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DISTRIBUTION OF ZEROS OF SOLUTIONS OF A
FOURTH ORDER DIFFERENTIAL EQUATION

A. C. PETERSON

The primary concern of this paper is to study the dis-
tribution of zeros of solutions, that have at least four zeros,
two or more of which are distinct zeros, of the canonical
fourth order equation

(EY Lyl = (rsLs[y))’ + qar2Lely] + quy =0,

where r;(x) > 0, r;(x), q;(x)eCla, ), 1 =1,2,8, 7=1,2,3,4,
which was introduced by Barrett.

The canonical second order equation
(E,) Lyl = (ry) +qy =0,

where 7,(x) > 0, (%), q(x) € C[a, =), has been studied extensively.
The canonical third order linear differential equation

(&) Lily] = (r.Ly])’ + q(ry') = 0,

where 7;(x) > 0, ry(x), ¢,(x) e C [a, «),4 = 1,2, which was introduced
by Barrett, is a generalization of the second order equation (X.).

Dolan studied the distribution of zeros of extremal solutions of
(E,) for the first conjugate point 7,(¢). In paragraph 2 the same study
is made for the equation (Z,) and many of Dolan’s ideas and techni-
ques are used there. The results in paragraph 2 substantially com-
plete the investigation begun in a paper by Aliev. Aliev defined and
investigated the numbers r;;(t) and »,,(f), which are extensions of
the two-point nonoscillation numbers =;;(t) of Azbelev and Caljuk.
Several of his results were reported in sources, which did not include
the proofs, and these proofs were unavailable to the author, e.g.,

() = ron(t) = min [ra(t), ryu(8)] .
Aliev also proved that
ruu(t) = min [7'121(t)’ Tllz(t)] y

and purported to prove that r,,(t) = min [r,,(¢), 7,,.(t)] but his proof
is incorrect and this remains an open question. In paragraph 3 these
results of Aliev are reproved and a much more complete picture is
presented in the ordering of the numbers 7,(¢), 7;;(¢), 7;;,(t), and 7,,,(¢).
The main results of this paper appear in paragraph 3.
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1. Introduction. We will be concerned with the fourth order
quasi differential equation

() Lyl = (Dsy) + ¢:D:y + qy = 0,
where
Dy = ry', Dy = r,L;[y], Dyy = r;Li[y] .

For a discussion of the basic properties of (FE,) see Chapter III of [6].
An adjoint differential equation to (E,) is

(ES") Lilyl = (D;y) + ¢.Diy + ¢y =0,

where Djy is obtained from Dy, ¢ =1, 2, 3, by interchanging », with
r, and ¢, with ¢,. Note then that equation (E,") is obtained from
(E) by interchanging », with r,, and ¢, with ¢,. If (£, and (E,") are
equivalent, then L, (and the corresponding equation (E,)) is said to be
self adjoint; e.g., if 7r(x) = ry(x) and ¢,(x) = ¢,(x) in equation (&,),
then we have a canonical form for the self adjoint equation of order
four [6], i.e.,

(B Lyl = {rl(rl(ry) + ayl) + ¢ry'lY
! + ql”‘z[("'ly')' + qu] +qy = 0.

A fundamental set of solutions w,(z,t) of (E,) for tela, «) is
defined by
Diuj(t, t) = 5,']', /l: = O, 1, 2, 3, j = O, 1, 2, 3 .
Similarly, a fundamental set of solutions wj(z,t),7 = 0,1,2,3, is de-

fined for the adjoint equation (E,"). We call u,(x, t) the first principal
solution of (E,). Leighton and Nehari [10] made use of the identity

Uy(8, 1) = —us (L, s) .

which is a special case of the following theorem which follows from
the Lagrange Identity [6] for (E,).

THEOREM 1.1. For a,8=0,1,2,3 and s, tec]a, =)

1.1 D ug(s, t) = (—=1)*** D su;",(t, s) .

The derivation of equations (1.1) is similar to that given by Dolan
[7] for a similar set of formulas for the equation ().

