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DISTRIBUTION OF ZEROS OF SOLUTIONS OF A
FOURTH ORDER DIFFERENTIAL EQUATION

A. C. PETERSON

The primary concern of this paper is to study the dis-
tribution of zeros of solutions, that have at least four zeros,
two or more of which are distinct zeros, of the canonical
fourth order equation

(E4) L4[y] = (r*U[y\y + Q^2L2[y] + q,y = 0,

where Ti(x) > 0, r^x), q3 (x) e C[a, oo), ΐ = 1, 2, 3, j = 1, 2, 3, 4,
which was introduced by Barrett.

The canonical second order equation

(E2) L2[y] = {rιVy + qιV = 0 ,

where r^x) > 0, r^x), q^x) e C [α, oo), has been studied extensively.
The canonical third order linear differential equation

(#s) L3[y] = (r2L2[y]Y + qfay') = 0 ,

where r^x) > 0, r^x), q^x) eC [a, °o), i = 1, 2, which was introduced
by Barrett, is a generalization of the second order equation (E2).

Dolan studied the distribution of zeros of extremal solutions of
(£73) for the first conjugate point η^t). In paragraph 2 the same study
is made for the equation (E4) and many of Dolan's ideas and techni-
ques are used there. The results in paragraph 2 substantially com-
plete the investigation begun in a paper by Aliev. Aliev defined and
investigated the numbers rijk(t) and rn l l(ί), which are extensions of
the two-point nonoscillation numbers r4i(ί) of Azbelev and Caljuk.
Several of his results were reported in sources, which did not include
the proofs, and these proofs were unavailable to the author, e.g.,

r^t) ^ r2n(t) ^ min [r22(ί), rzi(t)] .

Aliev also proved that

rn l l(ί) = min [r121(ί), rίl2(t)] ,

and purported to prove that rnn(t) = min [r211(ί), rlί2(t)] but his proof
is incorrect and this remains an open question. In paragraph 3 these
results of Aliev are reproved and a much more complete picture is
presented in the ordering of the numbers η^t), ri3-(t), riίk(t), and rnn(t).
The main results of this paper appear in paragraph 3.
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1* Introduction* We will be concerned with the fourth order
quasi differential equation

(E4) L4[y] = (Dsy)' + q3D2y + q4y = 0 ,

where

DiV = riV', D2y = r2L2[y], D3y = r3L3[y] .

For a discussion of the basic properties of (E4) see Chapter III of [6].
An adjoint differential equation to (E4) is

{Et) Lt[y] = (Diy)' + q.Dty + q4y = 0 ,

where Dfy is obtained from Ό{y, i = 1, 2, 3, by interchanging rx with
r3, and & with g3. Note then that equation (E?) is obtained from
(2£,) by interchanging rx with r3, and qι with g3. If (E4) and (i?4

+) are
equivalent, then L4 (and the corresponding equation (2?4)) is said to be
self adjoint; e.g., if τx{x) = r3(a;) and gL(^) = g3(^) in equation (£74),
then we have a canonical form for the self adjoint equation of order
four [6], i.e.,

L*[y] = {rA{r2[{rιyy + qlV]Y + q^y']}'

+ ί i r J M ' + q,y] + g4τ/ = 0 .

A fundamental set of solutions u3-(x,t) of (J574) for te[a, oo) is

defined by

Z).%(£, ί) = ^. , i = 0, 1, 2, 3, i - 0 , 1 , 2 , 3 .

Similarly, a fundamental set of solutions u/(&, t),j = 0, 1, 2, 3, is de-
fined for the adjoint equation (E4

+). We call u3(x, t) the first principal
solution of (E4). Leighton and Nehari [10] made use of the identity

u3(s, t) = -uf(t,s) .

which is a special case of the following theorem which follows from
the Lagrange Identity [6] for (E4).

THEOREM 1.1. For a, β = 0,1, 2, 3 and s,te [α, oo)

<1.1) Dauβ(s, t) = (-lr+tDtβUέ-ait, s) .

The derivation of equations (1.1) is similar to that given by Dolan
[7] for a similar set of formulas for the equation (2?3).

