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SUMMABILITY OF FOURIER SERIES BY TRIANGULAR
MATRIX TRANSFORMATIONS

H. P. DIKSHIT

Hille and Tamarkin have proved a result for the Norlund
summability of the Fourier series of f(t) at t = x, under the
hypothesis (i) φ(t) = {fix + t) + f(x - t) - 2f(x)}/2 = o(l), t -^ 0,
which includes as a special case the corresponding result for
the Cesaro summability. However, under the lighter condition

S t

φ(u)du = o(t), t —» 0, Astrachan has proved a theorem for
q

the Norlund summability which does not cover the correspond-
ing Cesaro case. The object of the present paper is to prove
theorems for the Norlund summability and another triangular
matrix method of summability which are subtler than Astra-
chan's theorem in the sense that they include as a special case
the corresponding result for the Cesaro summability.

1* Definitions and notations* Let Σ~=o vn be a given infinite
series with the sequence of partial sums {sn}. We shall consider
sequence-to-sequence transformation of the type

oo

(1.1) un = Σ dnksk

in which the elements of the matrix D — ((dnk)) are real or complex

constants and dnk — 0 for k > n. The sequence {un} is said to be the

sequence of Z)-means of {sn}. If lim^.^ un exists and is equal to u

then we say that the series Σ~=o vn or the sequence {sn} is summable

D to the sum u.

Let {pn} be a sequence of constants, real or complex and let us

write Pn = Po + Vι + + pn ^ 0> P-i = V-ι = 0. Then the matrix D

defines a Norlund matrix (N,pn) [7], if

(1.2) dnk = pn_k/Pn , (n ^ k ^ 0) .

The conditions for the regularity of the (N, pn) mean are

(1.3) UmpJPn = 0 and £\pk\ = O(\Pn\) , n-*c.
n—»oo k=Q

In the special case in which

)

the (N, pn) mean reduces to the familiar (C, a) mean.
The product of the matrix (C, 1) with the matrix (N, pn) defines
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the matrix (C, 1) (ΛΓ, pn). Thus D defines the matrix (C, l) (iV, pn) if

(1.5) dnk = —±— ± p^JPv , (0 ̂  k ^ n) .

Similarly, one defines the (iV, pn) (C, 1) matrix as a product of
the (N, pn) matrix with the (C, 1) matrix. In Astraehan's notations
[1] the (N, pn) (C, 1) summability is denoted by (N, pJ CΊ.

Let f(t) be a periodic function, with period 2π and integrable in
the sense of Lebesgue over ( — π, π). We assume without any loss of
generality that the constant term in the Fourier series of f(t) is zero,

so that Γ f(t)dt = 0 and

(1.6) f(t) - Σ (an cos nt + δw sin nt) .

We write throughout:

ψ(t) = γ{f(x + t) + /(a - ί) - 2/(s)}

f Γ ~ ̂ )β"V(^)^, α > 0; Φ0(t) -φ«(0 τ f τ1 (a)

9>β(ί) = Γ(a + l)Φa(t)β"; a ^ 0

J^ w , or more precisely Jnjt£n = i"» -

where [λ] denotes the greatest integer not greater than λ.
K, denotes a positive constant not necessarily the same at each

occurrence.

2 Introduction* Concerning the Cesaro summability of Fourier
series Bosanquet [2] has proved the following.

THEOREM A. // <pa(t) = o(l) as t —> 0, ίfce^ £/&e Fourier series of
f(t), at t = x, is summable (C, a + δ) for every δ > 0 ami a ^ 0.

Theorem A is known to be the best possible in the sense that it
breaks down if δ = 0.

For the Norlund summability of Fourier series we have the follow-
ing result due to Hille and Tamarkin [5].

THEOREM B. A regular (N, pn) method is Fourier effective, if
the sequence {pn} satisfies the hypotheses:
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(2.1) Rn = 0(1) ,

(2.2) Σ

(2.3)

a s n —• oo.

