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DECOMPOSITIONS OF INJECTIVE MODULES

R. B. WARFIELD, JR.

The main results of this paper concern decompositions of
an injective module, either as a direct sum of submodules or
as the injective envelope of a direct sum of injective sub-
modules. This second kind of decomposition can be regarded
as an ordinary direct sum (coproduct) in a suitable Abelian
category —the spectral category of the ring, The results are
therefore put in the context of Abelian categories, and the
main result is that in an Abelian category satisfying axiom
Ab-5 and with infinite direct sums, any two direct sum decom-
positions of an injective object have isomorphic refinements,

This is particularly strong if decompositions into indecomposable
injectives exist, and it enables one to classify the injective modules
over a valuation ring. Such strong results as this are not available
for more general classes of modules, but in § 3 the methods of Crawley
and Jonsson are exploited to obtain results in certain cases; for ex-
ample, for modules which are direct sums of countably generated
modules. The Crawley-Jonsson results are put into the context of
category theory and an example is given (involving relatively injec-
tive modules) to show how the hypotheses can be weakened by work-
ing in a subcategory of the category of R-modules.

A remark should be made on the types of decompositions we con-
sider for injective modules in § 2. For injective modules over Noetherian
rings, ordinary direct sums yield excellent results, due primarily to
Matlis [7]. In contrast, Faith and Walker [2] have shown that if R
is a non-Noetherian ring, there does not exist any set of injective
modules such that any injective module can be imbedded in a direct
sum of modules isomorphic to members of this set. In the spectral
category, however, reasonable decompositions always exist (Theorem
2 below). The spectral category was introduced by Gabriel and Oberst
in [4] and exploited in [10]. The author is indebted to Professor J.
E. Roos for pointing out the connection between these two papers and
the work reported here.

We do not consider Cartesian product decompositions of injective
modules, since product decompositions simply do not have the neces-
sary uniqueness properties. For an example let @ and Z denote the
additive groups of rationals and integers, respectively, and (Q/Z), the
p-primary component of Q/Z. Then

II, (Q/Z), = @ x 11, (Q/Z),

so that we have two product decompositions of an injective Z-module
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into indecomposables, and these decompositions are in no sense
equivalent.

1. Decompositions in Abelian categories. We will work in
Abelian categories satisfying the usual axioms (as in MacLane [6, pp.
248-257]) together with the following three conditions:

(i) The set-theoretic axiom [6, p. 253] that for each object A
there is a set of subobjects, such that any subobject is equivalent to
a member of this set.

(ii) We assume that arbitrary direct sums (coproducts, cocar-
tesian products) exist.

(iiil) We assume the axiom Ab-5 in the following form: if A, is
direct family of subobjects of an object C, and B is a subobject of C,
then

(UAi)nB:U(AimB).

In clarification of condition (iii), we should remark that if A;(i<I)
is a family of subobjects of an object C then their injection homomor-
phisms induce a unique homomorphism from their direct sum (coproduct)
into C, and the image of this homomorphism is the wunion (or join)
of the A;, and is denoted |J A;. Similarly, if A and B are subobjects,
then A N B is the kernel of the natural homomorphism C — C/A & C/B.

DEFINITION. An Abelian category satisfying the conditions (i),
(ii), (iii) above will be called a reasonable Abelian category.

In general one can work with direct sums in a reasonable Abelian
category just as one would with direct sums of modules. The notion
of a decomposition of an object into a direct sum of subobjects, 4 =
D;:.: A;, has the obvious interpretation, and two decompositions are
1somorphic if the summands are isomorphic in pairs. If also 4 =
@®D,., B;, we say the second decomposition is a refinement of the first
if there is a surjective map ¢: J— I such that B; & A;;,, from which
it follows that the induced morphism

Doijy=s B — A;

is an isomorphism. The direct sum of two objects A and B will be
written A @ B, and if A and B are subobjects of C with AN B =0,
then their join is isomorphic to A @ B and will be denoted AP B.
Two more remarks should be made: First, if C = A@ B, and
DS C, then C=D@B if and only if 7,09, is an isomorphism.
(Here 7w, is the natural projection C — A4, and ¢, the natural injection
D —C.) Secondly, if C = AP B and AZ D (another subobject), then
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A is a summand of D and D = A& (D N B).