Instead of the usual Wronskians, det (2/i(i)), involving pure deriva-
tives we introduce the more convenient generalized Wronskians,
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W[yu , IΛJ = det (DiVj), i - 0,1, , n - 1

j = 1, 2, . . . , n

which are given in terms of quasi derivatives (Doy — D^y = y). When
we speak of a zero of a solution y(x) of (E4) of order k at we mean
DiV(t) = 0, i = 0, , k - 1, & = 1, 2, 3, 4. If (2£4) is disconjugate on
[£, oo) we write rjjj) — oo. Otherwise Ύ)γ(t) will denote the first con-
jugate point of t. For properties of η^t) see [9], [12]. A nontrivial
solution of (i<74) having four zeros on [t, η^t)] is called an extremal
solution of (E4) for Ύ)x{t). A nontrivial solution y of (2?4) is said to
have an i0 — ix — — iv(v = 1, 2, 3; ik — 1, 2, 3) distribution of zeros
on [t, b] d[a, oo) provided y has a zero at tk of order at least ik where
t ^ ί0 < ti < < tv ^ b. We now can introduce the following con-
cepts, introduced by Dolan [7] for (E3).

DEFINITION 1.1. For te[a, oo), the number ziQil...ilf(t) is the in-
fimum of the set of numbers b > t such that there is a nontrivial
solution y of (E4) having an i0 — ix — — % distribution of zeros on
[ί, b] and a zero of order at least % at t0. By ziQil...iv(t) = oo we mean
there is no such distribution of zeros on [t, oo).

DEFINITION 1.2. For te[a, oo), the number rίoίl...i j;(ί) is the in-
fimum of the set of numbers b > t such that there is a nontrivial
solution y of (E4) having an i0 — iγ — — i v distribution of zeros on
[ί, δ], by τiQil...iu(t) = co we mean there is no such distribution of zeros
on [t, oo). The numbers ztQi1...iv(t) and rtoiι...iu(t) are defined similarly
for the adjoint equation (E^).

If zi:}(t) < ^{Tijit) < oo}, then the word "infimum" in Definition
1.1 {1.2} can be replaced by "minimum". However, if v > 1 in Defini-
tions 1.1 and 1.2 then you cannot in general do this (see paragraphs
2 and 3). There is a close relation between zeros of solutions and
uniqueness problems, for example if a, β, y are numbers such that t ^
oc < β < Ί < rί2ί(t) ^ oo, then there is a unique solution of (E4) satis-
fying

y(a) = A, y{β) = B, Dιy{β) = C, y(j) = D

where A, B,C, D are constants. Corresponding statements hold for
the other numbers in Definitions 1.1 and 1.2 (see [2] or [4]). For
known properties of these numbers see [1]—[6].

It is convenient to use further notation introduced by Dolan [7].
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DEFINITION 1.3. If zid(t) < °°{rid(t) < 00} and i + j = 4, then

Zγ(t) = max {zΆ(t), zjt), z13(t)}

{Rx(t) = max (r8 1(ί), r 2 2(ί),

By ^(ί) = 00 {E^t) = 00} we mean at least one of the zid(t) {rid(t)}f

i + j — 4, is infinite.

The next lemma appears and is used quite often ([4], [10], [12])
and is stated here in terms of the equation (E4).

LEMMA 1.2. Let u(x) be a nontrivial solution of (E4) with a zero
at £L e [α, 00) of order n^l and a zero at t2 e (tt, 00) of order m ^ 1
and u(x) > 0 on (tly t2). Let v(x) be a solution of (E4) such that v(x)>0
on (tly t2) and v(x) does not have a zero of order ^n at tx and does
not have a zero of order ^ m at t2. Then there are constants cly c2

such that cλc2 < 0 and z(x) = c^x) + c2v(x) is a solution of (E4) with
a zero of order two in (tί9 t2).

2. The distribution of zeros of extremal solutions*

I, Distribution of zeros when rj^t) < Zγ(t). In this part of para-
graph 2 we study the distribution of zeros of extremal solutions of
(E4) for η^t) when η^t) < Zx{t). Since η^t) < ziά(t) if and only if
yi{t)<rij(t),yAt)<Zάt) if and only if η^tXE^t). Thus the theorems
in this chapter are true when the assumption ηλ(t) < Zγ(t) is replaced
by Ut) < R^t).

Hartman [8] proves for an nth order linear homogeneous differen-
tial equation that no nontrivial solution has n zeros, counting mul-
tiplicities, on an open interval {a, β) if and only if no nontrivial solu-
tion has n distinct zeros on the open interval (α, β). Hartman raised
the question as to whether you could or could not replace "open in-
terval (a, β)" by "closed interval [a, β]" in the preceding statement.
The next lemma shows that you can not replace "open interval (a, β)"
by "closed interval [a, β]". Dolan [7] has established a similar theorem
for a third order differential equation. A similar result would hold
for an nth order linear homogeneous differential equation.

LEMMA 2.1. // η^t) < ZL(t) ^ co for t e [α, 00), then no extremal
solution of (JE74) for Ύ]x(t) has four distinct zeros on [t, η^t)}.

