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SOME THEOREMS IN FOURIER ANALYSIS
ON SYMMETRIC SETS

R. SCHNEIDER

Let R be the real line and A = A(R) the space of continuous
functions on B which are the Fourier transforms of functions
in LY(R). A(R)is a Banach Algebra when it is given the LY(R)
norm, For a closed F' S R one defines A(F’) as the restrictions
of f€ A to F with the norm of gc A(F') the infimum of the
norms of elements of A whose restrictions are g. Let F, S R
be of the form

F, = {37 er(g): ¢; either 0 or 1},
This paper shows that if
S r(@+Dr(E)R < o and 3 (s(F+1)/s(7)) < o

then A(F,) is isomorphic to A(F;). We also show that, in some
sense square summability is the best possible criterion, In the
course of the proof we show that F', is a set of synthesis and
uniqueness if > (*(7+1)/r(5))? < co, This is almost a converse
to a theorem of Salem,

We shall also consider sets E, & II7 Z,.;, of the form
E, = {x:5" coordinate is 0 or 1} .

The E, will have analogous properties to the F, that will depend on
the m(j).

The original work on isomorphisms of the algebras was done in
[2] where Beurling and Helson show that any automorphism of A
must arise from a map @ by fop where p(x) = ax + b. For restric-
tion algebra the situation is more complex. In [5] it is shown that
an isomorphism between A(F,) and A(F,) of norm one must be given
by f— fop where ¢: F, — F, is continuous and e is a restriction to
F, of a character of the discrete reals. Further if F, is thick in
some appropriate sense the character is continuous. However, McGehee
[11] gives examples of F, and F, for which the restriction algebras
A(F,) and A(F,) are isomorphic under an isomorphism induced by a
discontinuous character. Meyer [12] has shown that if

2270+ D/r@G) < e and 3 s(@ + 1)/s(f) <

then A(F,) is isomorphic to A(F,). For appropriate »(j) this is an
example of an isomorphism induced by a @ with ¢ not even a dis-
continuous character. He also showed that under these hypothesis F,
was a set of synthesis and uniqueness.
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176 R. SCHNEIDER

DEFINITIONS AND NOTATIONS. For background material and no-
tation not defined here we refer the reader to [7] and [15].

In this paper G will always be a locally compact abelian group
with dual group I". If g and 7 are elements of G and I" respectively,
the value of the character v at the point g will be denoted by (v, g).

When we have a sequence of compact abelian groups G, we shall
denote their direct product (complete direct sum [15]) by IIG,. If
I'; is the dual of G;, then the direct sum [15] 2I; is the dual of /1G,.
The j** coordinate of elements g of /IG; or v of 3I"; will be denoted
by g, and v;. One has:

(v, 9) = H(7j7 gj)

where all but a finite number of elements in the product are 1.

We shall be dealing with the following basic groups :

(i) The multiplicative circle group will be denoted by T. T
shall be identified with the unit interval by ¢ [0, 1) — exp () where
exp (v) = e, The additive group of integers Z is the dual group of
T. If x<][0,1) represents an element of 7 and ne Z then (n,x) =
exp (nx).

(ii) R will denote the additive group of reals. R is isomor-
phic to its dual under the pairing given by

(¥, ) = exp (zy),

z,yeR.
(ili) Z, for n = 2 will denote the additive group of integers
mod m. Z, is also isomorphic to its dual under the pairing given by

(r, 8) = exp (rs/n),

Y,s€Z,.

Any nonzero regular translation invariant measure on a locally
compact abelian group G is called a Haar measure. If y, and y, are
Haar measures on G and its dual group I" respectively, the Fourier
transform f of f in LXI", pt;) is defined by

fa) = |, f0)0, e

for ge G. The inversion theorem gives

|, f@6r —a)dps = 1o .

We shall normalize g, and g, so that C =1. If G is compact we
can place p,(G) =1 and if I" is discrete p(v) =1 for yer’. LYG)
will denote LY@, p;) for a normalized Haar measure.
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For f, he LI") define the convolution f.k by
penen =\ 70 = b

In [15] it is shown that L}I") is a commutative Banach algebra
under convolution and for g G

N\ PPN
fxh(g) = fl9h(g) .