We recall that a subobject L S A is essential if for any subobject
Sc A4, if S#0, then SNL = 0. If D is an injective subobject of A
and D is essential, then D = A.

LEMMA 1. If A = @B;.; A; (in any reasonable Abelian category)
and S is a subobject of A, then S is essential in A if and only if
SN A, is essential in each A,.

Proof. That the condition is necessary is clear. Conversely,
suppose that B = 0 is a subobject of A. By (iii), there is a finite
subset I* S I with BN (P, 4;) = 0. Therefore, to show that our
condition implies S is essential, we need only show that S is essential
in finite subsums. By iteration, we need only show that if SEC, P C,
and SN C; is essential in C;, then S is essential in C, P C,. Let B+ 0
be a subobject of C, P C, and let 7, and 7, be the projections to C,
and C,. Let ¢: B— C, be the restriction of n, to B. If BEC, then
clearly BN S # 0, so we assume this is not the case, in which case
im (¢) # 0. Hence im (¢) N S = 0, so we let

B = ¢~ (im($) N S) .

Since B’ # 0, we need only show B’'N S # 0. Let v be the restriction
of , to B’. By the same argument as before, we may assume that
B’ is not contained in C,, so that im (v) = 0. We let

B" = 47" (im (y) N S)
and it is clear that B"” = 0, B"= S, so that BN S = 0 as desired.

LEMMA 2. (The exchange property) If M is an object in a reason-
able Abelian category and D 1s an injective subobject, and M =
@D... M;, then there subobjects M] < M;, so that M = D P (B;.; M)).

Proof. Let S& M be a subobject chosen maximal with respect
to the following properties:

1) S=6:.;SnM;

2y SND=0.
To show such an S exists note that (i) enables us to apply Zorn’s
lemma and (iii) guarantees that an ascending union of subobjects satis-
fying (2) still satisfies (2). Let M/ =S N M,. Then we claim M =
D D (B My).

Let ¢ be the natural map from M to M/S, and let  be the
restriction of ¢ to D. Condition (2) above implies that + is a mono-
morphism, so im () is an injective subobject of M/S. We need only
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show that im () is essential, which is an easy consequence of Lemma 1.

LeEmMMA 3. Let D be an imjective object in a reasonable Abelian
category, and A a subobject of D. Then there is an injective sub-
object E of D with AS E, and A essential in E.

Proof. By axiom (i), we can choose subobjects E and S of D
such that E is maximal with respect to the property that A is
essential in E, and S is maximal with respect to the property that
SNA=0. Let ¢: D~ D/S be the natural homomorphism. If ¢’ is
the restriction of ¢ to E, then ¢’ is a monomorphism. We therefore
have a homomorphism carrying im (¢’) back to E, and since D is in-
jective, this extends to a homomorphism +: D/S — D. Since E < im (+r)
and A is essential in im (v), we have F = im (y). FE is therefore a
summand of D, with projection +ro¢, and hence E is injective.

THEOREM 1. If D is an injective object in a reasonable Abelian
category, then any two direct sum decompositions of D have isomor-
phic refinements.

Proof. We will consider two decompositions of D and we assume
the summands are well ordered, so that we can take ordinal numbers
as our indices and write

D= ®i<l\' Ai = ®J’<M Ba‘ .

We will construct subobjects C;;(+ < N, j < M) of D, such that D =
@D:;C:;, A, = B;cx Cij, B = @icy C;;. The construction will be carried
out by induction on pairs of indices (u,j). For each pair (n,j) we
will want the following statements to hold:

1(n, 7). For 72 < m there are subobjects A;;S A, and for 7 < =n,
k < j, the subobjects C;, have been constructed.