Instead of the usual Wronskians, det (y;"'), involving pure deriva-
tives we introduce the more convenient generalized Wronskians,
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Wiy, ---, y.] = det (Dy,), 1=0,1,.-,n—1
J=12+-,1n
n=1,273,4

Wy, « -+, y.] = det (Diy;),

which are given in terms of quasi derivatives (Dyy = Dfy = y). When
we speak of a zero of a solution y(x) of (&, of order ¥ at we mean
Dyit)=0,v=0,---,k—1,k=1,2,3,4. If (F,) is disconjugate on
[t, =0) we write 7,(t) = . Otherwise 7,(¢) will denote the first con-
jugate point of t. For properties of 7,(t) see [9], [12]. A nontrivial
solution of (E,) having four zeros on [t,7,(t)] is called an extremal
solution of (&,) for 7,(tf). A nontrivial solution y of (&, is said to
have an 4, — 14, — --- — 4, (v =1, 2, 3; %, = 1, 2, 3) distribution of zeros
on [t,b] C[a, ) provided y¥ has a zero at ¢, of order at least ¢, where
t=t, <t <---<t, £b. We now can introduce the following con-
cepts, introduced by Dolan [7] for (E,).

DEFINITION 1.1. For te€[a, ), the number z;;..;(t) is the in-
fimum of the set of numbers b > ¢ such that there is a nontrivial
solution y of (X, having an %, — 4, — --- — 1, distribution of zeros on
[t,b] and a zero of order at least ¢, at t,. By z;;,...;(f) = - we mean
there is no such distribution of zeros on [¢, ).

DEFINITION 1.2. For tela, ), the number r;;..;(t) is the in-
fimum of the set of numbers b > ¢ such that there is a nontrivial
solution y of (&,) having an ¢, — %, — - -+ — ¢, distribution of zeros on
[t, ], by 7;,...; (t) = > we mean there is no such distribution of zeros
on [t, o). The numbers z7;..;(t) and r};..; (t) are defined similarly

for the adjoint equation (E.").

If 2,;(t) < oof{r;;(t) < o}, then the word “infimum” in Definition
1.1 {1.2} can be replaced by “minimum”. However, if v >1 in Defini-
tions 1.1 and 1.2 then you cannot in general do this (see paragraphs
2 and 38). There is a close relation between zeros of solutions and
uniqueness problems, for example if «, 8, v are numbers such that ¢ <
a < B <7< ru(t) < oo, then there is a unique solution of (E,) satis-
fying

y(@) = A,y(B) = B,D,y(B) = C,y(v) = D

where A, B, C, D are constants. Corresponding statements hold for
the other numbers in Definitions 1.1 and 1.2 (see [2] or [4]). For
known properties of these numbers see [1]—[6].

It is convenient to use further notation introduced by Dolan [7].
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DEFINITION 1.3. If 2;;(t) < oo{r;;(t) < =} and 7 + 5 = 4, then

Z\(t) = max {2y(t), 2x(t), 2:(t)}
{Rl(t) = max {r31(t)9 7"22@); Txa(t)}} .

By Z.(t) = «{R.(t) = «} we mean at least one of the z;;(t) {r;(¢)},
1 + j = 4, is infinite.

The next lemma appears and is used quite often ([4], [10], [12])
and is stated here in terms of the equation (E,).

LEMMA 1.2. Let u(x) be a nontrivial solution of (E,) with a zero
at t,ela, <) of order n =1 and a zero at t, € (t,, ) of order m =1
and w(x) >0 on (¢, t,). Let v(x) be a solution of (E,) such that v(x)>0
on (t,t,) and v(x) does not have a zero of order =mn at t, and does
not have a zero of order =m at t,. Then there are constants c,, ¢,
such that c.c, <0 and z(x) = c,u(x) + c,v(x) 18 a solution of (K, with
a zero of order two in (t, t,).

2. The distribution of zeros of extremal solutions.

I.  Distribution of zeros when 1,(t) < Z(t). In this part of para-
graph 2 we study the distribution of zeros of extremal solutions of
(E,) for m(t) when 7,(t) < Z(t). Since 7,(t) < z;;(t) if and only if
N,(8) < ri5(t), Nu(t) < Zy(t) if and only if 7,(¢) < R,(t). Thus the theorems
in this chapter are true when the assumption 7,(t) < Z,(t) is replaced
by 7.(8) < Ri().

Hartman [8] proves for an »n'® order linear homogeneous differen-
tial equation that no nontrivial solution has n zeros, counting mul-
tiplicities, on an open interval («, 8) if and only if no nontrivial solu-
tion has #» distinct zeros on the open interval (a, 8). Hartman raised
the question as to whether you could or could not replace “open in-
terval (a, B)” by “closed interval [a, 8]” in the preceding statement.
The next lemma shows that you can not replace “open interval («, 8)”
by “closed interval [«, 8] . Dolan [7] has established a similar theorem
for a third order differential equation. A similar result would hold
for an »n™® order linear homogeneous differential equation.