We denote by M(G) the space of all regular, complex valued
Borel measures on G of finite total variation. In [15] the Fourier
transform f# of pe M(G) and the convolution pgxy of measures in
M(G) are defined. It is shown that M(G) is a Commutative Banach
Algebra under convolution and

/\ A A
px(Y) = ((7)-¥(7)

for vel.
Let A = A(G) be defined by

AG) = {f: fe L)} .

A(G) is a Banach algebra under pointwise multiplication and with
norm || - ||, defined by ||f|ls = || fllzun and is isomorphic to L'I")
underx. For a closed set £ = G define the restriction algebra

A(E) = (J|E: f e L{I')}
with norm || - ||4 defined by
| 2llaer = inf {| Flla: FIE = B} .
A(FE) is again a Banach algebra under pointwise multiplication. Set
IE)={f:fIE=0 and feL\I')}

A(E) can be identified with the quotient algebra A(G)/I(E).
The dual space of A(G) is denoted by PM (or PM(G)). Its ele-
ments are called pseudomeasures. Each Se PM can be identified

with a function §eAL°°(I“) as follows. The action of SePM as a
linear functional on fe A(G) is given by

(s, 7) = | soSenap, .

We shall denote by || S|/, the L=(I") norm of S. Thus PM under
I| * llpar 18 identical with L=(/") under the sup norm.

Since A(F) is the quotient of A(G) by I(E), the dual of A(E)
consists of those Se PM which annihilate every function in I(E).
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We shall denote this dual of A(E) by N(E). If N(E) is the set of
all Se PM with supp SS E [7,p.161], then E is said to be a set
of synthesis. The set of all xze M(G) with support in E we denote by
M(E). M(E) can be considered a subspace of N(E) with (z, f) =

Fdg. The two definitions for 2 coincide.

If G, and G, are locally compact abelian groups and E, and E,
are closed subsets of G, and G, respectively we say that @: A(E,) — A(E,)
is an isomorphism into if and only if it is an injective algebraic
homomorphism and is continuous. If the range of @ is dense in
A(E,) there exists a continuous ¢: E, — E, with 0f = fop [9]. We
always denote the adjoint of @ taking N(E,) into N(E, by 0*.

Symmetric sets in R are defined as follows. For any sequence
r={r@y):j =1, -.-} of positive reals with the property

by r(J) < r(k — 1)

we define the subset F', of R by
F,. = {i e;r(j): ¢; either 0 or 1} .
1

The representation of the elements of F, as an infinite sum is unique.
For each positive integer k, the subset F'* or F, is defined by

Fi = {zk‘, e;r(j): ¢; either 0 or 1} .
We define the subspace N,(F',) of N(F',) by
N(F) = U M(FY .

For any given sequence m = {m(j):j = 1,2, ---} of positive inte-
gers we define the subset E, of I1;Z,; by
E,={x:xecllZ,;;v; either 0 or 1}.
For each positive integer k the subset E% of E, is defined by
Et ={x:xcE,;x; =0if 57 > k}.
Define the subspace N,(¥,) of N(E,) by

N(E,) = U M(ES) .

For » and m as above there is a standard homeomorphism
@: B, — F, which takes x — Sx;7(j). Let the inverse of ¢ be called

P,
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We shall frequently write E for E,, E* for E:, F for F,, and
F* for F'* when the respective sequences are clear.
Throughout this work ¢; will always denote a quantity that may

take on the values 0 or 1.

1. The symbols » and m shall always denote {r(5):5 =1,2, -}
and {m(j):j =1, 2, ---} respectively. F, and E, will then represent
the previously defined sets with ¢: E,— F, and «:F,—FE, the
standard homeomorphisms. The maps @ and ¢ induce maps between
N,(E,) and N,(F,) which we shall again denote by ¢ and . The maps
have the form

() ({p@)}) = p({z})
for 1 e N(E), and
(@)} = p{x})

for e N,(F).
If ® =<e,++¢,0,---> is an element of E% and pe M(E*) set

a(e, +-+, &) = p{x}) .

If y = 2\ e;r(j) is an element of F'* and ve M(F'*) set
b(su c Yy ek) = v({y}) .

