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ISOMETRIES OF CERTAIN FUNCTION SPACES

K. W. TAM

Let X be a discrete symmetric Banach function space with
absolutely continuous norm. We prove by the method of ge-
neralized hermitian operator that an operator U on X is an
onto isometry if and only if it is of the form:

Uf(.)=u(.)f(T.) all feX,

where % is a unimodular function and T is a set isomorphism
of the underlying measure space. That other types of isome-
tries occur if the symmetry condition is not present is illus-
trated by an example. We completely describe the isometries
of a reflexive Orlicz space LMΦ(Γ^LZ) provided the atoms have
equal mass (the atom-free case has been treated by G. Lumer);
similarly for the case that no Hubert subspace occurs.

We shall reproduce some definitions and results from [4] which
will be needed in the sequel.

DEFINITION. Let X be a vector space. A semi-inner-product on X
is a mapping [, ] of XxX into the field of numbers (real or complex)
such that

[x + y,z] = [x, z] + [y, z]

X[x, z] = [Xx, z] for all x, y, ze X and λ sealer .

[x, x] > 0 for all x φ 0

[x, y] |2 ^ [x, x][y, y] .

We call X a semi-inner-product space (in short, s.i.p.s.). If X is
a s.i.p.s., one shows easily that [x, x]ιβ is a norm on X. On the other
hand, let X be a normed space and X* its dual. For each xe X,
there exists by the Hahn-Banach theorem, at least one (and we shall
choose one) functional WxeX* such that ζx, WV> — \\x\\2. Given any
such mapping W from X into X* (ank in general, there are infinite-
ly many such mappings), it is at once verified that [x, y] = (x, Wy)
defines a semi-inner-product (s.i.p.).

DEFINITION. Given a linear transformation T on a s.i.p.s., we call
the set W(T) = {[Tx, x]: [x, x] = 1} the numerical range of T.

An important fact concerning the notion of numerical range is
the following [4, Th. 14]:

Let X be a complex Banach space, and T an operator on X.
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Although there may be many different s.i.p. consistent with the
original norm of X, in the sense that [x, x] — || x ||2, nonetheless, the
convex hulls of numerical range of T relative to all such s.i.p. are
equal. It has real numerical range with respect to one s.i.p., then it
has real numerical range with respect to any other s.i.p. inducing the
same norm.

DEFINITION. Let T be an operator on a complex Banach space
X, then T is called hermitian if its numerical range is real, relative
to any s.i.p. consistent with the norm.

1* A general setting* We shall call an algebra A over the com-
plex field C a *-algebra if there is a mapping * defined on A satisfying:

( i ) aeA implies α* e A.
(ii) (α + 6)* = a* + 6* and (λα)* = λα*.
(iii) (a*)* = a and (αδ)* = δ*α* for all a,beA and λ e C . An

element a such that α* = a is said to be self-adjoint (s.a.). Every
element a of a *-algebra can be written in a unique way: a = u + ίv
where u and v are s.a. A *-algebra-isomorphism p is an algebra iso-
morphism on a *-algebra A with the condition that (ρ(a))* = p{a*) for
all a in A.

Let X be a complex s.i.p.s. and A be a *-algebra with a topology.
Assume that X is a two-sided module over A. Suppose that there is
a net {ea} in A such that limα fea = / for all / in X. For a *-subal-
gebra Ao of A such that Ao is a subset of X, and {eα} is contained
in AQ, the following holds:

THEOREM 1. Suppose that for any s.a. h in A, Hhf' = hf for all
f in X defines a bounded hermitian operator on X; and that con-
versely every bounded hermitian operator is of this form. Then any
onto isometry U of X when restricted to Ao is given by

Uf = Urn p(f)Uea
a

where p is a *-algebra-isomorphism on A.