LeMMA 2.1, If n(t) < Z(t) £ = for tela, =), then no extremal
solutton of (E,)) for n(t) has four distinct zeros on [t, 7.(t)].

Proof. Assume u(x) is an extremal solution of (,) for 7,(¢) with
four distinet zeros on [t,7,(f)]. Since 7,(¢) is a strictly increasing
function u(x) has exactly four simple zeros on [t,7.(t)] and wu(t) =
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u(ny(t)) = 0. Since 7,(t) < Z,(t) £ «, there are three possibilities.

Case 1. 7,(t) < 2,4(t) < oo.
For e > 0, sufficiently small, let {u.(x)} be a set of nontrivial solu-
tions of (E,) satisfying

uts(t) =0= u5(771(t) - 8)
Du.(n(t) — &) = Du(n,(¢)) = 0
D2us(”1(t) —€& = Dzu(%(t)) .

Since wu,(t, n,(t)) = 0, it is easy to see that as e —0
u.(x) — w(x) uniformly for x e [¢, n,(¢)] .

Since the zeros of w(x) in (¢, 7,(¢)) are simple, there is an ¢, > 0 such
that u. () is a solution of (E,) with four zeros on [¢, 7,(t) — &]. This
contradicts the definition of #,(¢).

Case 2. 7,(t) < 2u(t) < 0.
For ¢ >0, sufficiently small, let {u.(x)} be a set of nontrivial solu-
tions of (F,) satisfying

u(t) = 0 = u.((t) — ¢
Dwu.(t) = Du(t) = 0
D1us(771(t) —€) = Dlu(%(t)) .

Using the fact that W[u,(n.(t), t), us(n.(t), t)] = 0, we proceed as in
Case 1 to obtain a contradiction.

Case 3. 7,(t) < 2(t) < 0.
A similar argument disposes of this case.

Aliev [5] proved for the classical fourth order equation that if
r1(t) < min [ry,(2), 7(t)], 7u(t) < min [r(8), r:(E)], or 7y(t) < min [r,(t),
73,(t)], then no nontrivial solution of [,[Jy] = 0 has four distinet zeros
on [t, n,(t)]. Lemma 2.1 generalizes his Theorems 1, 3, and 5. Another
way in which Lemma 2.1 can be generalized, which is also similar to
a result of M. Dolan [7] for (&), is the following theorem.

THEOREM 2.2. If, for te[a, ), 0,(t) < o and tf one of the in-
equalities uy(0.(?), t) # 0, W[ux(1.(?), 1), us(0.(2), 1)] # 0, us(t, 7.(8)) # 0
holds, then no extremal solution of (K, for 0,(t) has all simple zeros
on [t, 7.(2)].

The proof of Theorem 2.2 is similar to the proof of Lemma 2.1.
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Obviously a theorem like this can be stated for a more general linear
n® order equation.

LEmMA 2.3. If, for tela, ), n,(t) < Z\(t) < o, then no extremal
solution of (E,) for 7(t) has a 1 — 2 — 1 distribution of zeros on
[, 7.()].

Proof. Assume u(x) is a nontrivial solution of (E,) with a1—-2—1
distribution of zeros on [t, 7,(¢)], then u(x) has a simple zero at ¢, a
simple zero at 7,(t), a double zero at some point 7 € (¢, 7,(t)), and we
can assume u(x) > 0 for x < (f, 7) U (7, 7(¢)). It follows that there is
a nontrivial linear combination of u(x) and u.(x, t) with four distinct
zeros on [t, n,(t)] which contradicts Lemma 2.1.

LEMMA 2.4. If, for te]a, o), n,(t) < Z,(t) < =, then no extremal
solution of (E,) for n,(t) has a 2 — 1 — 2 distribution of zeros on
[t, 7.(8)].

Proof. Let u(x) be a nontrivial solution of (F,) with a 2—1—2
distribution of zeros on [t, ,(t)], then u(x) has a double zero at ¢, a
double zero at 7,(¢), a simple zero at some point t € (¢, ,(¢)), and no
other zeros on [t, 7,(¢)]. It is easy to see that ws(x, ¢) does not have
a multiple zero at 7,(¢), and so we can apply Lemma 1.2 to u(x) and
us(x, t) to get a contradiction.

It follows as a corollary to Lemma 2.4 that if 7,(f) < oo, then
there is an extremal solution of (E,) for #,(t) which has a sum of at
least four zeros at ¢ and 7,(¢) and is nonzero in (¢, 7,(t)). This is a
special case of the general n™ order results of Sherman [12] and
Hinton [9].