We see that

| ¢llpar = sup |3 a(e, «+«, )50+« &ik|
Epeees I

where &; is an arbitrary m(j) root of unity and the sum is taken
over all combinations with ¢; being 0 or 1. Similarly

191w = sup | S b(es, -, <) exp (w32 67 |

where x ¢ R.

For any pe N,(E) we define

Dlae -+, &) exp (3 &;0;)

[| ¢ ]lxax = sup
01,0-0p
where 0, R. Define ||v|yx for ve N(F) by

Z b(sly ] sk) €xp (Z 8103')

[[v]lyax = sup
0501
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It iS Clear that H #HPM _S__ HHHMAX and ” v”PM é || p“MAx- FOI‘ any
standard homeomorphism ¢ we have

ot pwlll o = 11 2 beax/ 1 211 pae
Similarly

H "I’HHPM/H”HPM = HVHMAX/H vHPM .

One should note that if » is a sequence of reals independent mod 1
over the rationals, Kronecher’s Theorem [4,p.99] implies that
¥ lwax = [|¥ [[pxr for ve N(E,).

In order to achieve isomorphisms between certain quotient alge-
bras we shall first study the ratios || ¢||vax/Il 22 |[rsr and || ¥ {|yax/l| ¥ || par-

LEemMmA 1.1. If 3 (1/m(4))* < o then there is o C depending
only on m so that ||t ||uax/|| s < C for all monzero pc Ny(E,).

Proof. For each k, since M(E*) is finite dimentional, there is a
smallest constant A(k) so that || g¢||vax/ll £¢|lesr < A(k) for all nonzero
reME*). We shall show that there are constants C, with 7IC, < o
so that Ak)/A(k — 1) < C,.

The quotient [ f¢|[py/| ¢|lvsx is equal to

sup
(1.2) i
Szupl 2 [(CL(SU ey &y 0) + a(eu LR l)ZIv)(Zil e Z?clc—Tl)] ‘
i Ve

Z [(a(sly ey €y 0) + a(elv e &gy I)Ek)(gll M Sirk—_ll)]

¢j

where &; are m(j) roots of unity and Z; are complex numbers of
modulus 1. By a division and multiplication || g£]|px/]] £¢]lxax becomes

2 [(a(...’ O) -+ a(..., 1)5»&1 [ ;k_—ll]

sup
&

sup| S [(a(-++, 0) + a(-++, DENZ7 -+ Zitz]|

(1.3)

sup| 5 [(a(+++, 0) + a(- -+, DEZ -+ Zies]

sup| S [(@(-++, 0) + a(++, DZ)Z1 -+ Zgia]|

The factor used in division and multiplication in (1.8) is nonzero. If
it were zero || ¢£||p; would be zero and hence /¢ would be zero. The
fraction on the left of (1.8) is greater than or equal to 1/A(k — 1).
Choose z; = y; so that the maximum of the denominator in (1.2) is
achieved. The fraction on the right in (1.8) is greater than or equal
to
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1.4 1+ S fale -, (& — yo)yit - - yikq]
9 l Si(a(e«+,0) + a(--, Dy )yt -« » yirs1]

If Sia(---, )yt - yikyr is zero (1.4) is equal to one. Otherwise set
e = &,/y, and (1.4) is equal to

e® —1
[ Z[a’('°'y0)yil"'y7ck—_11] ]+1
Yo 2 la(e - -, Dyit - - yikq!]

However, in order that the choice z; = y,; give || f¢||usx, the quotient

(1.5) 1+

a0yt - - - yiky?
Y 20, Dyt - - - ikt

must be a real positive real number. Call that number s and (1.5)
becomes

(cosx — 1) + ¢sinx

1
+ s+1

which is greater than or equal to
1— 22,

For an appropriate &, |x| is less than or equal to 27/m(k).
From the above calculation we get

(A — 27°/(m(k))*)
Ak — 1)

e/l 22 1ax 2

and therefore

A(k) < A(k — 1)-(1 + (mf—k))

for some absolute constant C*' and for all m(k) sufficiently large.
Since > (1/m(J))* < o the theorem is proven.

For the symmetric sets F, we shall need the following lemma
similar to Lemma 1.1.