Proof. Let h in A be s.a., then Hh is a bounded hermitian
operator on X. On the other hand, let a s.i.p. [,] on X be given,
then [f,g]' = [ί/"1/, U~~ιg] defines another s.i.p. on X inducing the
same norm. It follows that

[UHhU-ιf,f]' = [H.C7-1/, U~ιf] is real for all / .

Thus UHhU~ι is another hermitian operator on X, and by hypothesis
there is a s.a. h in A such that
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VHhV~lf = H\f for all / in X .

Clearly the mapping h—*h is linear. If h = 0, then for all feX,
UHhU-ιf= 0; in particular UHhU~ιUea = U(hea) = 0. Since U is one
to one, hea — 0 and limft hea = h = 0. Hence this mapping is one to
one. We shall set p(h) — h. With s.a. h and h' in A,

Hp{hhn = UHhh,U~ι = UHhU-*UHh.U-1 = Hpih)Hp{hn .

Thus p(hhf) = p(h)p(h'). Extending p on A trivially by letting

p(h + ih') -

it can easily be shown that p is a *-algebra-isomorphism on A. For
all / in Λ, U(fea) - UHfU^Uea = p(f)Uea, so that

2* Function spaces. Let X be a Banach function space with
absolutely continuous norm [6] over a σ-fϊnite measure space (Ω, Σ, μ).

LEMMA 1. Assume that ω is a measurable subset of Ω and let
P be the projection of X onto the subspace E of functions in X
vanishing outside a). Then for any hermίtian operator H on X,
PHP is a hermitian operator on E.

Proof. Since X has absolutely continuous norm X* = X', the
associated space of X. Let IF be a mapping as before. Then a con-
sistent s.i.p. on X is given by: with each g e X,

[/, g] = <f, Wgy = j fWg for all / e X .

Without loss of generality we can take Wg to be χ Wg if g e E where
χ is the characteristic function of co. Then for all g e E such that
|| g || = 1, we obtain

[Hg, g] - ^HgχWg - \χHgχWg = [(PHP)g, g]

which is real valued. Thus PHP is hermitian on E.

LEMMA 2. [5, Lemma 7]. // h e Lw is a real function, the oper-
ator Hh, defined by Hhf'= hf for all feX, is a bounded hermitian
operator on X; and \\Hh\\ = ||A||oo.

We shall use the following fact several times later.
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LEMMA 3. For a, β, 7 complex numbers such that ezθa -j- e~iθβ + 7
is real for all 0 ̂  θ < 2ττ, £/&e% a = β and 7 is reαZ.

Let E be a two-dimensional Banach space. Denote the element

/ of E as a function defined on the set Ω — {x, y). We shall assume

that the norm in E has the following properties:

(1) 11/11 = 111/111.
(2) I / I ^ I g I implies that \\f\\^\\g\\ with all f,geE.

The real functions in E can be considered as points in the two-
dimensional Euclidean plane; let 7 be the convex curve of the boun-
dary of its real unit ball. At each point pey there is a supporting
hyperplane, and suppose that the normal vector at p to the hyper-
plane is given by {a, β). We shall define sgn g as the function

sgng =

0 if flf = 0

otherwise
9

LEMMA 4. For any nonzero geE

[f,g] = \\g\\ A(g){f(x) sgn g(x)a(g) + f(y) sgn g(y)β(g)}

where

A(g) = \ψήia(g) + ' f ̂  [ βig)}" and (a(g), β(g))
[ \\g\\ \\g\\ J
\ψήia(g) + f ̂
[ \\g\\ \\g\\

is a normal vector at (| g(x) |/|| g ||, | g(y) |/|| g ||) for all feE, defines a
consistent s.i.p. on E.