It is evident that if 2,(t) = 2,(t) < 2,5(){21s(t) = 2(t) < 25(t)} and
if 9.(t) < 2(E){)u(t) < 2u5(t)}, then there is an extremal solution of (X))
for n,(t) with a 2 —1 — 1{1 — 1 — 2} distribution of zeros on [¢, 7,(¢)].
Hence, the condition %,(f) < Z,(t) < o is not enough to ensure that
no extremal solution of (E,) for #(t) hasa 2 —-1—-1oral—1—-2
distribution of zeros on [¢, 7,(f)]. Lemmas 2.5 and 2.6 give partial
answers to this quandary.

LeMMmA 2.5. If, for
tela, o), () < max [2,(t), 2,5(8)[{7.(¢) < max [2,(%), 2,,()]} ,

then mo extremal solution of (E,) for n(t) hasa 1 —-1—-2{2—-1-1}
distribution of zeros on [t, 7,(?)].

Proof. Assume 7,(t) < max [z,(t), 2,5(t)] and w(x) is a nontrivial
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solution of (F,) with a 1 — 1 — 2 distribution of zeros on [¢, %,(¢)],
then wu(x) has a simple zero at ¢, a double zero at 7,(t), a simple zero
at some point 7 € (¢, 7,(¢)), and no other zeros on [¢, 7,(t)]. If 2,() >7.(t)
we get a contradiction by applying Lemma 1.2 to u,(x, t) and w(x).
Otherwise there is a nontrivial linear combination of w(x) and wu,(x, 7,(t))
with a double zero at ¢ and at 7,(f) which contradicts z,(t) > 7.(¢).
The proof of the second half of this theorem is similar.

ExampPLE 2.1. %™ —y' = 0. Aliev [4] noted that 7,(t) = rs(t) ~
t + 5.9, 7,(t) = ryu(t) = . It follows from Lemma 2.5 that no non-
trivial solution of %™ — %’ =0 has a 2 — 1 — 1 distribution of zeros

on [t, 7,(?)].

EXAMPLE 2.2. y™+y = 0. Since, for ¢ real, 7,(t) = ry4(t) ~ t+5.9
and 7,(f) = 7,»(t) = -, we have by Lemma 2.5 that no nontrivial solu-
tion has a 1 — 1 — 2 distribution of zeros on [¢, 7,(¢)].

LEMMA 2.6. If, for tea, =), equation (E,) is self adjoint and
if N(t) < Zy(t) £ =, then mo extremal solution of (E,) for 7,(t) has
al—1—2or 2—1—1 distribution of zeros on [t,7,(t)].

Proof. Assume u(x) is a nontrivial solution of (F,) witha2—-1—-1
distribution of zeros on [t, 7,(¢)], then u(x) has a double zero at ¢, a
simple zero at 7,(t), a simple zero at some 7 e (¢, 7,(t)), and no other
zeros on [t,7,(t)]. Since (E,) is self adjoint z,(t) = 2;(¢) and 7,(¢) <
Z,(t) is possible in two ways.

If 7(t) = 2x(t) < 24(t) = 2,5(t), then there is a nontrivial solution
v(x) of (E,) with a double zero at ¢ and a double zero at 7,(t). It
follows that there is a nontrivial linear combination of wu(x) and v(x)
with a triple zero at ¢ and a zero at 7,(¢). This contradicts the in-
equality 7,(t) < z,(¢).

If 7(t) = 2,:(8) = 241(f) < 2,(¢), then for e > 0, sufficiently small,
let {u.(x)} be a set of nontrivial solutions of (E,) satisfying

u(t) = Du.(t) =0
u(N:(t) —€) =0
Du.(n,(t) — €) = Du(n,(t)) # 0 .

Since 7,(t) < z,(t), Wlu(n.(t), t), us(n.(¢), t)] # 0 and it follows that
as ¢e—0

u.(r) — u(x) uniformly for x e [¢, n,()] .

Since 7 is a simple zero of u(x), there is an ¢, > 0 such that w,(x) is
a nontrivial solution of (E,) with a 2 — 1 — 1 distribution of zeros on
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[¢, n.(t) — &]. This contradicts the definition of 7,(t). The other half
of this theorem is proved similarly.

COROLLARY 2.7. If, for tela, o), 7(t) < min [r,(t), .(8)], 7.(8) <
min [7,(¢), r(t)] or 0,(t) < min [r,(2), r4(t)], then no extremal solution
of (E) for n(t) has three distinct zeros on [t,n,(t)] of which one is
at least a double zero.