2(1n,79). @icn Ai = (Bicn Ai)) D (Bicn Br<; Cir)-

3(n, 7). (Bi<;i Br) N (Bicn Br<; Cir) is essential in both (@<, Bi) N
(Bi<n A:) and @i, Bi<; Cie

Suppose that the C;; have been constructed so that all of the
statements 1(n, 7), 2(n, J), 3(n, J) hold for n < N,j < M. Then 2(N, M)
and 3(N, M) together imply that

D= ®i<1\' ejq{ Cii
and hence by 2(n, M) and 2(n + 1, M)
@m Ai = $i<n $j<M Cij
$i<n+1Ai = $i<n+1 ®j<M Ci:i
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and comparing these two statements, we conclude that
An = ej <M an

since two complements to the same summand are isomorphic.

We now need to note that if D is injective and A, B are sum-
mands of D with A N B essential in both A and B, and if D = A@C,
then D = B C also, and in particular, A = B. To apply this, we
note that for any index j,

(ek<j Bk) N (®k<i @i<1\’ Czk)

is essential in both, so that the first summand may be replaced by
the second. Doing this, and then applying the same remark for the
index j + 1, we obtain the following expressions

D= (®k<j @m Ci) @ Bj @ (®j<k B,)
= ($k<i ®i<1\7 Cir) @ ($i<1\' Cij) @ (ej<k B,) .

Comparing middle terms, we obtain as before
B; =@i«x Cy;

as desired.

We now complete the proof by carrying out the construction of
the subobjects C;; in the required way. We first use induction on the
index j. The construction is completed for the index j if subobjects
A;; have been constructed for all 7 < N, and subobjects C;, for ¢ < N,
k < j, so that the statements 1(z, k), 2(%, k), 3(%, k) holds for all 7 < N,
k < j. Suppose, now, that the construction has been completed for
all indices k, k < 7, and that j is a limit ordinal. Conditions 3(N, k)
and 3(N, k + 1) show that C,, is isomorphic to a summand of B, so
@D, C;. is isomorphic to a summand of D, and hence is injective.
2(¢, k) and 2(¢ + 1, k) imply that the projection of @@,.; C;, into A4, is
a monomorphism, so @,; C;, is isomorphic to a summand of A;. Summ-
ing over ¢, we find that @;., @.<; C:: is isomorphic to a summand of
D (for all » < N) and hence is also injective. We can therefore apply
the exchange property (Lemma 2) for this subobject and obtain sub-
objects A;;(# < N) such that

D = (®i<1\' ®k<j Cik) EB ($i<1\' A'L’j) .

This is not quite good enough, but if we do this inductively for each
index 7 in turn, we can also guarantee that

@i<‘n Ai = (®i<'n $k<j Cik) @ ($@<n Aij)
for all n < N, so that for all » < N, 2(n,7) will hold. Condition
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3(n, j) is immediate (since if K, is an ascending family of subobjects
of an object K and L; is an ascending family of subobjects with
L, S K,, L, essential in K,, then axiom (iii) implies that |J L, is es-
sential in |J K;). This completes the induction at a limit ordinal.

To complete the proof, we must show that if the constuction has
been completed for an index j, it can be completed for 7 + 1. We
do this by induction on =, establishing 1(n,j + 1),2(n,5 + 1),
3(n, 5 + 1). Suppose that n is a limit ordinal, so that the A, ;. , are
constructed for all 7 <n and C,, for 71 <m,k <j+ 1. Applying
2(1,7 + 1) for all © < n and taking an ascending union we see that
2(n, 7 + 1) is immediate, and 3(n, 7 + 1) is also immediate because (as
we saw at the end of the previous paragraph) ascending unions pre-
serve “essentialness”.

We must show, finally, that if we can carry out our construction
so that 1(n,j5 + 1), 2(n,5 + 1), 3(n,j +1) (and also 1(x + 1,7), 2(» + 1,7),
3(n +1,7)) hold, then we can construct 4, ;.,,C,,; so that 1(n +1,5+1),
2(n +1,7+1),3n+1,7+1) also hold. We have

®i<n Ai = (EBM Ai,j+1) 69 (ez<n ek<j+1 Cik)

and the equation remains true if we add A, on the left and

A,; D (Br<; Car)

on the right. We choose C,; in @;.,+, 4; to be maximal with respect
to the properties that

1) Co; N [(Bicn 4) D (Br<; C.wl=0

(2) (Dicnr1 Brcjri Cir) N (Br<jrr Bi)
is essential in @;cp+1 @rejir Cir. It is clear from Lemma 3 that C,;
is injective. 3(n + 1,5 + 1) is clearly satisfied, and applying the ex-
change property (for the summand (..., 4;) @ (Br<;+: Cor) In Bic,r 41)
we can find a complement A, ., so that 2(n + 1,5 + 1) also holds,
thus completing the induction.