Proof. Clearly it is linear in / and [g, g] = | | # | | 2 . Firs t we as-
sume t h a t / and g are real valued. The fact t h a t \\g\\ = | | | # | | | im-
plies t h a t the curve 7 is symmetric with respect to both axes. The
function A(g){sa(g) + tβ(g)} has absolute value no greater than one
on the region between the two lines L x and L2 where they are two
chosen supporting hyperplanes a t (| g(x) \/\\ g ||, | g(y) \l\\g\\) and
(-\g{x)\l\\g\\, ~\g{y)\l\\g\\) with normal vectors (a(g),β(g)) and
(-a(g), -β(g)) respectively. So t h a t A(g) \\ g \\ {| sa(g) \ + | tβ(g) \}^\\g \\
f o r a l l ( β , t ) 6 7 . F o r a l l n o n z e r o fe E, (\f(x) \/\\ f \\,\f(y) \/\\ f | | ) e 7 , w e
o b t a i n

A(g) \\g\\{\f(x) sgn g(x)a(g) \ + | f(y) sgn g(y)β(g) 1} ̂  11 / 11 11 flr 11 .

Now in the above inequality, only the absolute values are involved,
it holds for all complex functions / and g as well.



ISOMETRIES OF CERTAIN FUNCTION SPACES 237

Let Xn be a ^-dimensional real Banach space (n ^ 2) and S its
unit ball. We shall fix a basis for Xn and denote every element x as
a point in the w-dimensional Euclidean space En. Define a function
F on En as F(xλ, x2, , xn) — \\ (xL, x2, , a J || — 1. For each i —
1, 2, - - - M, let β?" = (0, , 0, 1, 0, 0) (1 at the ΐ-th position).

LEMMA 5. Let S' be an open set of E,Λ consisting of smooth
points of XnJ then the function F has continuous first partial deriva-
tives at every point of S'.

Proof. If x is a point of S\ then the norm function is Gateaux
differentiable at x [7]. Therefore with i = 1, 2, ., n

t-+t t 0Xi

Suppose W is as before, then from [5, Lemma 1]

\\x\\^-(x) = <e\ Wx>= [e\x] .

Since the norm topology of Xn and that of En are equivalent, the
weak star compactness of the unit ball of X* and the smoothness of
S' implies that this mapping W is weak star continuous on £'. Thus
3F/dXi(x) is continuous on S'.

LEMMA 6. Let H be a hermitian operator on E and

'a 6Ί

a}'
Then either b ~ c = 0 or else b/c > 0 and E is a Hilbert space; in
either case a and d are real numbers.

Proof. We shall start by proving that the set S' — {(s, t): s Φ
0 Φ t) consists of smooth points if 6 and c are not both zero. For
0 S 0 ^ 2ττ, let / = (e*θs, t) be such that (s, t) e S' and || / || = 1, then
by Lemma 4 [Hf, f] = A(f)(asa + dtβ + e~iebta + eiθcs β) is real,
where (a, β) is the normal vector of a supporting hyperplane to the
real unit ball S at (s, t). We have by Lemma 3 that

bt a - cs β = 0 .

We assume that c Φ 0. If b = 0 then β = 0 for all such / and 7 is
a rectangle. As β = 0 cannot occur on all four sides of a rectangle,
b and c are not zero, (a, β) is uniquely determined up to a sealer
multiple. Therefore the hyperplane is unique and every point of S'
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is smooth. Now for b and c being nonzero, the function F(s, t) =
|| (s, ί) | | — 1 is differentiate at (s,t)eS' The hyperplane is thus
given by the tangent plane. So that for all g e E such that g(x) Φ
0 Φ g(y)9 the linear functional in Lemma 4 can be replaced by

[/, g] = A(g) \\g\\ lf(x) sgn g(x) — — + f(y) sgn g(y) — — 1
I ds ot )

and we obtain the equation

s Q
c ds dt

Now (bjc)t2 + s2 satisfies the partial differential equation. By the uni-
queness of solution, the curve y is given by the equation s2 + (bjc)t2 =
K. Since the unit ball is bounded, b/c and K must be positive. Then
an inner-product on E can be defined by

, 9) γ~ +

Thus i? is a Hubert space.
For nonzero g e E such that g(y) = 0, by Lemma 4 [/,#] =

Hffll2/(»)/^(») for all / in E. As [Hg, g] = a\\g\\2 is real, α is real;
similarly cί is real.