Proof. This corollary follows from Lemmas 2.3 and 2.4, and a
closer look at the proof of Lemma 2.6.

Corollary 2.7 gives Theorems 2,4, and 5 of Aliev [5] for the more
general equation (£,). Lemmas 2.3—2.6 are generalizations of these
theorems of Aliev [5] for the equation (E).

The next theorem characterizes extremal solutions of (%,) for 7,(¢)
when (E,) is self adjoint and 7,(¢) < Z,(t) £ . In particular, it shows
that the extremal solutions guaranteed by Sherman [12] are the only
ones in certain cases. It follows easily from Lemmas 2.1, 2.3—2.6.

THEOREM 2.8. If equation (E,) is self adjoint and 7,(t) < Z,(t) =
oo, then no extremal solution of (KE,) for n.(t) has a zero on (t, 1,(t)).

In the special case of Theorem 2.8, when equation (E,) is self
adjoint with 7,(t) < z,(t), it is interesting to note that, even though
no nontrivial solution of (E,) with four zeros on [¢, »,(¢)] has a zero
in (¢, 7,(¢)), given any € > 0 there is a nontrivial solution to (E,) with
a2-1-1,1-2-1, and 1—1— 2 distribution of zeros on [¢, %,(¢) + ¢]
the first zero being at ¢t. This is the essence of part (i) of Corollary
3.9 in paragraph 3. Theorems 3.4, 3.6, and 3.7 are generalizations
of part (i) of Corollary 3.9. In the other case of Theorem 2.8, when
equation (%,) is self adjoint with 7,(¢)<zs,(t), it is interesting to note
that, even through no nontrivial solution of (£, with four zeros on
[t, n.(t)] has a zero in (¢, 7,(t)), given any ¢ > 0 there is a solution
with a 2 -1 —1 and 1 — 1 — 2 distribution of zeros on [t, 7,(t) + €].
This is the essence of part (ii) of Corollary 3.9 in paragraph 3, where
we establish a generalization (Theorem 3.8) of this result.

II. Distribution of zeros when 7,(t) = Z,(t). In this part of para-
graph 2 we study the distribution of zeros of extremal solutions of
(E,) for »,(t) when »,(t) = Z(t), i.e., when

Ni(E) = 25(F) = 25(F) = 251(t) < o0

The following lemma is very useful.
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LEMMA 2.9. If v,(x), vi(x), and vy,(x) are three linearly indepen-
dent solutions of (E,) with zeros at t and 7,(t), then there is an ex-
tremal solution of (E,) for n.(t) with four distinct zeros on [t, 1,(t)].

Proof. Since v,, v,, and v, are three linearly independent solutions
of (E,)), wt(x) = Wl[v,, v,, v;] is a nontrivial solution of the adjoint
equation (E;") [6] and it follows by the formulas (3.19) in [6] that
wt(x) has a triple zero at ¢ and at 7,(t). Let «, 8 be distinect numbers
in (¢, n(¢)), then w(x) = W+[w*(z), us (z, a), uf(x, B)] is a nontrivial
solution of (E,) which has zeros at ¢, «, 8, and %,(t).

We can now easily prove the following theorem.

THEOREM 2.10. If, for tea, =), n,(t) = Z,(t) < o and
7,(8) < min {2,4(?), 2(t)} ,

then for each of the distributions1 —1—-1-1,1-1-2,1—-2-1,
and 2 — 1 — 1 of zeros on [t, n,(t)] there is an extremal solution of
(E) for n(t). In fact for any a,B,t < a < B < n,(t) there is a non-
trivial solution of (E,) satisfying y(t) = y(a) = y(B) = y((t)) = 0.
By t = a < B < n(t) is meant the boundary conditions y(t)=Dy(t)=
yY(B) = y(u(t)) = 0, ete.).

Proof. Let u(x) be a nontrivial solution of (E,) which has exact-
ly a double zero at ¢ and at #,(¢). Since %,(t) < min {2,(t), 2:(t)} it
follows that wy(z, t), u.(z, 7,(¢)), and u(z) are three linearly independent
solutions of (,) with zeros at ¢ and #7,(f). It follows from the proof
of Lemma 2.9 that for any «,B,t < a < 8 < 5(¢), there is a non-
trivial solution of (E,) satisfying y(t) = y(a) = y(8) = y(n.(t)) = 0.

If t<a=p<n(t) then let {a;} and {b;} be sequences of numbers
in (¢, @) and («, 7,(f)) respectively such that lim, . a; =lim;, .. b, = «
and let v,(x) be a solution of (K, satisfying

vi(8) = vi(a;) = vi(b;) = v;(Nu(t)) = 0.