Theorem B implies mίer aϊia that if φ{t) = o(l) as ί —> 0, and {pn}
satisfies the hypotheses (2.1)-(2.3), then the Fourier series of f(t) is
summable by a regular (N, pn) method.

Replacing the hypothesis: φ(t) = o(l) as t —> 0 of Theorem B by
the lighter hypothesis: φ^t) = o(l) as ί —• 0, Astrachan [1] proved the
following.

THEOREM C. A regular (N, pn) method is Ka effective (0 < a <̂  1),
if the sequence {pn} satisfies the hypotheses (2.1), (2.2) and

(2.4) ±k
Λ = l

(2.5) g

a s w —• CXD .

Hille and Tamarkin have also pointed out in [5] that the sequence
{pn} defined by (1.4) satisfies the hypotheses of Theorem B f or 1 > a > 0
and therefore, (C, a) summability for such a a is Fourier effective.
Thus Bosanquet's Theorem A when a = 0 is an immediate consequence
of Theorem B. It is therefore natural to expect that the hypothesis:
φ^t) = o(l) as t —• 0, may lead to (N, pn) summability of the Fourier
series of f(t) and that such a result may include Theorem A when
a = 1, as a special case. However, Astrachan's Theorem C in this
direction only implies the summability (C, d) for d ^ 2, whereas one
needs the summability (C, <5), <5 > 1, in order to cover Bosanquet's
Theorem A when a = 1. Thus there is a gap of approximately 1 be-
tween the orders of (C) summability implied by Theorem C and the
corresponding case of Theorem A. This emerges from the following
reasoning.

The result of Lemma 8.1 in Astrachan [1], which is required for
the proof of his Theorem C states that

(2.6) t(n-k)\ J*pk_21 = O(| Pn \/n) ,

as n —• co. Since the left hand side of (2.6) is greater than Kn we
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observe that Kn2 ̂  \Pn\. It may be pointed out that for Astrachan's
proof of Lemma 8.1 one has to assume p0 = 0.

The object of our Theorem 1 is to show that it is indeed, possible
to obtain a result for the (N, pn) summability of Fourier series which
has also the scope of covering Bosanquet's Theorem A for a = 1.

Astrachan [1, Th. II] has also obtained the following result for the
(N,pn) (C,l) summability of the Fourier series.

THEOREM D. The (N,pn) (C, 1) method is Ka effective (0 < a ^ 1)
provided the sequence {pn} satisfies the hypotheses (2.1)-(2.3) and the
regularity condition (1.3).

Due to possible oversight, Astrachan has not shown that the regu-
larity conditions follow from his statement of Theorem D. Further, his
proof of Theorem D contains a deficiency, which has been pointed out
and supplied by the present author in [4],

Silverman has shown in [8, Th. 1] that a necessary and sufficient
condition for a (N, pn) matrix to be permutable with the (C, 1) matrix
is that it be a Cesaro matrix. This implies that

(C,l)-(N,pn)Φ(N,pn).(C,l)

except when {pn} is defined by (1.4). In view of this Astrachan's
technique of obtaining his Theorem D from Theorem B fails in the
case of the (C, 1) (ΛΓ, pn) summability and one has to give a direct
proof to conclude the (C, 1) (ΛΓ, pn) summability of Fourier series of f{t)
under the hypothesis: φ^t) = o(l) as t —> 0. More precisely, we observe
that since the (C, 1) mean is a very special case of the (N, pn) mean
viz. the case in which pn — 1, the convenience of expressing the (C, 1)
mean of the Fourier series of /(£), essentially as a difference of the
Fejer's and Dirichlet's kernels of φγ(t) [1, p. 546], disappears totally
in the case of the (N, pn) mean.

Thus for the (C, l) (iV, pn) summability of Fourier series, we obtain
Theorem 2 which also covers Theorem A when a = 1.