3* Discrete symmetric Banach function spaces* Let X be a
Banach function space with absolutely continuous norm and the mea-
sure is purely atomic; so that X is a sequence space. Assume that
X is symmetric, i.e., if / in X and φ is an isomorphism of the atoms,
then 11/11 = \\f(Φ)\\. Choose the set of all characteristic functions of
atoms to be a fixed basis for X. Let H be a hermitian operator on
X and be represented as an infinite matrix (a{j), then Lemmas 1 and
6 imply that aiS = aH.

LEMMA 7. // there is a hermitian operator H on X such that
its matrix representation is not diagonal, then there is a hermitian
operator Hr on X with all nonzero off diagonal entries.

Proof. We write H = (α^ ). Assume that without loss of genera-
lity that α12 Φ 0; then α21 Φ 0. Suppose that it is the smallest positive
integer such that alit = 0. Define TJ1 on X as operator obtained from
the identity I by interchanging its 2nd and v t h row. Then Ux is
isometric and Hι = ΌJELUί is hermitian. Choose ax > 0 such that
11 a1H111 ^ 1/2 and the matrix entries of al5 of H + aYHx are nonzero
for all 2 ^ j ^ ix. Assume that this has been done for in steps and
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let iΛ+1 be the smallest integer greater than in such that aιin+1 = 0.
Again let Hn+ι = Un+1Hn+1Un+1 where Un+1 is the isometric operator
obtained from / by interchanging the 2nd and iw+1-th row. Take
an+j > 0 with \\aH+1Hn+11| ^ l/2%+1 and the matrix entries aiά of
H + Σissfc^+i #*•#* a r e not zero for j = 2, , in+1. Then the operator
Gi = H + Σfc !̂ akHk is a bounded hermitian on X. Its entries atj Φ 0
for all j ^ 2. With i = 2, 3, let Vi be the operator by interchang-
ing first and i-th row of L Then (?; = ViG^Vi is hermitian and its
entries aiό φ 0 for j = 1, 2, , i — 1, i + 1, . Choose a sequence
{/9J of positive numbers such that X^. < °° and for each k = 2, 3,
the first fc rows of ΣnsizkβjGj a r e n o ^ z e r o except may be at the
(j, j) position. Then Hr = Σ /Ŝ Gy is the required hermitian operator.

Let Xn = {/G X:/(&) = 0 all & > n}. Suppose that S is the real
unit ball in Xn as represented in the ^-dimensional Euclidean space
En and 7 its boundary. For aey there exists at least one supporting
hyperplane to S at a with a normal vector (α ,̂ a2, , αΛ).

LEMMA 8. For nonzero g e Xn,

[f,g] = A(g) 110 11 { Σ /(i) sgn flr(i)αΛ all / e l , ,

where A(g) = {Σ?=i I ^(i) I/I I ^ II ̂ il"1 α ^ (αi> ̂ 2, , «») is ί/̂ β normal

vector to a hyperplane at ( ' ^ ' , ^ ' ' v " ; IffWI \ defines a
v I k l l \\g\\ \\g\\ J

consistent s.i.p. on Xn.

The proof is similar to that as in Lemma 4.

LEMMA 9. // there is a H' as in Lemma 7, then the set S' =
{feXn:f(j) Φ 0 all j} consists of smooth points.