It follows by Ascoli’s theorem that there is a nontrivial solution of
(E,) satisfying y(t) = y(a) = Dy(a@) = y(0.(t)) = 0. The other parts of
this theorem are proved similarly.

The equation [6]

yi” + loy" + 9?/ = 09 te[ay OO) ’

is self adjoint with 7,(t) = 2,4(t) =t + 7. Let a, 8e (¢, 7(t)), then
since y,(x)=cos’ (x+7/2—a) sin (x—1), y.(®) = sin® (x—¢) cos (x+7/2— ),
and ¥,(x) = sin (z — t) sin (x — «) sin (x — B) are solutions of
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v+ 10y + 9y =0,

there is for each of the distributions 1 —2—-1,2-1-1,1—-1-2,
and 1—1—-1-—1 of zeros on [t 7(f)] an extremal solution of
¥ + 10y” + 9y = 0 for n,(t). This example suggests the next theorem.

THEOREM 2.11. If, for tela, «), equation (K, s self adjoint
with 1,(t) = 2x(t), then the assertions in Theorem 2.10 hold.

Proof. Since 7,(t) = z4(t), us(x, t) has a triple zero at ¢ and #,(t).
Let «, B be distinct numbers in (¢, 7,(¢)), then since (E,) is self adjoint
w(x) = Wlu, t), us(x, @), us(x, 8)] is a nontrivial solution to (E,) satis-
fying y(t) = y(a) = y(B) = y(n,(¢)) = 0. The remainder of the proof is
the same as in Theorem 2.10.

3. Ofdering theorems for ’)"M(t), z,ij(t), ’)‘“k(t), zijk(t), and /ruu(t)o
Theorem 3.1 was proved by Hartman [8], and, more recently, by Opial
[11]. We state this theorem here without proof.

THEOREM 3.1. For tela, «), 7(t) = ru.(t).

The reader should compare Theorem 3.1 to Lemma 2.1 and Theorem
2.10. In particular, if 7,(t) < Z(t), then in the definition of r,,(t)
we cannot replace the word “infimum” by the word “minimum .

By use of Theorem 3.1 it is fairly easy to prove the next theorem.
R. G. Aliev [5] proved the first case of Theorem 3.2 in a somewhat
different manner. He also claims that 7,,,(¢) = min [r,,(¢), 7..(t)] but
his proof is incomplete. However, no counterexample has been pro-
duced.

THEOREM 3.2. For te|a, «),

N,(t) = min [r,,(%), 752(8)] = min [r,(2), 7. ()] .

Proof. Since 1,(t) = r,.,(t), it suffices to show that
ruu(t) = min [r(t), r(t)] and  7y,,(¢) = min [rp(2), 7.,()] .

Let o(t) = min [7,,(t), 7,,(¢)] and assume »,,,(t) < o(t), then there
are points «, 3,7, and 0 such that t S a < B <7< d<p(t) and a
nontrivial solution w(x) of (E,) satisfying u(a) = u(B8) = u(v) = u(d) =
0 and w'(@)uw'(B)u'(v) = 0. Since § < p(t) < 7.,,(t), there is a unique
solution v(x) of (£,) satisfying v(a) = 0, v(8) = 1, v(6) = v'(6) = 0. Since
0 < p(t) = ru(t), v() < 0 for xe(a,d). By Lemma 1.2, there is a
nontrivial linear combination of w(x) and vw(x) with a double zero in
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(B,7), a zero at a and at d. This contradicts the condition that
0 < ripu(t). Similarly »,,(¢) = min [7,(2), 7u(8)].

Several interesting examples illustrate Theorem 3.2. In Example
2.1 Aliev [4] noted that 7,,(t) = oo, it follows from Theorem 3.2 that
Ni(t) = 2,u(t). In Example 2.2, 7,,(f) = - and hence 7,(t) = z,,(t). As
a third example if in equation (%)), ¢,(x) < 0,7 = 1,2, 3, 4, then 7,(a) =
ry(a) = rs(a) = o and so by Theorem 3.2 7,(a) = 7,,,(a) = ru(a) = ry(a).

Aliev [4] quotes the first inequality in the next theorem and states
that he proved it in a paper [1] unavailable to the author. Theorem
3.3 follows easily from Lemma 1.2.