2. Applications.

COROLLARY 1.1. Any two direct sum decompositions of an ih-
jective R-module have tsomorphic refinements.

To obtain more useful results, we consider another sort of decom-
position.

THEOREM 2. Let R be an associative ring with 1. Then any
wmjective R-module is the injective envelope of a direct sum of in-
jective submodules isomorphic to E(R/I) (for varying I) where R|/I
1s a cyclic left R-module and E(R/I) denotes the injective envelope
of R/I.
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Proof. For injective envelopes see [6, p. 102]. We choose a sub-
set S of D such that

(1) the elements of S are nonzero,

(2) the elements of S are independent (that is, the submodule
generated by S is the direct sum of the cyclic modules [x], generated
by the elements x in S),

(3) S is maximal with respect to properties (1) and (2). We now
let B be an injective envelope in D of the submodule generated by S.
B is the injective envelope of a direct sum of cyclic modules, and also,
by breaking the process into two stages, the injective envelope of a
direct sum of injective submodules of the form E(R/I). It is easy to
see that B = D.

THEOREM 3. The following conditions on an assoctative ring R
with 1 are equivalent:

(i) If I is a left ideal of R, then either I is irreducible or
there are left ideals A, B, different from I, such that A is irreducibe
and I = AN B.

(ii) Any injective left R-module has a nonzero indecomposable
summand.

(iii) Any injective left R-module is the injective envelope of a
direct sum of indecomposable injective R-modules.

Proof. Much of this is due to Matlis [7]. Suppose that E is the
injective envelope of a cyclic submodule [¢] and F = E, @ E, where
both E, and E, are nonzero. If in this decomposition & = &, + ,,
then it is easy to see that E; is the injective envelope of [x;] and
o(x) = o(z,) N o(x,), where o(x), and o(x;) are the order ideals of x and
x; respectively. Further, we see that o(x) = o(x;) for either 7. We
conclude that E(R/I) is indecomposable if and only if I is an irredu-
cible ideal, and E(R/I) has an indecomposable summand if and only if
I satisfies the conclusion of condition (i) above. Since any injective
R-module has a summand of the form E(R/I) for some left ideal I,
the equivalence of (i) and (ii) is now clear. Clearly (iii) implies (ii)
and the proof of the converse is essentially the same as the proof of
Theorem 2.

DEFINITION. Let R be an associative ring with unit. _#(R) is
the category whose objects are injective R-modules with morphisms
defined by

Mor . (A, B) = Hom (A, B)/Hom, (A, B)
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where Hom, (4, B) is the subgroup of R-homomorphisms whose kernel
is essential in A.

THEOREM 4. _#(R) is a reasonable Abelian category im which
all short exact sequences split. KElements of _Z (R) are isomorphic in
F(R) if and only if they are isomorphic as modules, and if A ieI)
18 a family of injective modules, then their direct sum in the category
S (R) can be identified with the ingective envelope of their module
direct sum.

Proof. Most of the proof consists of trivial verifications which
will be omitted. We take it as obvious that .7 (R) is an additive
category satisfying the set theoretic axiom (i). The direct sum of
two objects in _#(R) in just their direct sum as R-modules. If
fi:A— B, g: B— A establish an isomorphism in .7 (R) between A and
B then go f restricts to the identity function on some essential sub-
module of A so gof is an automorphism of A4, and similarly fog is
an automorphism of B, so A and B are isomorphic as modules.