Proof. Let (xu x2, , xn) e S' and k = 1, 2, , n — 1, #& =
(a?!, a?2, , β ί θ ^, , xn) in X% is of unit norm where 0 ^ θ < 2τr. The
restriction of £P to Xn, Hn = (αϋ)<,i=i,2,...n is hermitian by Lemma 1
and

[Hngk, gk] = Aig^ϋa^, + + ei0alkxk + + alnxn)a, + •

x, + + eiθakkxk + + aknxn)ak +

+ + β ^ Λ + + αΛnajw)α:n}

α ^ α ! + + α^^^α^ + ak+lkxkak+1 + •
») + e-^dtoXi + + αω-i^-i

+i + + aknxn)ak + •}
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is real valued. By Lemma 3 we obtain the system of equations:

In \ n

V L ) 2-ι akjX3 \ a k — 2-ι Cίjk%kaj — V
\j=l I 5-1

for k = 1, 2, ••-, n — 1.
For every real number β, let U be a diagonal matrix whose first

diagonal element is e~ίβ and the rest is one. In place of Hr we sub-
stitute UH'U~\ Then the resulting matrix elements are changed only
for the first row and first column; and the subsequent form of equa-
tions (1) are:

/ n \ n

( Σ ^ije~iβxj)a1 - γkajιe~ifixιaj = 0
\j=2 / j=2

ttibiβ^a?! + Σ a*;&;W ~~ (^ikeiβxk^i + Σ ^ fcx^ ] = 0
5 = 2 5 = 2

for fc = 2, 3, , n — 1. With any fixed (xl9 xi9 , xn) where xά Φ 0, j =
1, 2, •••,%, we shall show that this system is linearly independent for
some /S; equivalently we show that the following matrix is rank n — 1:

2-x ai3e X:

— a12e
ίβx2

-aίke
ίβxk akιe

iβx1 Σ
5=2

β

If we take the first w — 1 columns, we obtain a square matrix
and its determinant is a polynomial P(eί/5) of degree n — 2. The coef-
ficient of the ei{n~2)β term is obtained by finding the determinant of
the following matrix:

5=2

— aί2e
iβx2 a2le

ίβx1 0
xk

0
For k = 2, 3, , n — 1, we add akle~ίβ/akl multiple of k-th row to the
first row. We obtain by the condition that aιk = akl a matrix of non-
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zero diagonal elements and whose entries above diagonal are zero.
Thus the polynomial P is not identically zero and the original matrix
has rank n — 1 for some β. Thus we may assume that the system
(1) is linearly independent. This implies that the normal vector
(a19 a2, , an) is uniquely determined up to a multiple of constant.
The proof is complete.

THEOREM 2. Suppose that H is a hermitian operator on X, then
either there is real valued function hel^ such that

Hf= hf for all feX

and \\H\\ = ||&||oo or else X is a Hilbert space. Conversely for every
real valued function hel^ the above formula defines a hermitian
operator on X.

Proof. The converse is the content of Lemma 2. Assume that
there is a hermitian operator H on X which is not diagonal, then
Lemmas 7 and 9 imply that the function F defined on En, given by
F(xί9 x2, , xn) = || (x19 x2, , xn) || — 1, is differentiate at points of
S'. So that the supporting hyperplane at geS' is given by tangent
place and the system (1) can be replaced by

k = 1, 2, , n — 1. Observe that the function Σ?= 1 x\ satisfies this
system. Let x° — (x°u x°2f , x°n) be a point on the unit ball and
Σ?=i(&S)2 = K for some K> 0. For all other xeS' which is on this
sphere we have

F(x) = F(x°) + ( grad F = \ ± ^ds
i as

where T = (dxjds, dxjds, , dxjds) is the unit tangent vector. If
F(x) Φ 0, since grad F. T is continous, then there is a sQ such that
x(so)eΓ and grad F(so).T(so) Φ 0. But T(s0) at x(s0) is on the tangent
plane to the sphere at x(s0) and grad F(s0) is normal to this plane,
this is a contradiction. Therefore F(x) — 0 and all xe S' such that
Σ?=i %l = K are on the real unit ball. As the surface T is continuous,
this equation gives the set of points on T.

This will suffice to imply that Xn is a Hilbert space, since an
inner-product on it can be found to give the original norm. The ab-
solute continuity of the norm thus implies that X is a Hilbert space.
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If X is not a Hubert space, then every H on X is real diagonal and
the rest is clear.