THEOREM 3.3. If tela, ), then

7ou(8) = min [ry, (), ()] ,
7Tuz(t) Z min [ry(8), r(0)]

In the next three theorems we consider the cases where either
7.5(t) or 7y (t) is less than r,(¢). Note that in Example 2.1 7,,(t) < 7y, (t) =
ryu(t) = oo and in Example 2.2 7,(t) < 7,(t) = 7»(t) = . Also, in the
more familiar self adjoint cases, 7.,(t) = 7,(t). In particular, for the
differential equation % + ¥y = 0 we have 7,(t) = 7,,(t) < r,(f) = «, and
for the differential equation ¥ — y = 0 we have

Toa(t) < 715(8) = 73(t) = oo .

THEOREM 3.4. If, for tela, ), ry(t) < rut), then
715(0) = 7ia(t) = 20:(2) ©

Proof. By Theorem 3.3, 7,,(t) = min [r,5(2), r.(t)] = 7ri(t). Hence
to complete the proof of this theorem it suffices to show that given
€ > 0, but small enough so that r,(¢) + ¢ < 7»(t), there is a nontrivial
solution of (E,) with a 1 —1 — 2 distribution of zeros on [¢, 7,(t) + €]
and with a zero at ¢t. Since 7,:(t) + € < 7,(t) there is a point a € (¢, 75(%))
such that r.(a) = z4(@) € (ru(t), rs(t) + €) [4]. Let B = z,(a), then
there is a nontrivial solution u(x) of (K, with a triple zero at £ and
a zero at @ where ¢t < @ < B8 < ru(t) +e. If wu(t) =0, then ry(t) =
r12(t) = 25(8). If u(f) = 0, then let v(x) be a nontrivial solution of
(F,) with a zero at ¢t and a double zero at 5. If v(x) = 0 for x € (¢, B),
then by Lemma 1.2 there is a nontrivial linear combination of wu(x)
and v(x) with a double zero in («, 8) and a double zero at 5. This
contradicts B < 7,(t). Therefore v(x) has a zero in («, 8) and we have
71(8) = 71a(8) = 2us(0).

Lemma 3.5 was proved by R. G. Aliev in a paper [3] unavailable
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to the author and is reproved here for the sake of completeness.
LEMMA 3.5. For tela, o), 7:,(t) = 7..,(%).

Proof. Let B = ry(t) and assume B < r,,(t). There is a point
ae[t, B) such that w8, a) =0 and uy(x,a) >0 for ze(a,B). If B
is a double zero of wu.(x, @), then wu,(x,a) > 0 for xe (B, r.u(t)). Let
v e (B, ram(t)) and pe(a, B) and take v(x) to be the solution of (E,)
with v(@) = v(@) = 0 = v(v) and o(y) = u(y, @). Since v < 7y (1),
v(x) > 0 for x€(a, ). It follows that the difference uy(x, @) — v(x) is
a nontrivial solution of (¥,) with a double zero at «, a zero at x, and
a zero in (8, 7). This contradicts the inequality v < 7y,(t). Therefore
B is either a simple zero or a triple zero of u,(x, @). In either case
uy(x, @) < 0 for xe€ (B, ru(t)). Let pe(a, B) and ve (B, r.u(t)), then,
since ¢t << ¢ < v < 7ry,(t), there is a unique solution z(z) of (E,) satis-
fying z(a) = 2'(a) = 0, 2(¢) = (1/2)u(y, ), and z(v) = (1/3)u,(v, ). Since
2(x) and wu,(x, o) are linearly independent, D,2(cx) == 0, and there are
two possibilities. If D,z(a) > 0, then u,(x, @) — z(x) has a double zero
at a, a zero in («, ¢) and a zero in (y,v). If D,(a) < 0, then z(x)
has a double zero at «, a zero in («, ) and a zero in (%, v). In both
cases we contradict the inequality v < 7,,(¢).

THEOREM 3.6. If, for tela, =), r4(t) < ry(t), then

Pu(l) = 7o(t) = 2,0(F)

Proof. It follows from Theorem 3.3 and Lemma 3.5 that »,(f)=
7,.(t). To show that ry(¢) = 2z,,(¢) it suffices to show that given >0,
but small enough so that »,(f) + € < r,(¢f), that there is a nontrivial
solution of (&,) with a 2 — 1 — 1 distribution of zeros on [t, 7,(¢)+¢€]
with at least a double zero at t. Since 7,(t) + € < ru(t), 74 (f) = 24,(¢)
and hence uy(7y(t), t) = 0 [4]. The number ¢ can be taken so that
(e, t) #= 0 for xe (ry(f), ro(t) + ). Let ae (r.(t), ru(f) + ) and let
v(x) be a nontrivial solution of (E,) with v(t) = v'(t) =0, v(a) = 0. If
v(x) = 0 for xe(t, ), then if we apply Lemma 1.2 to v(x) and wu,(x, t)
we contradict the inequality »,(f) < 7,(f). Hence v(x) has a zero in
(t, ru(t)) and so 74(t) = 2u,(%).

