligned} & 1 \\ & h \end{aligned}$	$\begin{aligned} & 2 \\ & h \oplus 1 \end{aligned}$	$\begin{aligned} & 1 \\ & h \end{aligned}$	2 $T_{p}=(h \oplus 1)+p t\left(P_{2}\right)$, for all $p \in Z$; stable class $h+1$ if p even, $3 h-1$ if p odd; $\sim T_{p}=T_{-p}$. $2 h=2+\bar{u}^{2}$	$\begin{aligned} & 3 \\ & h \oplus 2 \\ & 2 h \oplus 1=3+u^{2} \\ & 3 h=(h \oplus 2)+u^{2} \end{aligned}$

Over P_{3}				Over P_{4}			
1	$\begin{gathered} \left\lvert\, \begin{array}{l} 2 \\ h \oplus 1 \end{array}\right. \\ 2 h \end{gathered}$	$\left\|\begin{array}{l} 3 \\ h \oplus 2 \\ 2 h \oplus 1 \\ 3 h \end{array}\right\|$	$\left\|\begin{array}{l} 4 \\ h \oplus 3 \\ 2 h \oplus 2 \\ 3 h \oplus 1 \end{array}\right\|$		$\begin{aligned} & 3=3+\bar{u}^{4} \\ & h \oplus 2 \\ & (h \oplus 2)+\bar{u}^{4} \\ & 2 h \oplus 1 \\ & (2 h \oplus 1)+\bar{u}^{4} \\ & 3 h=3 h+\bar{u}^{4} \end{aligned}$	$4=4+\left(\bar{u}^{4}, 0\right)$ $2 h \oplus 2$ $2 h \oplus 2+\left(\bar{u}^{4}, 0\right)$ $4 h=4+\left(0, \bar{u}^{4}\right)=4 h+\left(\bar{u}^{4}, 0\right)$ $2 h \oplus 2+\left(0, \bar{u}^{4}\right)$; stable class $6 h-2$ $2 h \oplus 2+\left(\bar{u}^{4}, \bar{u}^{4}\right)=$ $\sim\left(2 h \oplus 2+\left(0, \bar{u}^{4}\right)\right)$ $E_{p}=h \oplus 3+p G$ for all $p \in Z$; stable class $h+3$ if p even, $5 h-1$ if p odd; $\sim E_{p}=E_{-p}$ $F_{p}=3 h \oplus 1+p G$ for all $p \in Z$; stable class $3 h+1$ if p even, $7 h-3$ if p odd; $\sim F_{p}=F_{-p}$	5 $h \oplus 4$ $2 h \oplus 3$ $3 h \oplus 2$ $4 h \oplus 1$ $5 h$ $\left((2 h \oplus 2) \dot{+}\left(0, \bar{u}^{4}\right)\right) \oplus 1$; stably $6 h-1$ $F_{1} \oplus 1$; stable class $7 h-2$