3. We prove the following results.

THEOREM 1. // φjf) = o(l) as t —> 0 and {pn} is nonnegative,
monotonic nondecreasing sequence such that pn—*e<> as n—>co, {pn+1 — pn)
is nonincreasing, Rn = 0(1) and (2.5) holds, then the Fourier series
of fit), at t — x, is summable (N, pn).

THEOREM 2. // φλ(t) = o(l) as t —> 0 and {pn} is a nonnegative,
monotonic nonincreasing sequence such that Sn = 0(1), then the
Fourier series of /(ί), at t = x, is summable (C, l) (iV, pn).
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REMARKS. It is easy to see that if {pn} is nonnegative and non-
decreasing then (n + l)pn ^ Pn and therefore Sn = 0(1). Further, in
this case

Σ k Mm-il = - Σ Σ ( P . - Vμ-d + n±(pμ- pμ_x) = O(Pn) ,
k — 1 k = l μ=ί μ—1

if Rn = 0(1). Thus the sequence {pn} used in Theorem 1 also satisfies
the hypotheses of Theorem B.

As demonstrated by the present author in [3] if {pn} is a non-
negative sequence then the hypotheses: Rn = 0(1) and Sn = 0(1) im-
ply that

Pk Σ , , * = 0 ( 1 ) , (A; = 1,2,3,-..),

from which it is immediate that PM->oo as ϋ-^oo, It may be ob-
served that with a slight modification in author's analysis in [3] it is
possible to even drop the condition Rn — 0(1) to get the same conclusion.

4* We require the following lemmas for the proof of our results.

LEMMA 1. // {qn} is nonnegative and nonincreasing, then for
0 ^ a ^ b ^ co and 0 ^ t ^ π,

b

Σ exp KQr,

where τ = [1/ί] and ζ)m = g0 + Qι + + gm.
This lemma may be proved by following the technique of proof

of Lemma 5.11 in McFadden [6].

LEMMA 2. // {pn} is a nonnegative and monotonic nondecreasing
sequence such that {pn+ι — pn) is nonincreasing and Rn = 0(1), then
as n—> °o

Σ Pk(n - k) exp (ikt) = 0(nPτ) + O(t~2pn)
k=0

uniformly in 0 < t ίg π.

Proof. We write by Abel's transformation

Σ Vk{n - k) exp (ikt)
k=0

= Σ *̂{P*(» - *)} Σ exp (ivt)
k

= (1 - exp ΐt)-'Γ Σ Λ{P*(» - k)} - Σ Λ{P*(» - &)} exp i(A; + l)ίl
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Ί[ n—ί n—ί I

nPo — Σ (n — k)Apk exp i(k + ϊ) — X pk+1exj)i(k + l)t I
k=Q k=Q J[ n—ί k

nPo — Σ Σ Λp» exp i(v + l)t —
fc=O i/=0

Thus

n

Σ ^ ( ^ — k) exp ifcί

k=Q

n—ί

expiί(fc + l ) ί l

^ 11 — exp it | -Ί np0 + Σ Σ
A;=0

1
I J

L
^ Kt-'lnpo + K Σ Σ (Pv+i - P.) + Vn max Σ exp ifcί 11

A;=l | J

(by Lemma 1 and AbeΓs Lemma, since {pu+ι — pv} is nonnegative,
nonincreasing and {pn} is nondecreasing)

since {pn} is nondecreasing and Rn = O(l) which also implies Pn+JPn =
This completes the proof of Lemma 2.

LEMMA 3. // {pn} is nonnegative and nonincreasing, then as

Σ ~ Σ (v - Λ)p4 exp i(i; - fc)ί = O(ί"2) + θ(t~Ψt ±-±
*=0 P p A:=0 V v = r P y

uniformly in 0 < t ^ π.