Proof. Assume u(x) is an extremal solution of (E4) for η^t) with
four distinct zeros on [t, η^t)]. Since η^t) is a strictly increasing
function u(x) has exactly four simple zeros on [£, ̂ (ί)] and u(t) —
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— 0. Since η^t) < Z^t) ^ oo, there are three possibilities.

Case 1. η^t) < s18(ί) ^ c>o.
For ε > 0 , sufficiently small, let {uε(x)} be a set of nontrivial solu-

tions of (E4) satisfying

Uε(t) = 0 - uSyi.it) - e)

DMVάt) -ε) = DMVι(t)) Φ 0

D2uε(Vi(t) - e) = DMViW)

Since uz(t, vSfί) Φ 0> ^ * s e a s y t o s e e that as ε —> 0

uniformly for x e [t, rj^t)] .

Since the zeros of u(x) in (ί, ^(ί)) are simple, there is an ε0 > 0 such
that uεo(x) is a solution of (2£4) with four zeros on [£, ̂ ( ί) — ε0]. This
contradicts the definition of

Case 2. ηtf) < z22(t) ^ oo.
For ε > 0 , sufficiently small, let {uε(x)} be a set of nontrivial solu-

tions of (E4) satisfying

uε(t) = 0 = ut(Vi(t) - ε)

D&Jit) = DMt) Φ 0

DMvλt) -e) =

Using the fact that W[uz{ηSt), ί), uz{ηγ{t), t)\ Φ 0, we proceed as in
Case 1 to obtain a contradiction.

Case 3. η.{t) < z31(t) ^ °°
A similar argument disposes of this case.

Aliev [5] proved for the classical fourth order equation that if
min [r31(ί), r22(ί)], M O < min [r13(ί), r22(ί)], or r22(ί) < min [r lδ(ί),

r81(ί)], then no nontrivial solution of l^y] = 0 has four distinct zeros
on [£, ̂ ( ί ) ] . Lemma 2.1 generalizes his Theorems 1, 3, and 5. Another
way in which Lemma 2.1 can be generalized, which is also similar to
a result of M. Dolan [7] for (J573), is the following theorem.

THEOREM 2.2. I/, for te[a, oo), ηn(t) < oo and if one of the in-

equalities uz(ηjt), t) Φ 0, W[u2(rjn(t), t), u3(ηn(t), t)] Φ 0, us(t, ηn(t)) Φ 0
holds, then no extremal solution of (E4) for τjn(t) has all simple zeros
on [t,ηn(t)].

The proof of Theorem 2.2 is similar to the proof of Lemma 2.1.
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Obviously a theorem like this can be stated for a more general linear
nth order equation.

LEMMA 2.3. //, for t e [α, oo), ηx(t) < Zx{t) ^ oo, then no extremal

solution of (Ei) for η^t) has α l - 2 - 1 distribution of zeros on

Proof. Assume u(x) is a nontrivial solution of (2£4) with a 1 — 2 — 1
distribution of zeros on [t, fyit)], then u(x) has a simple zero at t, a
simple zero at y]x(t), a double zero at some point Γ6( ί ,^( ί )) , and we
can assume u(x) > 0 for x e (£, τ) (j (r, ̂ (ί))- It follows that there is
a nontrivial linear combination of u(x) and ^3(α?, ί) with four distinct
zeros on [t, ?]&)] which contradicts Lemma 2.1.

LEMMA 2.4. I/, /or t e [α, oo), ̂ ( ί) < Z^t) ^ oo, ̂ e ^ no extremal
solution of (E±) for η^t) has α 2 - 1 - 2 distribution of zeros on

Proof. Let u(x) be a nontrivial solution of (E4) with a 2 — 1 — 2
distribution of zeros on [ί, ̂ ( ί)], then u(^) has a double zero at t, a
double zero at y]x(t), a simple zero at some point r e ( ί , ^ ( ί ) ) , and no
other zeros on [£, ̂ i(ί)]. It is easy to see that u3(x, t) does not have
a multiple zero at ηJJ), and so we can apply Lemma 1.2 to u(x) and
u3(x, t) to get a contradiction.

It follows as a corollary to Lemma 2.4 that if rj^t) < oo, then
there is an extremal solution of (E4) for η^t) which has a sum of at
least four zeros at t and rj^t) and is nonzero in (£, rj^t)). This is a
special case of the general nth order results of Sherman [12] and
Hinton [9].