Let us identify the kernels and cokernels. Let fe Hom (4, B) and
let [f] denote the correspoding element of Mor - (4, B). If K is the
kernel of f, and E is an injective envelope of K in A, then F is a
kernel for [f]. We can write A = E@ F (in .7 (R) or as R-modules).
Let 7 be the projection of A onto F' and f’ the element of Hom (F, B)
induced by f. Then [f] = [f’][x] since f and f’oxw agree on the
essential submodule K + F. This is the factorization of [f] into the
product of an epimorphism and a monomorphism required in an Abelian
category. Finally, f'(F') is a summand of B so B/f'(F') is injective,
and if ¢ is the natural homomorphism from B to B/f'(F') then [¢] is
a cokernel for [f]. This shows that .#(R) is an Abelian category,
so all that remains is to check conditions (ii) and (iii).

The statement on direct sums is a consequence of Lemma 1. For
(iii), note that if we have a directed family of _# (R)-subobjects of
an injective module C, we can choose representative submodules A,(¢ € I)
for these subobjects so that the family A; is a directed family in the
usual sense. JA; (in the category .7 (R)) can be identified with any
injective envelope of the ordinary union of the A,. Similarly, AN B
(in the category .# (R)) can be identified with any injective envelope
of the ordinary intersection. Both of these are well defined in .7 (R).

To prove that
(U4)nB=U(4:nB)

in the category .# (R), note that the term on the left is any injective
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envelope of BN K K where is an injective envelope of the ordinary
union of the A,. If this ordinary union is denoted by A, then since
A is essential in K, the term on the left represents an injective enve-
lope of AN B. Similarly, the term on the right represents an injec-
tive envelope of A N B, from which the result follows.

We should remark that this theorem carries over to any reason-
able Abelian category in which injective envelopes exist.

COROLLARY 4.1. Any two representations of an injective module
as the imjective envelope of a direct sum of injective submodules
have tsomorphic refinements.

COROLLARY 4.2. Let M be an injective module which s the in-
Jective envelope of a direct sum of indecomposable injective submodules
E(el). Then any two such decompositions are isomorphic, and
Sfurthermore, tf N is an injective submodule of M, there is a subset
JE I such that M = N E@D;.;E,).

The second half of this corollary follows from Lemma 2, in the
category .~ (R). Theorem 3 gives conditions to which this corollary
applies. Another such condition, in terms of transfinite Krull dimen-
sion, is given by Gabriel [3, pp. 382, 386]. A similar result in [10].

We recall that a commutative ring R is a valuation ring if it is
an integral domain and for any two nonzero elements » and s of R,
either r divides s or s divides ». It follows that if I and J are ideals,
either IS J or J=I. Hence any ideal is irreducible, and it follows
that the injective envelope of a cyclic module, E(R/I), is always in-
decomposable. One can show further [8] that E(R/I) = E(R/J) if and
only if there are nonzero elements »,s of R such that »I = sJ, (or
equivalently, I and J are isomorphic as modules). Applying Theorem
2 and Corollary 4.2, we obtain the following.

COROLLARY 4.3. An injective module over a valuation ring s
the injective envelope of a direct sum of indecomposable inmjective
modules, and any two such decompositions are isomorphic. An in-
jective module is indecomposable if and only if it is of the form
E(R/I), and E(R/I) = E(R/J) if and only +f I=J.

Other consequences, not directly involving injective modules, also
follow from these results. For the following, let R be a commutative
integral domain. We recall that a torsion-free module is reduced if
it has no nonzero injective summand, or equivalently if no nonzero
element is divisible by all elements of R. If A is a submodule of a
module B, A is RD-pure in B if forallre R, rA = AN rB. (RD here
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tands for“relatively divisible”.) A module M is RD-injective if it is a
summand of any module which contains it as an RD-pure submodule.
By [12, Corollary 2] the functor Hom (Q/R, -) gives a category isomor-
phism between the category of torsion, injective R-modules and the
category of reduced, torsion-free RD-injective R-modules. (Here, Q is
the quotient field of B. This result is a corollary of the category iso-
morphism theorem of Matlis [9, Th. 3.4].) We also have a notion of
RD-injective envelope for this theory, and we can actually write down
an explicit formula. If A is a reduced torsion-free module, its RD-
injective envelope is Hom (Q/R, E(A Q (Q/R))), where E(M) is the
ordinary injective envelope of M. All of the previous results for
injective modules now carry over because of the category isomorphism
theorem mentioned above, but we content ourselves with a version of
Corollaries 4.2 and 4.3.