Over P_{5}					
1h	$\begin{aligned} & 2 \\ & h \oplus 1 \\ & 2 h \end{aligned}$	3	4	$5=5+u^{5}$	6
		$3+u^{5}$	$4+\left(u^{5}, 0\right)$	$h \oplus 4$	$h \oplus 5$
		$h \oplus 2$	$4+\left(0, u^{5}\right)$	$h \oplus 4+u^{5}$	$2 h \oplus 4$
		$h \oplus 2+u^{5}$	$4+\left(u^{5}, u^{5}\right)=\sim\left(4+\left(0, u^{5}\right)\right)$	$2 h \oplus 3$	$3 h \oplus 3$
		$A=A+u^{5}$;	$h \oplus 3$	$2 h \oplus 3+u^{5}$	$4 h \oplus 2$
		$A \mid P_{4}=h \oplus 2+\bar{u}^{4}$	$h \oplus 3+\left(p_{2}^{*}\right)^{-1} u_{5}$	$3 h \oplus 2$	
		$2 h \oplus 1$	$2 h \oplus 2$	$3 h \oplus 2+u^{5}$	$5 h \oplus 1$
		$2 h \oplus 1+u^{5}$	$2 h \oplus 2+\left(u^{5}, 0\right)$	$4 h \oplus 1$	$6 h$
		$B=B+u^{5}$;	$2 h \oplus 2+\left(0, u^{5}\right)$	$4 h \oplus 1+u^{5}$	$C \oplus h \oplus 1$
		$B \mid P_{4}=2 h \oplus 1+\bar{u}^{4}$	$2 h \oplus 2+\left(u^{5}, u^{5}\right)=\sim\left(2 h \oplus 2+\left(0, u^{5}\right)\right)$	$5 h=5 h+u^{5}$	
		$3 h$	$B \oplus 1=B \oplus 1+\left(u^{5}, 0\right)$	$C \oplus 1=C \oplus 1+u^{5}$	
		$3 h+u^{5}$	$B \oplus 1+\left(0, u^{5}\right)=B \oplus 1+\left(u^{5}, u^{5}\right)$	$C \oplus h=C \oplus h+u^{5}$	
			$3 h \oplus 1$		
			$3 h \oplus 1+\left(p_{2}^{*}\right)^{-1} u_{5}$		
			4h		
			$4 h+\left(u^{5}, 0\right)$		
			$4 h+\left(0, u^{5}\right)$		
			$4 h+\left(u^{5}, u^{5}\right)=\sim\left(4 h+\left(0, u^{5}\right)\right)$		
			$C=C+\left(0, u^{5}\right) ; C \mid P_{4}=2 h \oplus 2+\left(0, \bar{u}^{4}\right)$		
			$D=D+\left(0, u^{5}\right)=\sim C$		
			$C+\left(u^{5}, 0\right)=C+\left(u^{5}, u^{5}\right)$		
			$D+\left(u^{5}, 0\right)=$		
			$\sim\left(C+\left(u^{5}, 0\right)\right)=D+\left(u^{5}, u^{5}\right)$		

4.6. Similarly, we can classify all complex vector bundles over P_{k}, for $k \leqq 5$. We give a table of homotopy groups:

	$B U(1)$	$B U(2)$	$B U(n)$	for $3 \leqq n \leqq \infty$
π_{1}	0	0	0	
π_{2}	Z	Z	Z	
π_{3}	0	0	0	
π_{4}	Z	Z	Z	
π_{5}	0	Z_{2}	0	

The only nonzero k-invariant in this range is k^{6} of $B U(2)$, which is $\Pi_{*}\left(c_{1} c_{2}\right)+S_{q}^{2} \Pi_{*} c_{2}$, where $c_{i} \in H^{2 i}(B U(2) ; Z)$ are the Chern classes. We thus have:

Remark (4.6.1). For any space X, all complex line bundles over X correspond to $H^{2}(X ; Z)$.

Remark (4.6.2). For any space X of dimension $\leqq 5$, all complex n-bundles, for $n \geqq 3$, over X correspond to $K U(X)$, satisfying the exact sequence $0 \rightarrow H^{4}(X ; Z) \rightarrow K U(X) \rightarrow H^{2}(X ; Z) \rightarrow 0$.

REMARK (4.6.3). If $f: X \rightarrow(B U(2))_{5}$ is a map, then

$$
d_{2}(x)=\Pi_{*}\left(c_{1} x\right)+S_{q}^{2} I_{*} x \in H^{5}\left(X ; Z_{2}\right)
$$

for all $x \in H^{3}(X ; Z) ; d_{3}=0 ; d_{4}(x)=\Pi_{*}\left(f^{*} c_{2} \cup x\right)+\operatorname{Im} d_{2}$ for all

$$
x \in H^{1}(X ; Z)
$$

Proof. Let $S: S^{2}=\Sigma K(Z, 1) \rightarrow B U$ be the generator of $\pi_{2}(B U)$; then $S^{*} c_{1}=\sigma$, the fundamental class of S^{2}, and $S^{*} c_{2}=0$. The result follows just as in (4.4.4).

Table (4.6.4). We summarize complex n-bundles over $P_{k}, 2 n-$ $1 \leqq k \leqq 5$. The reallification is given in square brackets.