It is evident that if zB1(t) = 222(£) < ziz(t){zis(t) = z22(t) < «81(ί)} and
if η^t) < 3̂2(̂ ){>7i(ί) < Zzzit)}, then there is an extremal solution of (Z?4)
for Ύ]x{t) with a 2 — 1 — 1{1 — 1 — 2} distribution of zeros on [t, y)ι(t)\.
Hence, the condition rj^t) < Zγ(t) ^ °° is not enough to ensure that
no extremal solution of (i?4) for η^t) has a 2 — 1 — l o r a l — 1 — 2
distribution of zeros on [t, ̂ ( ί ) ] . Lemmas 2.5 and 2.6 give partial
answers to this quandary.

LEMMA 2.5. / / , for

t e [a, oo), η^t) < max [z2i(t), ziz(t)]{^(t) < max [«22(ί), z31(ί)]} ,

o extremal solution of (E4) for rj^t) has a 1 — 1 — 2 {2 — 1 — 1}
distribution of zeros on [t, ^(t)].

Proof. Assume η^t) < max [z22(t), zld(t)] and u{x) is a nontrivial
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solution of (E4) with a 1 — 1 — 2 distribution of zeros on [t, η^t)],
then u(x) has a simple zero at t, a double zero at ^( ί ) , a simple zero
at some point τ e (£, ̂ i(ί)), and no other zeros on [ί, ^(ί)]- If Zn{t)>Vι(t)
we get a contradiction by applying Lemma 1.2 to uz(x, t) and u(x).
Otherwise there is a nontrivial linear combination of u(x) and uz(x, f]ι{t))
with a double zero at t and at rj^t) which contradicts z22(t) > η^t).
The proof of the second half of this theorem is similar.

EXAMPLE 2.1. yiυ - y' = 0. Aliev [4] noted that η^t) = rn{t) ^
t + 5.9, r3ί(t) = r22(t) = co. It follows from Lemma 2.5 that no non-
trivial solution of yίυ — y' = 0 has a 2 — 1 — 1 distribution of zeros
on [£, ^(ί)] .

EXAMPLE 2.2. yiυ + yf = 0. Since, for t real, ^(ί) = r3l(t) ^ £ + 5.9
and r13(ί) = r22(t) = oo, we have by Lemma 2.5 that no nontrivial solu-
tion has a 1 — 1 — 2 distribution of zeros on [t, f]ι(t)\.

LEMMA 2.6. //, for te[a, oo), equation (E4) is self adjoint and
if ^i(ί) < Zi(t) ^ °°, then no extremal solution of (E4) for η^t) has
a 1 — 1 — 2 or 2 — 1 — 1 distribution of zeros on [t, ^( ί )] .

Proof. Assume u(a ) is a nontrivial solution of (E4) with a 2 — 1 — 1
distribution of zeros on [t, ^(t)], then u(x) has a double zero at t, a
simple zero at rj^t), a simple zero at some r e ( ί , ^ ( ί ) ) , and no other
zeros on [ί, rj^t)]. Since (^4) is self adjoint zιs(t) = ^31(ί) and ^(ί) <
JZΊ(ί) is possible in two ways.

If ηγ(t) = z22(t) < ί231(ί) = 313(£), then there is a nontrivial solution
v(a ) of (J 4̂) with a double zero at t and a double zero at rj^t). It
follows that there is a nontrivial linear combination of u(x) and v(a )
with a triple zero at t and a zero at rjjj). This contradicts the in-
equality η^t) < z31(t).

If η^t) = «13(ί) = 081(ί) < z22(t), then for e > 0, sufficiently small,
let {uε(x)} be a set of nontrivial solutions of (E4) satisfying

uε(t) = A^ e(ί) = 0

e) = 0

DMVi(t)) Φ 0 .

Since ^(ί) < «22(ί), ^ [ ^ ( ^ ( ί ) , ί), ^3(^i(ί), <)] ̂  ° a n d it follows that
as ε —»0

t6ε(α?) —> %(#) uniformly for x G [t, ^(ί)] .

Since τ is a simple zero of w(α ), there is an ε0 > 0 such that ueQ(x) is
a nontrivial solution of (E^) with a 2 — 1 — 1 distribution of zeros on
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[t, 3?i(*) — εo] This contradicts the definition of ^( ί ) . The other half
of this theorem is proved similarly.

COROLLARY 2.7. //, for t e [α, oo), η^t) < min [riz(t), r22(ί)],
min [r3ί(t), r22(t)] or η^t) < min [r13(£), r31(£)], then no extremal solution
of (EA) for η^t) has three distinct zeros on [t, ^(ί)] of which one is
at least a double zero.

Proof. This corollary follows from Lemmas 2.3 and 2.4, and a
closer look at the proof of Lemma 2.6.