COROLLARY 4.4. If M 1is a reduced torsion-free RD-injective
module over an integral domain, and if M is the RD-injective
envelope of a direct sum of indecomposable RD-imjective modules,
then any two such decompositions of M are tsomorphic. If the domain
18 a valuation ring, any reduced torsion-free RD-injective module
1s the RD-injective envelope of a direct sum of ideals, and any two
such representations are isomorphic.

The only additional remark needed to complete the proof of this
is that if R is a valuation ring, the RD-injective envelope of an ideal
I, I+ R, is Hom (Q/R, E(R/I)) since R/I is essential in Q/I, and there
is a natural isomorphism Q/I = (Q/R) Q) I.

3. The Crawley-JOnsson theorems. We wish to review here
some important results on direct sum decompositions due to Crawley
and Jonsson [1] and to place them in the context of Abelian categories.
We should remark that Crawley and Jonsson work with general
algebraic systems, and their results are valid in many categories that
are not even additive, so that our results do not contain theirs. Our
proofs are valid in somewhat more general categories than reasonable
Abelian categories, however—in particular in any full subcategory
which is closed under summands and direct sums (for example, in the
category of torsion-free Abelian groups), and the hypotheses are often
weakened by restricting to a subcategory.

DEFINITION. An object D in an Abelian category has the exchange
property if for any object A, if we have

A:D’®Bz®iel‘4i
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with D’ = D, then there are subobjects A;< A; such that
A=D D@4 .

Similarly, D has the finite exchange property if this conditions holds
whenever the set I is finite.

THEOREM 5. [1,Th.4.2]. If M is an object in a reasonable Abelian
category and M = @;.; A; = @;., B; where the sets I and J are count-
able and the subobjects A. and B; have the exchange property, then
these two decompositions have isomorphic refinements.

The proof is a diagonal argument and we refer to [1, pp. 817-818]
for details. The countability hypothesis seems to be essential. It can
be removed, however, by placing a countability hypothesis on the
summands. Crawley and Jonsson therefore assume their summands
are countably generated, and the following definition provides a sub-
stitute for this in a general setting.

DEFINITION. An object D in an additive category is small if for
any direct sum A = @,.; A;, with projections 7;,, and any morphism
f:D— A, we have m;of = 0 for all but a finite number of indices 7.
D is o-small if it is a countable ascending union of small subjects.
D is countably small if for any direct sum A = @;.; 4;, and f: D —
A, we have 7;,of = 0 for all but a countable number of indices 1.

LEMMA 4. Let N be a summand of an object M in a reasonable
Abelian category such that M is the direct sum of countably small
subobjects. Then N is also a direct sum of countably small subobjects.

This is essentially equivalent to [5, Th. 1]. o-small can be sub-
stituted for countably small, and suitable versions for larger cardinals
also are valid.

LEMMA 5. Let M be an object in a reasonable Abelian category
and M = @,., A; = @,., B,;, where each of the summands is countably
small. Then we can decompose I and J into disjoint, countable sub-
sets I,, J,(A € A), such that

Dier, A = @, B;(ve 1) .

Proof. We outline the proof, which is a straightforward
elementary argument. One proceeds by transfinite induction, and the
resulting set 4 is a set of ordinal numbers. One first proceeds by in-
duction on ordinals A\, the induction hypothesis being that for n < \,
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the following holds: for each k < n, the sets I, J, are defined, so
that

®k<n (eielk A) = $k<n (ejeJk B))

and the sets I, J, are disjoint, countable subsets of I and J respec-
tively. We conclude that there is an ordinal N such that I is the
union of the sets I, for £ <\, and J is the union of sets J, for
k < \. For any k <\, we apply the induction formula for » = k and
n = k + 1 and obtain

D, A= ®D;.,. B;

as desired, since both are complementary summads to @n<i (D, 4:)

in em<k+l (eielk A,).

THEOREM 6. If M is an object in a reasonable Abelian category
and M is the direct sum of countably small subobjects, then any two
direct sum decompositions of M into summands having the exchange
property have isomorphic refinements.