Over P_{2}				Over P_{3}			
$\begin{aligned} & 1 \\ & H \end{aligned}$	[2] $[2 h]$	$\begin{aligned} & 2 \\ & H \oplus 1=2+u^{2} \end{aligned}$	[4] [2h $\oplus 2]$	1 H	[4] [2h]	$\begin{aligned} & 2 \\ & H \oplus 1 \end{aligned}$	$\begin{aligned} & {[4]} \\ & {[2 h \oplus 2]} \end{aligned}$
Over P_{4}							
$\begin{aligned} & 1 \\ & H \end{aligned}$	[2] [2h]	2 $H \oplus 1$ $\begin{array}{r} 2 H=2+\bar{u}^{4} \\ H \oplus 1+\bar{u}^{4} \end{array}$	[4] [$2 h \oplus 2]$ [4h] $\left[2 h \oplus 2+\left(\bar{u}^{4}, 0\right)\right]$ Stable class $3 H$		$\begin{aligned} & 3 \\ & H \oplus 2 \\ & 2 H \oplus 1= \\ & 3 H=H \end{aligned}$	$\begin{gathered} +\bar{u}^{4} \\ 2+\bar{u}^{4} \end{gathered}$	$\begin{aligned} & {[6]} \\ & {[2 h \oplus 4]} \\ & {[4 h \oplus 2]} \\ & {[6 h]} \end{aligned}$

Over P_{5}			
1	$[2]$	2	$[4]$
H	$[2 h]$	$2+u^{5}$	$\left[4+\left(0, u^{5}\right)\right]$
	$H \oplus 1$	$[2 h \oplus 2]$	
	$H \oplus 1 \oplus u^{5}$	$\left[2 h \oplus 2+\left(0, u^{5}\right)\right]$	
	$2 H$	$[4 h]$	
	$2 H+u^{5}$	$\left[4 h+\left(0, u^{5}\right)\right]$	
	C	$[C]$	
	$C+u^{5}$	$[C]$	

4.7. We give a few representative examples of evaluating those difficult differentials. Is $f: P_{5} \rightarrow\left(B O_{4}\right)_{5}$ is a map representing a 4-plane bundle ξ, then $d_{4}^{f}(u)$ is defined if and only if

$$
d_{2}^{f}(u)=\left(j_{1}\right)_{*} \beta\left(u^{3}+u f^{*} w_{2}\right)=0 \in H^{4}\left(P_{5} ;(Z+Z)^{T}\left[f^{*} w_{1}\right]\right) .
$$

If $d_{2}(u)=0$, then $d_{4}^{f}(u)=0$ if and only if there is a map $F: Q P_{5} \rightarrow$ $\left(\mathrm{BO}_{4}\right)_{5}$ which represents a homotopy of f with itself, such that $F^{*} w_{2}=q f^{*} w_{2}+Q u$, where $Q X$ is as given in [4; 5].

Example (4.7.1). If $\xi=4$ or $4 h$, then $f^{*} w_{2}=0$, so $d_{2}(u)=\left(\bar{u}^{4}, 0\right)$ and $d_{4}(u)$ is not defined. Thus $4,4+\left(u^{5}, 0\right), 4+\left(0, u^{5}\right)$, and $4+\left(u^{5}, u^{5}\right)$ are all distinct oriented vector bundles.

Example (4.7.2). If $\xi=2 h \oplus 2$, then $f^{*} w_{2}=u^{2}$, so $d_{2}(u)=0$.
Let η_{1} be that line bundle over $Q P_{5}$ such that $w_{1}\left(\eta_{1}\right)=q u$; now 2-plane bundles over a space X with $w_{1}=x$ are classified by $H^{2}\left(X ; Z^{T}[x]\right)$; let η_{2} be that 2-plane bundle over $Q P_{5}$ with $\mathrm{w}_{1}\left(\eta_{2}\right)=q u$ classified by $Q \bar{u}$. Then $w_{2}\left(\eta_{2}\right)=Q u$. Let $c: Q P_{5} \rightarrow B O(4)$ be the classifying map of $\eta_{1} \oplus \eta_{2} \oplus 1 ; c^{*} w_{2}=q u^{2}+Q u$ and $\left(\eta_{1} \oplus \eta_{2} \oplus 1\right) \mid P_{5}=2 h \oplus 2$. Thus F, the projection of c onto $(B O(4))_{5}$, and $d_{4}^{f}(u)=0$.