Corollary 2.7 gives Theorems 2, 4, and 5 of Aliev [5] for the more
general equation (2£4). Lemmas 2.3—2.6 are generalizations of these
theorems of Aliev [5] for the equation (i?4).

The next theorem characterizes extremal solutions of (EA) for η^t)
when (E4) is self adjoint and ηjj) < ZL(t) ^ oo. In particular, it shows
that the extremal solutions guaranteed by Sherman [12] are the only
ones in certain cases. It follows easily from Lemmas 2.1, 2.3—2.6.

THEOREM 2.8. If equation (E4) is self adjoint and η^t) < Z^t) ^
co, then no extremal solution of (2?4) for ηJJ) has a zero on (t, Ύ)ι{t)).

In the special case of Theorem 2.8, when equation (E4) is self
adjoint with η^t) < z22(t), it is interesting to note that, even though
no nontrivial solution of (2?4) with four zeros on [t, yj^t)] has a zero
in (£, y]ί(t)), given any ε > 0 there is a nontrivial solution to (2£4) with
a 2 — 1 — 1, 1 — 2 — 1, and 1 — 1 — 2 distribution of zeros on [£, ηγ{t) + ε]
the first zero being at t. This is the essence of part (i) of Corollary
3.9 in paragraph 3. Theorems 3.4, 3.6, and 3.7 are generalizations
of part (i) of Corollary 3.9. In the other case of Theorem 2.8, when
equation (EA) is self adjoint with yjί(t)<zzι(t)9 it is interesting to note
that, even through no nontrivial solution of (E4) with four zeros on
[£, rj^t)] has a zero in (t, ^(ί)), given any ε > 0 there is a solution
with a 2 — 1 — 1 and 1 — 1 — 2 distribution of zeros on [t, rj^t) + ε].
This is the essence of part (ii) of Corollary 3.9 in paragraph 3, where
we establish a generalization (Theorem 3.8) of this result.

II. Distribution of zeros when rj^t) — Zx(t). In this part of para-
graph 2 we study the distribution of zeros of extremal solutions of

for ηx{t) when η^t) = Zγ{t), i.e., when

i?i(ί) = Zit>(t) = z22(t) = zzι(t) < oo .

The following lemma is very useful.
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LEMMA 2.9. If v^x), v2(%), and vz{x) are three linearly indepen-
dent solutions of (E4) with zeros at t and y]x{t), then there is an ex-
tremal solution of (E4) for rjjj) with four distinct zeros on [£, y]ι{t)].

Proof. Since vlfvi9 and v3 are three linearly independent solutions
of (E4), w+(x) = W[vu v2, Vs] is a nontrivial solution of the adjoint
equation (E?) [6] and it follows by the formulas (3.19) in [6] that
w+(x) has a triple zero at t and at ^( ί ) . Let a, β be distinct numbers
in (ί, ̂ (ί))* then w(x) = W+[w+(x), u}(x, a), uf(x, β)] is a nontrivial
solution of (2£4) which has zeros at t, a, β, and ^( ί ) .

We can now easily prove the following theorem.

THEOREM 2.10. / / , for te[a, oo), η^t) = Zγ(t) < <*> and

ft(ί) < min {z2Z(t),z32(t)} ,

then for each of the distributions 1 — 1 — 1 — 1,1 — 1 — 2,1 — 2 — 1,
and 2 — 1 — 1 of zeros on [t, ̂ (t)] there is an extremal solution of
(E4) for TjiHt). In fact for any a, β,t ^ a ^ β <ί i)x(t) there is a non-
trivial solution of (ϋ74) satisfying y(t) — y(a) — y(β) = y(j]ι(t)) = 0.
(By t — a < β < ηλ(t) is meant the boundary conditions y(t) = Dίy(t) =

y(β) - y(Vi(t)) = o, etc.).

Proof. Let u(x) be a nontrivial solution of (E4) which has exact-
ly a double zero at t and at y]x{t). Since rjjj) < min {z23(t), zn{t)} it
follows that uz(x, t), us(x, ̂ ( ί)), and u(x) are three linearly independent
solutions of (E4) with zeros at t and η^t). It follows from the proof
of Lemma 2.9 that for any a, β,t ^ a < β < η^t), there is a non-
trivial solution of (E4) satisfying y(t) = y{a) = y(β) — yiη^t)) = 0.

If t < a = β < ηx(t) then let {αj and {6J be sequences of numbers
in (t, a) and (α, ̂ (ί)) respectively such that l i m ^ a{ = lim^o 6̂  = a
and let ^ ( B ) be a solution of (^4) satisfying

Vi(t) = vfa) = ^(δ,) = ^(^(ί)) - 0 .