LEmMMA 1.6, Suppose that 3, (r(J + 1)/r(7))* < 1/24. Choose a
real number x, and define the interval I to be

k .
{o:12 — ol < 2(2 1)}
There is then a constant C, independent of k and x,, so that

[| v hax/sup | 9(x) | < C,, for all nonzero ve M(F*%) .
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Proof. Fix k and choose a nonzero v € M(F'%). There exists real
numbers 6,, ---, 6, less than or equal to one, for which

1Y lax = [ 32 0(es, -+, &) exp (3 6;6) | .

Define the functions Y,, --+,9,,9, =V on R by
A i=l1 k .
V(x) = > [b(sl, <., &) €XP <Zl, e,-ﬁ,-) exp x(%j, s,-r(g))] .
Let us estimate sup,.,, | Di_.(2) |/|| v [lxax Where
k
L={o:lw—wl < X @ran}

There is an x; within (1/r(k)) of x, for which x{-r(k) = 6, (mod 1).
Pick x, within 1/r(k — 1) of 2 so that z.r(k — 1) = 6,_, (mod 1).
Then

sup | D@ /11 ax = D@ /112 [ax

zely

As a function of x,9,(x) is the Fourier Stieltjes transforin of a
measure v, having support in [0, (k¥)]. Now,

D@ 112 lhesx = |94 /] Dala) |
LB D) @—al)
B R A W S

|D, > has a maximum at x;. Therefore, if D, = f + ig, with f and ¢
real, f-f’+ g-¢9’ = 0 at z{. But, at «f,

Db ="+ g |f + g
= +99 +iUfg — 'Ol f+ o,

which is purely imaginary. Therefore,

Vi) (@ — )

[Dps(@) I/l Y lax = 1 — ﬁk(%) 2

If a measure ¢ has support in [0, 6] a theorem of Bernstein [1, p. 138]
shows that for all «
[Z() | <ol ¢tllon
and hence its nth derivative 2 has
| 2™ (@) | < 0™ || £t |lpar -
Since vy, has support in [0, (k)] we obtain

[Dea(@) Y [hax 2 1 — (r(k)/r(k — 1)) .
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In effect, we have just shown that there is an «, eI, for which
Y | heax/| Dica(@) | = 1+ 2(r(k)/r(k — 1))° .

Assume that for some 7 < k — 1 there is an

el = {x: % — | < kzi‘,‘(z/r(z»}

for which
19 lhessd 1 Pust) | = T (L + 2400 + Dyr))) -
We shall show there is then an z;,, € I;,, for which

[ [heax/| Die a0 (@520 |

< L @+ 2400 + D)) -

Consider S = {x: | — ;| < 1/r(k — ( + 1))}. If |D,_;| does not have
a relative maximum in S greater than or equal to |V,_;(z;)|, then
|D,_;| would be greater than or equal to |¥,_;(x;)| on some interval
in S of length equal to 1/r(k — (7 + 1)). However there would be an
%;., in the interval for which z;,,-7(k — (7 + 1)) = 0,_(;+» (mod 1) and
hence Y,_;.,(2;4) = Y,_;(®,;.,), which implies the induction step. Let
us assume therefore that there is an 2 where

(1.7)

o — x| = Ur(k — (7 + 1)) + gk;.z/y(l))’

|D_j(®}) | = |De_j(®;) | and at which |[J,_;| has a relative maximum.
As Dbefore, choosing z;,, within 1/r(k — j + 1) of 2} and satisfying
vk — (3 + 1) = 0,_;1) gives

[ D1 e0(@50)/Prf(@5) | = | D j(@s40) D (5) |
(1.8) | D)) Ny, — %) .
=2 5w 2

V._; as a function of x is the Fourier Stieltjes of a measure v,_;
having support in [0, 2r(k — j)]. Since ||y, ;|lpx = [[V]|uax, the pre-
viously stated theorem of Bernstein gives

D) | < @r(k — )" 1|V [lwax «

However

9l < [ IT @+ 2400 + Dr@)) | % [9es(e5) |

l=k—j
< ez4£(r(l+1)l“”)2°[ ak—j(m;‘) |

< 3Dy (@) |
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Since J(r(l + 1)/r(l))* < (1/24). Therefore in (1.8),
[ Dihjirn (@540 D s(@) | = 1 — 12(r(k — J)/r(k — (2 + 1))

and hence (1.7) is true, finishing the induction.