Example (4.7.3). If $\xi=C$, then $f^{*} w_{2}=u^{2}$, so $d_{2}^{f}(u)=0$, and $d_{4}^{f}(u)$ is defined. Now $p_{5} C=p_{5}(2 h \oplus 2)+\left(0, \bar{u}^{4}\right)$,

and so $d_{4}(u)=0$ if and only if we can lift the map

$$
p_{5} F+q\left(0, \bar{u}^{4}\right): Q p_{5} \longrightarrow\left((B O(4))_{4}\right.
$$

to $(B O(4))_{5}$, where F is the map given in (4.7.2). Now the k-invariant k^{6} is based on the relation $S_{q}^{2} \Pi_{*} k^{5}+w_{2} \cup \Pi_{*} k^{5}=0$, and $\left(p_{5} F\right)^{*} k^{6}=0$, so $\left(p_{5} F+a\right)^{*} k^{6}=S_{q}^{2} \Pi_{*} a+\left(p_{5} F\right)^{*} w_{2} \cup \Pi_{*} a$ which, when $a=q\left(0, \bar{u}^{4}\right)$, equals $S_{q}^{2} q\left(0, u^{4}\right)+\left(q u^{2}+Q u\right) \cup q\left(0, u^{4}\right)=Q\left(0, u^{5}\right)$. So, by [4; 5.2], $d_{4}(u)=$ $\left(0, u^{5}\right)$. Thus $C+\left(0, u^{5}\right)=C$, but $C+\left(u^{5}, 0\right)$ is different. We also have that there are two complex structures on C, because since C is the reallification of the complex bundle $C, C=C+\left(0, u^{5}\right)$ is the reallification of $C+u^{5}$.
4.8. We would like to know how vector bundles behave under tensor products. If L is any line bundle over any space, $L \otimes L=1$. Furthermore:

Remark (4.8.1). If η_{1} and η_{2} are locally oriented real n-plane bundles over a space X, which agree on X^{k-1}, and if ξ is a locally oriented real m-plane bundle over X, then $i_{*} \delta^{k}\left(\eta_{1}, \eta_{2}\right)=\delta^{k}\left(\eta_{1} \oplus \xi, \eta_{1} \oplus \xi\right)$ and $j_{*} \delta^{k}\left(\eta_{1}, \eta_{2}\right)=d^{k}\left(\eta_{1} \otimes \xi, \eta_{2} \otimes \xi\right)$, where $i: B O(n) \rightarrow B O(n+m)$ and $j: B O(n) \subset B O(n m)$ are the maps induced by the inclusion of $O(n)$ in $O(n+m)$ and $O(n m)$. Similarly for complex vector bundles.

Remark (4.8.2). If ξ is an oriented real vector bundle which has a complex structure, and if η is any other locally oriented real vector bundle, then $\xi \otimes \eta$ also has a complex structure.

Proof. Let $C(\eta)$ be the complexification of η, and let ξ^{\prime} be a complex bundle whose reallification is ξ. Then we can see routinely that the reallification of $\xi^{\prime} \otimes C(\eta)$ is $\xi \otimes \eta$.

With the above information, we can almost completely determine the action of " \oplus " and " \otimes " on all locally oriented real vector bundles over $P_{k}, k \leqq 5$. For example,

$$
\begin{aligned}
& A \otimes h=B, C \otimes h=C, 4 \otimes h=4 h,\left(4+\left(0, u^{5}\right)\right) \otimes h=4 h+\left(0, u^{5}\right), \\
& T_{p} \otimes h=T_{p}, E_{p} \otimes h=F_{p},\left(4 h+\left(u^{5}, u^{5}\right)\right) \oplus 1=4 h \oplus 1+u^{5} .
\end{aligned}
$$

The only unsolved questions are whether $A \oplus h=B \oplus 1$; it is also possible that $A \oplus h=B \oplus 1+\left(0, u^{5}\right)$; and whether $B \oplus 2$ equals $2 h \oplus 3$ or $2 h \oplus 3+u^{5}$.

Bibliography

1. G. E. Bredon, Sheaf theory, McGraw Hill, 1967.
2. A. Dold \& H. Whitney, Classification of oriented sphere bundles over a 4-complex, Ann. of Math. 69 (1959).
3. M. A. Kervaire, Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161-169.
4. L. L. Larmore, Map-cohomology operations and enumeration of vector bundles, J. Math. Mech. 17 (1967), 199-208.
5. H. Samelson, A note on the bokstein operator, Proc. Amer. Math. Soc. 15 (1964), 450-453.

Received January 20, 1968, and in revised form January 27, 1969. This research was supported by N.S.F. grant GP-6560.

Occidental College and
University of Illinois at Chicago Circle

[^0]: ${ }^{1}$ Personal communication from C. T. C. Wall.