It follows by Ascoli's theorem that there is a nontrivial solution of
(#4) satisfying y(t) = y(a) = D^a) = yfait)) = 0. The other parts of
this theorem are proved similarly.

The equation [6]

yiυ + 10?/" + 9i/ = 0 , ί e [ α , 00) ,

is self adjoint with ^(ί) = ^ ( t ) = t + π. Let a, β e (ί, ̂ i(ί))> then
since 2/1(α?) = cos2 (α; + 7r/2-α) sin (a? —ί), 2/2(a?) = sin2 (a? —ί) cos (x + π/2 — a),
and i/3(a;) = sin (x — t) sin (x — a) sin (α; — β) are solutions of
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there is for each of the distributions 1 — 2 — 1, 2 — 1 — 1, 1 — 1 — 2,
and 1 — 1 — 1 — 1 of zeros on [t, ηJJ)] an extremal solution of
yίυ + 10?/" + dy — 0 for ^( ί ) . This example suggests the next theorem.

THEOREM 2.11. //, for te[a, oo), equation (I?4) is self adjoint
with rj^t) — ZM(Ϊ), then the assertions in Theorem 2.10 hold.

Proof. Since rj^t) = z33(t), u3(xf t) has a triple zero at t and r/^t).
Let a, β be distinct numbers in (£, yj^t)), then since (i?4) is self adjoint
w(x) = W[uz(x, t), u3(x, a), u3(x, β)] is a nontrivial solution to (E4) satis-
fying y(t) = τ/(α:) = ?/(/3) = yiη^t)) = 0. The remainder of the proof is
the same as in Theorem 2.10.

3. Ordering theorems for ri5(t), zi5(t), rijk(t), zίjk(t), and rmι(t).
Theorem 3.1 was proved by Hartman [8], and, more recently, by Opial
[11]. We state this theorem here without proof.

THEOREM 3.1. For te [α, oo), η^t) = r i m ( ί ) .

The reader should compare Theorem 3.1 to Lemma 2.1 and Theorem
2.10. In particular, if η^t) < Ztf), then in the definition of r i n l (ί)
we cannot replace the word "infimum" by the word "minimum".

By use of Theorem 3.1 it is fairly easy to prove the next theorem.
R. G. Aliev [5] proved the first case of Theorem 3.2 in a somewhat
different manner. He also claims that r l l u (ί) = min [rm(£), rn 2(ί)] but
his proof is incomplete. However, no counterexample has been pro-
duced.

THEOREM 3.2. For te[a, oo),

η^t) = min [r121(ί), r112(ί)] = min [r121(ί), r211(ί)] .

Proof. Since rj^t) = rnn(t), it suffices to show that

rnn(t) ^ min [r121(ί), rn 2(ί)] and rnn(t) ^ min [r121(ί), r211(ί)] .

Let ρ(t) = min [r12ί(t), rn2(t)] and assume r l l n (ί) < p(t), then there
are points a, /3, 7, and δ such that t^a<β<y<δ< p(t) and a
nontrivial solution u(x) of (E4) satisfying u(a) = u(β) — u(y) = u(δ) =
0 and u'(a)u'(β)u'(y) = 0. Since δ < p(t) ^ r112(ί), there is a unique
solution v(x) of (E,) satisfying v(a) = 0, v(β) = 1, v(δ) = v'(δ) = 0. Since
δ < p(t) tί τιι2(t), v(x) < 0 for xe (a, δ). By Lemma 1.2, there is a
nontrivial linear combination of u(x) and v(x) with a double zero in
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OS, 7), a zero at a and at δ. This contradicts the condition that
δ < rm(t). Similarly r m i ( ί ) ^ min [r121(ί), r211(ί)].

Several interesting examples illustrate Theorem 3.2. In Example
2.1 Aliev [4] noted that r211(ί) = ©o, it follows from Theorem 3.2 that
Vάt) = «i2i(ί) In Example 2.2, rn2(£) = °o and hence η^t) = 3121(£) As
a third example if in equation (EA), q^x) ^ 0 , i = l ,2,3,4, then r12ί(a) =
r51(a) = rιz{a) = oo and so by Theorem 3.2 η^a) = rn 2(α) = r22(α) = r2n(a).

Aliev [4] quotes the first inequality in the next theorem and states
that he proved it in a paper [1] unavailable to the author. Theorem
3.3 follows easily from Lemma 1.2.

THEOREM 3.3. If te [α, oo), then

τ2n(t) ^ min[r3 1(ί),r2 2(ί)] ,

rn 2(ί) ^ min [r13(ί), r22(*)] .