Proof. By Lemma 4, any decomposition refines into one in which
the summands are countably small. Since a summand of an object
with the exchange property again has the exchange property, one
may assume that all summands involved are countably small. By
Lemma 5, we may then assume that the index set is countable, and
in this case the result follows from Theorem 5.

THEOREM 7. [1, Th. 7.1]. Let M be an object in a reasonable
Abelian category which is the direct sum of o-small subobjects having
the exchange property. Then any two direct sum decompositions of
M have isomorphic refinements.

Proof. By Theorem 6, it suffices to show that if N is a sum-
mand of M, then N is also a direct sum of g-small subobjects having
the exchange property. By Lemma 5, it suffices to prove this in the
case where M = @3, 4; and each A; is o-small, in which case N is
also o-small. We can therefore find subobjects S;(z = 0,1, --) of N
with S; small, S, =0, S;;,28S;, and such that N is the union of the
S;. We proceed by induction on %, choosing for each k& a subobject
N,, beginning with N, = 0. We assume by induction that the N, are
independent, that @, N; is a summand of N, that S,S @:.N,, and
that each N, has the exchange property. Clearly if we can carry out
this construction, the theorem is proved, since N = @;>; N..

By the exchange property for @:-!N;, there are submodules
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A< A; such that

M= (@ N,) © (D=, 1) .
Choose n(k) such that

S, S (@ N) D (Bl 4Y .

Applying the exchange property to the object on the right, assuming
that M = N B, we obtain complementary subcbjects N} & N, B, & B.
Let N/ be the intersection of N with

(D= N,) D (DY 4) D B-. .

Clearly, S, & N]. Let N, be a complement to @iz N; in N/. Since
N, is isomorphic to a summand of @r% A, N, has the exchange
property, and since N = N/ Nj, the induction is completed.

COROLLARY 7.1. Let M be an R-module which is a direct sum
of countably generated injective modules. Then any summand of M
1s a direct sum of injective modules and any two direct sum decom-
positions of M have isomorphic refinements.

In the case where M is a direct sum of countably generated in-
decomposable injective modules, this is contained in results of Faith
and Walker [2].

To give another example, we return to our earlier remark that
the above proofs are wvalid in any full subcategory of a reasonable
Abelian category which is closed under summands and direct sums.
We apply this to the category of torsion-free reduced modules over
an integral domain.

COROLLARY 7.2. If a reduced torsion-free module M over an
ntegral domain is a direct sum of RD-injective modules, then any
two direct sum decompositions of M have isomorphic refinements.

Proof. It is clear that a torsion-free RD-injective module is
algebraically compact in the sense of [11]. Algebraically compact
modules have very strong completeness properties which make it easy
to check that a reduced torsion-free RD-injective module is small in
the category of reduced torsion-free modules. The result will follow
if we can prove the exchage property for such modules. By [1, Th. 8.2]
(or by an elementary argument) we may assume that all of the sum-
mands involved are torsion-free and reduced, and using the smallness
of the RD-injective modules, we may assume that the total number of
summands involved is finite. Since the operation of taking RD-Injective
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envelopes preserves finite direct sums, we may assume that all of the
modules involved are RD-injective. Using the category isomorphism
theorem mentioned in connection with Corollary 4.4, the result now
follows since injective modules have the exchange property.

4. Some unsolved problems. It would be nice to weaken or
remove the countability requirements in §3. In particular, it would
be nice to weaken the hypotheses of Theorem 7 and make them agree
with those of Theorem 6. By analogy with Theorem 1, one might
hope to remove all such hypotheses by assuming that the object being
decomposed also has the exchange property.

One would like to prove theorems similar to Corollary 4.4 for
other classes of modules defined by relative injectivity properties
similar to that defining RD-injective modules. One theorem in this
direction which does not follow from our methods is the classification
theorem for complete Abelian groups. A reduced Abelian group is
RD-injective (or algebraically compact) if and only if it is complete and
Hausdorff in its Z-adic topology. Any such group is the completion
of a direct sum of indecomposable complete groups, and any two such
decompositions are isomorphic. The indecomposable complete groups
are just the cyclic groups of prime power order and the additive
groups of p-adic integers. A suitable generalization of the results of §3
might include similar theorems for modules over other rings.
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