THEOREM 3. Suppose U is an isometry from X onto itself and
assume that X is not a Hilbert space. Then there is a fixed uni-
modular function u and an isomorphism T of atoms such that

Uf(.) = u(.)f(T.) for all feX.

Conversely such a transformation always defines as isometry on X.

Proof. The line of argument follows that of Theorem 5 below.
u is unimodular because of the symmetry condition on X.

4. Reflexive Orlicz spaces* Let LMΦ be a reflexive Orlicz space
defined by the convex function Φ. We assume that Φ is everywhere
finite. Suppose that the measure is finite.

LEMMA 10. [5, Lemma 6]. Let H be a bounded hermitian opera-
tor on LMΦ. If Ωf, Ω" are a.e. disjoint, i.e., μ(Ωf Π Ω") = 0, let χ' and

χ" be their characteristic functions; then \ Hχ'r = 0 if and only if

L
LEMMA 11. [5, Th. 9]. Suppose H is as above, and μ is purely

nonatomic, then either there exists a real valued function hel^ such
that Hf'= hf for all feLM and \\H\\ = ||/&|U o r e^se LMΦ — L2.

Let (Ω, Σ, μ) be a general measure space and decompose LMΦ —
L'MΦ + 1>MΦ where L'MΦ are functions on nonatomic part and lMΦ are
functions on purely atomic part.

LEMMA 12. Suppose H is as above, then either LMΦ is L2 or else
L'MΦ and lMΦ are both invariant under H.

Proof. Assume that LMΦ is not a L2 space. Let Ωf be a nonzero
atom and χ' its characteristic function. Suppose that Hχ' is not zero

on a nonatomic set Ω", and \ Hy' Φ 0. Take χ" to be the charac-
Ji2"

teristic function of Ω". Then for a ^ 0 we obtain the equality as in
the proof of Lemma 11 [see 5]:

ψ( 2 ) = aψ) =

where Ψ — 1/2(Φ+ + Φ~) and Φ+, Φ~ are the right and left hand de-
rivatives of Φ respectively. Since Ω" is nonatomic, we may replace
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Ω" by subset of Ω" with arbitrarily small measure, so that

Then Φ(t) — ct2 and LMΦ is actually a L2 space. This contradict our
hypothesis, Hχf e lMΦ.

Conversely, if Ωtr is nonatomic and χ" its characteristic function,

then by Lemma 10, ί Hχ" = 0 if and only if \ Hχ' = 0 where Ωr is
JΩ' }Ω"

any atom. The previous result shows that Hχ' e lMΦ for every atom

Ω'. Hence [ Hχ" = 0. Therefore Hχ" e L'MΦ. Since the step func-
tions are dense in their respective subspaces, both UMΦ and lMΦ are
invariant under H.

THEOREM 4. Suppose H is a bounded hermitian operator on LMΦ

which is not a L2 space, then one of the following three cases holds:
(1) lMΦ is a Hilbert space.
(2) lMΦ contains a two-dimensional Hilbert space but is not a

Hilbert space.
(3) There is a fixed real valued function hel^ such that Hf=

hf for all fe LMΦ and \\H\\ = \\h ||TO.

Proof. By Lemma 12 and Lemma 11 it is enough to consider the
restriction Hf of H on lMΦ. If lMΦ does not have a two-dimensional
Hilbert subspace, the H' is real diagonal by Lemma 6 and case (3)
follows.

REMARK. Let μ be a σ-ίinite measure and Ω — U?=i ®n where
{Ωn} is a fixed increasing sequence of measurable sets with finite mass.
Suppose that for each n, Pn is the projection onto the subspace Xn

of functions restricted to Ωn. Hn = PnHPn is hermitian. As LMΦ has
absolutely continuous norm, we have for g e LMΦ \\ Hg — HP%g \\ —• 0 as
n-+ oo, and \\Hg - Hng \\ ̂ \\Hg- HPng \\ + || HPng - H%g ||, so that
Hg — lim% Hng. Thus we show that Theorem 4 holds for ^-finite
measure as well.