In the next three theorems we consider the cases where either
r13(£) or r3ι(t) is less than r22(ί). Note that in Example 2.1 r13(ί) < r31(ί) =
r22(t) = oo and in Example 2.2 r31(t) < r13(t) = r22(ί) = oo. Also, in the
more familiar self adjoint cases, r31(ί) = r18(ί). In particular, for the
differential equation ?/ίϋ + 7/ = 0 we have r1B(t) = r3ι(t) < r22(ί) = oo, and
for the differential equation yiυ — y = 0 we have

n 2 (0 < rlz(t) = ru(t) = oo .

THEOREM 3.4. I/, for t e [α, co), r13(ί) < r22(ί),

Proof. By Theorem 3.3, r112(ί) ^ min [r13(ί), r22(ί)] = r18(ί). Hence
to complete the proof of this theorem it suffices to show that given
ε > 0, but small enough so that ris(t) + ε < r22(£), there is a nontrivial
solution of (E4) with a 1 — 1 — 2 distribution of zeros on [t, r13(ί) + ε]
and with a zero at t. Since r13(ί) + ε < r22(t) there is a point a e (t, r13(t))
such that rls(a) = jg13(a:) e (r13(ί), r13(ί) + ε) [4]. Let β = zis(a), then
there is a nontrivial solution u(x) of (2£4) with a triple zero at /9 and
a zero at α where t < a < β < r13(ί) + ε. If u(£) = 0, then r13(ί) =
rn 2(ί) = ^ii2(ί) If ^(£) ^ 0y then let v(x) be a nontrivial solution of
(E4) with a zero at t and a double zero at β. If v(x) Φ 0 for x e (ί, /3),
then by Lemma 1.2 there is a nontrivial linear combination of u(x)
and v(x) with a double zero in (a, β) and a double zero at /9. This
contradicts β < r22(ί). Therefore v(x) has a zero in (a, β) and we have
rί5(t) = rn2(t) = z n 2 (ί).

Lemma 3.5 was proved by R. G. Aliev in a paper [3] unavailable
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to the author and is reproved here for the sake of completeness.

LEMMA 3.5. For t e [α, <χ>), r81(ί) ^ r211(ί).

Proof. Let β — rzι(t) and assume β < r211(ί). There is a point
a 6 [ί, β) such that uz(β, a) = 0 and u3(x, a) > 0 for x e (a, β). If β
is a double zero of u3(x,a), then w3(#, a) > 0 for a? e 08, r211(ί)). Let
7 G (£, r211(ί)) and μ e (α, yS) and take v(as) to be the solution of (E4)
with v(α) = v'{a) = 0 = v(i) and v(μ) = uz{μ, a). Since 7 < r211(ί),
v(x) > 0 for x e (a, 7). It follows that the difference ijφt, a) — v(x) is
a nontrivial solution of (2£4) with a double zero at a, a zero at μ, and
a zero in (/3, 7). This contradicts the inequality 7 < r211(ί). Therefore
β is either a simple zero or a triple zero of %3(ί£, a). In either case
Wβ(a?, a) < 0 for a? e OS, r211(ί)). Let /̂  e (α, /3) and y e 08, r m (ί)), then,
since t < μ < v < r211(ί), there is a unique solution 2(05) of (i?4) satis-
fying z(α) = 2'(α) = 0, z(μ) = (Il2)uz(μ, a), and 2(v) = (l/3)%3(^, <*)• Since
2(a?) and %3(a;, a) are linearly independent, jD2z(α) Φ 0, and there are
two possibilities. If D2z(a) > 0, then u3(x, a) — z(x) has a double zero
at α, a zero in (α, /i) and a zero in (μ, v). If D22:(α) < 0, then z(x)
has a double zero at α, a zero in (α, /i) and a zero in (//, v). In both
cases we contradict the inequality v < r211(ί).

THEOREM 3.6. //, for te [α, 00), r31(t) < r22(t), then

Proof. It follows from Theorem 3.3 and Lemma 3.5 that r31(ί) =
r211(ί). To show that r31(ί) = z2n(t) it suffices to show that given ε>0,
but small enough so that r31(ί) + ε < r22(ί), that there is a nontrivial
solution of (E^) with a 2 — 1 — 1 distribution of zeros on [t, r13(£) + ε]
with at least a double zero at t. Since r31(ί) + e < r22(ί), r31(ΐ) = 231(ί)
and hence u3(r31(ί), ί) = 0 [4]. The number ε can be taken so that
u3(x, t) Φ 0 for x e (r31(ί), r3i(Q + ε ) Let α e (r31(ί), r31(ί) + ε) and let
v(x) be a nontrivial solution of (E4) with v(ί) = v'(ί) = 0, v(a) = 0. If
v(x) Φ 0 for x e (ί, α), then if we apply Lemma 1.2 to v(x) and t63(a?, ί)
we contradict the inequality rzι{t) < r22(ί). Hence v(x) has a zero in
(ί, r s i(ί)) and so r31(ί) = 2211(ί).