Proof. Applying AbeΓs transformation we get

= Σ

k
exp iί)-

P . + 1

— exp i(v — A:

± exp i(μ - k)t

- exp i(Λ -

= (1 - exp it)- — &) exp i(v — k + l ) ί

_ ^ ~ — Z — exp i(n — k + l)t\ .

Changing the order of summation of the inner sums, thus we have
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say.

Σ 4"

κt-]

exp k)t

-(v - k) exp i(v - k + l)t

^ 1 e χ P i(»-

exp k

1 2 3

Again by a change of order of summation we have

Σ^

v=0 P

i(v - k

-max Σ pfc exp i(v — k

(by AbeΓs Lemma. If r = 0 the first part is taken asjO.)

^ Kt-2 + Kf1Pv Σ — ,

by virtue of Lemma 1 and the fact that (n + 1 ) ^ ^ Pn.
Similarly,

Σ ^ β"1 Σ
" P..

exp i(v - k

P r

1 +

by Lemma 1.
Finally, by Lemma 1 and AbeΓs Lemma we have

Σ n

This completes the proof of Lemma 3.

5* Proof of Theorem 1. For the Fourier series of f(t), at t
we have



406 H. P. DIKSHIT

ππ Jo sin (t/2)

Therefore, if tn denotes the (N, pn) mean of {sk(x)} then

% o s in

Integrating by parts, we get

- i - Γ - M L / f p. &fc cos (fc + λ)t\dt
2/ /

j Γ **<*> JΣ P cos ίk + i
Λ V 2

. * cos

πPn Jo tan (ί/2) U=o Pn k si
+ i f *> _

2πPn Jo tan (ί/2) U=o Pn k sin (ί/2)

say.
Thus, in order to prove the theorem it is sufficient to show that

as n —> oo,

(5.1) Lj = o(l) (i = 1,2, 3 and 4) .

Since Φx(ί) cot t/2 = o(l) as ί —> 0, it follows from Theorem B that
L4 — o(l) as t̂  —> co, when one appeals to the remarks contained in
§3 of the present paper.

We write

Σ *>-*(-1)' ±- = 0(1) ,

as n—> oo? since {p%} is nonnegative and nondecreasing and Rn = 0(1).
Thus, we have Lι = o(l) as n—> oo.

Also, L3 = o(l) as w—> oo, by virtue of Riemann-Lebesgue Theorem
and the regularity of the (N, pn) mean which is implied by the hypo-
theses: {pn} is nonnegative and Rn = 0(1).

Finally, to show that L2 = o(l) as n—>oo9 we observe that

*•<*> = o ( l )
sin t/2

as t —* 0 and that the kernel occuring in L2 is the real part of the
complex valued function

Jexp — ί[ n + — )t\ X pk(n — k) exp ikt = Mn(t) ,

say.



SUMMABILITY OF FOURIER SERIES 407

Therefore, in order to prove that L2 — o(l) as n —• oo, it is enough
to show that as n —• oo

(5.2) 1 = \*g(t)Mn(t)dt = o(l) ,
Jo

where g(t) = o(l) as t —• 0.

We write, for a fixed 3 such that 0 < 3 £ π,

(5.3) / = (J" ' + J^_χ + Qg(t)Mn(t)dt = /, + /2 + 78,

say.

Since

Afn(ί) - θ ( - l - Σ P*(^ - * ) ) = O(n) ,

we have, as n —• oo

(5.4) / ι =

For the interval o < 3 <L t t=k π, we have from Lemma 2

( J - ) + 0(1) =

as n—• oo, by the hypotheses: i?% = 0(1) and t h a t pn —> oo as w—> oo.
Therefore, as n—>oo,

(5.5) J8 - o(l) .

Since </(£) = o(l) as ί —̂  0, to demonstrate the t r u t h of I2 — o(l)
as n —• oo we prove t h a t

I? = Γ \Mn(t)\dt ^ ίΓ.