Let Lb

MΦ be the set of all feLMΦf]Loo. L^ forms a *-algebra
under the ordinary conjugation with the set of elements {χ%: χn charac-
teristic functions of Ωn} satisfying \imnfχn — f for all feLMΦ. L\IΦ

contains this sequence. Suppose that lMΦ is not a Hilbert space and
contains no Hilbert subspace. Then the following is true.

LEMMA 13. Suppose that U is an isometry of LMΦ. Then there
is a ""-isomorphism p on L^ such that Ug = uρ(g) for all g e Lb

MΦ,
where u Φ 0 a.e.
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Proof. By Theorem 1 and Theorem 4 we have for all g e Lb

MΦf

limn p(g)Uχn = Ug. It is enough to show that Uχn converges a.e. to
a nonzero function u. Since p is an isomorphism, it sends characteris-
tic functions onto themselves. Define Tω = ω', where p(χω) = χω,.
For every n ^ 1,' UHXnU~l - HHχ%) = Hzτo%, so that U(χn) = χTΩnUχn.
That is Uχn = 0 on £? — T£?%. Similarly U(χΩn_Ωm) vanishes on
J2 - T(Ωn ~ΩJ = Ω-(TΩn- TΩm) for 1 ̂  m ̂  n; therefore E7χn = C/χm

on T ^ and lim% Z7χw = % exists a.e.

Assume that ω is a measurable subset of TΩ such that 0<μ(ω)<
oo and 16 — 0 on ω. For every Λ e Lh

MΦ, Uh — up(h) = 0 on ω. L5/Φ is
dense in L^φ, so that with every feLMΦ, there is a sequence {/J in
L5/α> such that /»--*/ as ^ - ^ o o . Since the norm is absolutely con-
tinuous, there is a subsequence {fnk} such that ϊ//nΛ —> Uf a.e. Thus
Uf=0 on ω. But Z7 is onto and χω is in the range of U. Hence u
is nonzero a.e.

DEFINITION. A regular set isomorphism of a measure space (Ω, Σ, μ)
will mean a mapping S of Σ into J? defined modulo set of measure
zero, satisfying: (i) S(Ω - ω) = SΩ - Sω. (ii) S(U?=i <o%) - Uϊ=i Sα>,
for disjoint sets {ωn}. (iii) μ(ω) = 0 if and only if μ(Sω) = 0.

LEMMA 14. T, defined as in the proof above, is a regular set
isomorphism of the underlying measure space; and it induces a linear
transformation on LMΦ{f{.)~+f{T~1.)).

Proof. It is routine to show that T is regular. Let feLMΦ be
a ^ / < b on a measurable set ω and zero elsewhere. Assume that
{fn} is a sequence of step functions whose values lying between a and
b on ω and zero elsewhere, such that fn—+f as w--» oo. Then Ufn =
up(fn) converges to 17/ = w/0(/) as n —• oo. There is a subsequence
up(fnk) converging to up(f) a.e. Since w Φ 0, p(/njfc) —• /0(/) a.e. We
denote the step function p(fnj) as fnk{T-\). Then a ^f%k{T-1.) < b
on Tω; p(f), the a.e. limit of fnk(T~\), has the same property. We
shall let this function be g. For any nonnegative function / of LMΦ1

let ωn = {x: n ^ f(x) < n + 1} and /w be the restriction of / to ωn.
Then gn is n^ gn < n + 1 on !Yow and zero elsewhere. Since T is re-
gular, we can compose these functions to be a function g; and denote
it by f(T~~1.). Extend this definition to negative and then complex
functions. The mapping so defined is clearly linear.

Combining the results, we obtain the following isometry theorem:

THEOREM 5. Let U be an isometry from a reflexive Orlicz space
LMΦ = UMΦ + 1MΦ onto itself. Suppose that LMΦ Φ L2, then U can be



ISOMETRIES OF CERTAIN FUNCTION SPACES 245

decomposed into UΊ + U2 where Uι and U2 are isometric on UMΦ and
lMΦ respectively. Moreover one of the following three cases holds.