THEOREM 3.7. I/, /or ί e [α, 00), Tl3(t) = r31(t) < r22(t), then

ni(t) = r13(ί) = r121(ί) = zί21(t) .

Proof. Since ηx{t) = min [r13(ί), r31(ί), r22(ί)] = r31(ί), it suffices to
show that given ε > 0, but small enough so that ^(ί) + ε < r22(ί),
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, tXOΐovxe (ηtf), ftίίRε), and %φ, ^(ί)>0 for x e (^(ί),
that there is a nontrivial solution of (2£4) with a 1—2—1 distribution
of zeros on [t, ηx(t) + ε] with a zero at ί. Let v(x) be a nontrivial
solution of (JE74) with a double zero at ί and a zero in (^(ί), yj^t) + ε).
If viη^t)) = 0, then it is easy to see that there would be a nontrivial
linear combination of u3(x, t) and v(x) with a double zero at t and at
ηx{t). This contradicts ^(ί) < r22(t) and so ^(^(ί)) Φ 0. If v(ίc) ^ 0
for xe (ί, ^7i(ί)), then if we apply Lemma 1.2 to M3(#, ί) and v(x) we
contradict the inequality ηJJ) < r22(£). Hence v(a?) has a zero (and only
one, call it a) in (ί, ^(ί)). Let β be the first zero of v(x) in (^(ί),
i)ι(t) + ε). It follows by Lemma 1.2 that there is a nontrivial linear
combination of u(x) and v(x) with a zero at t, a double zero in (ί, α)
and a zero in (^i(ί), /3).

THEOREM 3.8. If r22(ί) < min [r31(ί), r13(ί)],

M*) = r211(ί) = z2n(t) = r112(ί).

Proof. Let /θ(ί) = min [r81(ί), rlδ(ί)I and let %(») be a nontrivial
solution of (E4) with exactly a double zero at t and a double zero at
37i(£) By Lemma 2.4 %(#) does not have a zero in (£, τ)i{t)). It is easy
to see that there is a nontrivial linear combination of uz(x, t) and u(x)
in (ί, vat)), and a zero at p where p < ^(ί) + ε < p(t). Hence r22(ί) =

To show ^(ί) = r112(ί) it suffices to show that for ε < 0, but small
enough so that η^t) + ε < p(t), there is a nontrivial solution of (E4)
with a 1 — 1 — 2 distribution of zeros on [t, η^t) + ε]. Let δe(t, f]ι{t))
such that ηtf) e (^(ί), ^(ί) + ε). Since ηx{t) + ε < ^(ί), ̂ (δ) = rjβ).
Let w(a?) be a nontrivial solution of (̂ 4) with a double zero at δ and
a double zero at r22(<5). If u(x) has a zero in (ί, δ), then η^t) = rn2(t).
If %(a?) does not have a zero in (ί, δ), then there is a nontrivial linear
combination of i φ ) and t;(α?) with a zero in (ί, δ), a zero in (δ, r22(δ))
and a double zero at r22(δ) < η^t) + ε.

For the equation yiΌ + y" = 0, ̂ (ί) = r22(ί) = ί + 2ττ and r81(ί) =
r13(ί) = 00. It follows from Theorem 3.8 that z2n(t) = rn2(ί) = ί + 2ττ =

COROLLARY 3.9. Lei (^4) δβ seί/ adjoint.
(Ί) If ft(ί) < rffl(ί), ίλβn ^(ί) = ̂ ( ί ) = 2121(ί) = s112(ί).
(ii) // ^(ί) < rzι(t), then ηx{t) - «211(ί) - r l ia(ί).

Proof. Corollary 3.9 follows directly from Theorems 3.4, 3.6, 3.7,
and 3.8.

One notices the absence of r121(ί) in part (ii) of Corollary 3.9. For



764 A. C. PETERSON

the equations of the form (ry")" + py = 0 where r(x) > 0, p(x) ^ 0,
xe[a, oo), r(x), #(&) e C[α, oo) for which ^(ί) = r22(ί)< oo [6] the hypo-
thesis of part (ii) of Corollary 3.9 is fulfilled but η^t) < rsi(ί) = ris(ί) =

The author wishes to thank Professor J. H. Barrett for his advice
and assistance.
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