THEOREM 3.7. If, for tela, =), r4(f) = r4(t) < ru(t), then
ru(t) = 1ru(t) = 7u(f) = 2,,(0)

Proof. Since 1,(t) = min [r(t), 7u(), ro(t)] = 7.(¢t), it suffices to
show that given e > 0, but small enough so that 7,(t) + ¢ < r.(t),
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us(x, t) <0 for x € (1,(t), N.(t)+¢), and uy(x, 7,(£) >0 for x e (9,(t), 7.(t)+¢),
that there is a nontrivial solution of (&, with a 1—2—1 distribution
of zeros on [t,7,(t) + €] with a zero at ¢. Let v(x) be a nontrivial
solution of (E,) with a double zero at ¢ and a zero in (9.(¢), 7.(t) + ¢€).
If v(n,(t)) =0, then it is easy to see that there would be a nontrivial
linear combination of w,(x, t) and v(x) with a double zero at ¢ and at
7(t). This contradicts 7,(¢) < r.(t) and so v(n(t)) = 0. If v(x) =0
for z e (¢, n.(t)), then if we apply Lemma 1.2 to wuy(z,t) and v(x) we
contradict the inequality 7,(f) < 7.(t). Hence v(x) has a zero (and only
one, call it a) in (¢, 7,(t)). Let B be the first zero of w(x) in (7.(¢),
n(t) + ¢). It follows by Lemma 1.2 that there is a nontrivial linear
combination of u(x) and v(x) with a zero at ¢, a double zero in (¢, @)
and a zero in (9,(¢), B).

THEOREM 3.8. If 7,(t) < min [ry(t), rs(t)], then
Tos(t) = T2o,(8) = 201,(8) = 7115(2F) .

Proof. Let p(t) = min [ry(t), r,5(t)] and let u(x) be a nontrivial
solution of (F,) with exactly a double zero at ¢ and a double zero at
7,(t). By Lemma 2.4 u(x) does not have a zero in (¢, 7,(f)). It is easy
to see that there is a nontrivial linear combination of w,(x, t) and u(x)
in (¢, 7.(¢)), and a zero at p where p < 7,(t) + ¢ < p(t). Hence 7,(t) =
zzu(t)'

To show 7,(t) = 7r,,,(t) it suffices to show that for ¢ < 0, but small
enough so that 7,(t) + ¢ < p(t), there is a nontrivial solution of (E))
with a 1—-1—-2 distribution of zeros on [t, 9,(t) + ¢]. Let 0 € (¢, .(t))
such that 7,(0) € (7.(t), 7.(t) + ©). Since 7,(¢) + € < O(£), 7.() = 7:(0).
Let w(x) be a nontrivial solution of (E,) with a double zero at ¢ and
a double zero at r,(0). If w(x) has a zero in (¢, 9), then 7,(t) = r,(t).
If w(x) does not have a zero in (¢, d), then there is a nontrivial linear
combination of w(x) and v(x) with a zero in (¢, d), a zero in (0, 7.,(0))
and a double zero at 7,(0) < ,(t) + €.

For the equation y™ + y” = 0, 7,(t) = ru(t) = t + 27 and ry(t) =
r5(t) = oo. It follows from Theorem 3.8 that z,,(t) = r,,(t) =t + 27 =
zuz(t)°

COROLLARY 3.9. Let (E)) be self adjoint.
( i ) If 7]1(t) < 1y(t), then 771(t) = 2211(t) = 2zw(t) = Zus(t).
(i) If Ni(t) < 7ra(t), then N.(t) = 2,,(t) = riu(t).

Proof. Corollary 3.9 follows directly from Theorems 3.4, 3.6, 3.7,
and 3.8.

One notices the absence of 7,,(¢) in part (ii) of Corollary 3.9. For
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the equations of the form (ry”)” + py = 0 where 7(z) > 0, p(x) <0
z € [a, o), r(x), p(x) € Cla, ) for which 7,(t) = r,(t)< o [6] the hypo-
thesis of part (ii) of Corollary 3.9 is fulfilled but 7,(¢) < 7,.(t) = r,4(t) =
71(t) = e [10].

The author wishes to thank Professor J. H. Barrett for his advice
and assistance.
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