(1) lMΦ is a Hilbert space.
(2) lMΦ is not a Hilbert space but contains a two-dimensional

Hilbert subspace.
(3) There is a regular set isomorphism T of the underlying

measre space and a fixed a.e. nonzero function u such that

Uf(.) = u(.)f(T~\) for all fe LMΦ .

Proof. We first show that U decomposes. For all real function
h e L», U~ιHh UL'MΦ s L'MΦ by Lemma 12. Hence Hh UL'MΦ S UΠMΦ. If
UUMΦ §£ L'MΦ, then there is a characteristic function χ of some atom
{a} such that Ug = χ with some g in L'MΦ. Without loss of generality
we may assume that g is a characteristic function of a nonatomic set
ω. For two disjoint sets ω', ω" and χ', χ" their characteristic func-
tions, || U(χ' + aχ") || = || Uχ' + aUχ" || = || χ' + χ" || where | a \ = 1 and
o) — ωf U <o". Thus C7χ' and Uχ" cannot be both nonzero at {a}. Since
ω is nonatomic, we may replace it by subset of arbitrarily small
measure; Ug = 0. This contradicts the fact that χ Φ 0. Hence UL'MΦ £Ξ
L'¥Φ; simiarly U~ιUMΦ S I # ^ . U{L'MΦ) = L\ίΦ. It follows that U 7 ^ S Zi¥ί>

with an application of Lemma 12.

Now if lMΦ is not a Hilbert space and does not contain a two-
dimensional Hilbert subspace, then Lemma 2 and Theorem 4 imply
that H is a hermitian operator on LMΦ if and only if it is of the form
as stated in case (3) of Theorem 4. Hence case (3) holds for all g in
Lh

yiΦ by Lemma 13 and Lemma 14. Since L\IΦ is dense, the proof is
thus complete.

As a special case of the theorem, we record the following result
as a corollary.

COROLLARY. With the conditions as before and assume that the
atoms in the measure space have equal mass, either

(1) There is a regular set isomorphism T and a fixed a.e. non-
zero function u such that Uf(.) = u(.)f(T~\) all f in LMφ, or else

(2) Uι is of the form as stated in (1) (T and u in this case
are defined only on the nonatomic part) and U2 is unitary on lMΦ

which is a Hilbert space.

REMARK. UX is always characterized in (3) of the Theorem 5 if
LMφ is not a L2 space.

5* An example* The following example shows that the Theorem
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3 does not hold if the symmetry condition is not present. It also
shows that isometries other than the type in Theorem 5 occur if the
atoms in the underlying measure space have unequal mass.

Let (£?, Σ, μ) be a measure space with contains two atomic sets
mι and m2 each with measure 16 and at least one other measurable

ψ(t)dt where
o

(2ί 0 < t < 1/2
ψ(t) = ^~

the obtained LMΦ is not a Hubert space. Specifically the two dimen-
sional subspace on {m2, m3} is not a Hubert space, because the convex
curve {(y, z): 16Φ(\y\) + Φ(\z\) = 1} is not an ellipse. Now write LMΦ =
lλ + l2 where l2 is the two dimensional space of functions vanishing
on Ω-im^ m2) and l1 of those being zero on {m19 m2}. Define U= UΊ+ U2

where U2 on l2 in matrix form is

1/2

1 1

and UΊ is identity on llm Then for any LMΦ such that | | / | | = 1, we
have 0 rg {/(mj |, |/(m2) | g 1/4, so that

,) |) + Φ(\ Uf(m2) |)} + ( Φ(\ Uf\)
JO—{m1.m2}

I /(m2) |2} + [ Φ
JΩ—[m1,m2}

Therefore || Uf\\ = || / || = 1. C/ is isometric.
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