By Lemma 2, we have

by virtue of the hypotheses: Bn — 0(1) and (2.5). Thus, as n

(5.6) 72 = o(l) .
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Combining (5.3)-(5.6), we get (5.2) and therefore L2 = o(l) as n—»oo.
This completes the proof of Theorem 1.

6* Proof of Theorem 2. If t\ denotes the (C, 1) (ΛΓ, Pn) mean
of the sequence {sk(x)} then

ti ~ f(x) = — 7 T Σ Σ %***(*) - f(x)

f l

(n + l)τr Jo^(ί) fepΓ^o1'''-* sin(ί/2)

Integrating by parts, we get

t\ - f(χ) = fl(^> Σ - | - Σ Λ-*( -1)'
7Γ(W + 1) ^=o P v fc=o

- 1 \'-MLJ± J-±p>kk cos (fc + λ)t\dt
π(n + 1) Josin (i/2)l-o Pu άiPv k V 2 / /

- 1 Γ - ^ ^ ί Σ ^ - Σ A-* cos f fc + λ)t)dt
2π(n + 1) Josin (t/2)\zA Pvΐ** \ 2 / J

2ττ(^ + 1) Jtan(ί/2) l P+ 1) Jotan(ί/2) l-o Pv at *"~k sin (t/2)

= d + C2 + C3 + C4 ,

say.
Thus, in order to prove the theorem it is sufficient to show that

as n—> co

(6.1) Cd = o(l) (j = 1,2,3 and 4) .

Since {pn} is nonnegative and nonincreasing, we have by Abel's
Lemma

as v —> oo, by virtue of the fact that P n —> oo as n ~> oo. By virtue
of the regularity of the (C, 1) mean we now get CΊ = o(l) as n —> oo.

Further, since [Φx(ί)/sin (ί/2)] cos t/2 = o(l) as £ -* 0 and the (C, 1)
mean is regular, Theorem B implies that C4 = o(l) as ^ —•> oo, when
one observes that the sequence {p%} used in our Theorem 2 satisfies
all the hypotheses of Theorem B.

That C3 = o(l) as n —* oo, follows from the Riemann-Lebesgue
Theorem and the fact that the (C, 1) and the (N, pn) mean are both
regular.
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Finally, we observe that [Φ^Q/sin (t/2)] = o(l) as t —> 0 and there-
fore, in order to prove that C2 = o(l) as n—* oo, it is sufficient to
show that as n —• oo

(6.2) E = [g(t)Jn(t)dt = o(l) ,
Jo

where g(t) = o(l) as t •—> 0 and

1 £ ( fc) e χ p ί ( p _ m mJn(t) f £ £ (y
π(n + 1) *=o pv k=o

Let us write for a fixed δ such that 0 < <5 <̂  π,

<6.3) £7 - (j + j ^ + fyg(t)Jn(t)dt - ̂  + E2

say. Since

we have as n —• oo

<6.4) ^ - θ(^jo

% \g(t))dή = o(l) .

For the interval 0 < δ <̂  ί ^ π, we have by Lemma 3

n + 1 *=o u n+1

as n—>oo, since Pπ—>oo as w—* oo and (C, 1) mean is regular. Thus,
as n—>oo,

(6.5) # 3 - o(l) .

Since g(t) = o(l) as ί —> 0, to prove that E2 — o(l) as n —> oo 9 it
is enough to demonstrate that

E?= Γ \Jn{t)\dtSK.

By Lemma 3 we get

< _A_(S A + _JL_[S rmj ± AΛdt
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since Sn = 0(1). That E£ ^ K, now follows from the fact that

I n τ> n Λ 1 n Λ υ T)
y ^ -Lk y ^ -L __ L sp L y > -Lk

n +

since STO = 0(1). Therefore, as n—> oo

(6.6) ί?£ "

Combining (6.3)-(6.6), we get (6.2) and therefore, C2 = o(l) as

This completes the proof of Theorem 2.
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