Lemma 1.6 in its present form is an adaptation and extension of
a lemma of Meyer [12]. Previously we had much more stringent
conditions on the #, to arrive at a similar conclusion to Lemma 1.6.

To utilize the Lemmas 1.1 and 1.6 to obtain isomorphisms of re-
striction algebras we shall introduce some functional analysis.

Let V represent a Banach Space and V* its dual. For » > 0 let
B, ={t:teV*|t|]|<7r}. A set O< V* is said to be open in the
bounded topology on V* if and only if O N B, is open in the relative
weak* topology of B, for all r > 0. For a distribution of the bounded
topology the reader should consult [6, p. 427].

LEMMA 1.10. Let V, W be Banach spaces with duals V* and
W*. Let KC V* be a weak* dense subspace of V*. Suppose that
T: K— W is linear and continuous when K has the topology induced
by the bounded topology on V* and W* has the weak topology. Then
there exists a bounded linear tramsformation S: W —V for which
T = S*/K.

Proof. For each we W, define the linear functional T, on K by
T.(t) = Tt(w) .

Each T, is continuous in the topology induced by the bounded topology
of V* which is a locally convex topology by Corollary 5, page 428 of
[6]. Hence by the Hahn-Banach theorem there exists an extension
T, of T, to all of V*, continuous in the bounded topology of V *.

By Theorem 6, page 428 of [6], T, is continuous in the weak*
topology on V*. Hence there exists an element ve V such that
T.(t) = t(v) for all te K. Since K is assumed weak* dense in V'*,
the element v is determined by w. Define S: W— V by S(w) = ».
S is linear. Since K is weak* dense S is closed. Therefore by the
Closed Graph Theorem S is bouned. If te K,we W

S*t(w) = t(S(w)) = Te(w) ,
which completes the proof.
It is clear that N,(¥,) and N,(F,) are weak* dense in N(X,) and

N(F',), respectively. By studying the continuity of the standard maps
between N,(E,) and N,(F,), we shall be able to use Lemma 1.10 to
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obtain isomorphisms between A(F,) and A(F,) for certain classes of
sequences m and 7.
Choose y£e N(E). For each k we define an approximating measure

Y, in M(E*) by
t{e}) = yZ‘b 2({y})

where xe E* and D = {y:ye E and y; = z; for j < k}. Let
I'*={vive3Zm(j)) and v; =0 if j > k}.
If veli,(v) = (7). It is easy to see that

[l 2 llow = supe | () | -
To each e M(E*) we associate the measure N in M(E*) defined
by
0 if x,=0
N({}) = . .
Mz} if oz, =1
It is not hard to see that
N ey = 20N ey -

Choose ye N,(F'). For each k define an approximating measure
v, in M(F'*) by

vi({eh) = >, v({y})
yeD
where ¢ = >fa;7(j) and D = {y:y = Ye;7(j) and ¢; = «; for j < k}.
To each Be M(F'*) we associate the measure B’ in M(F'*) defined
by
0 if ©= isjr(j) and ¢, =0
B'({x)) = . .

1 if 2=3e7(j) and ¢, =1

We are now ready to prove the following theorem.

THEOREM 1.11. If J(1/m(j))* < o and S(r{ + 1)/r(§))* < o then
A(E,,) is isomorphic to A(F,).

We shall break the proof into two lemmas.

LEMMA A. Let F, be any symmetric set. Let Y(1/m(j))* < oo
@: E,—F, the standard homeomorphism. Then there is an 1iso-
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morphism into @: A(F,) — A(E,) given by
O(f)=fop, [FeAF,).

Proof. We shall study the continuity properties of
@: N(E)— N(F) .
For f e A(F') define
U,,={v:veN(F) and |[(v, f)| <¢}.

To establish that ¢ is continuous from the bounded weak* topology
of N,(F) to the weak* topology of N,(F') it is sufficient to prove
that the zero element of N(F) is an interior point of ¢ (U.,) (i.e.,
that ¢ is continuous at 0). This follows at once if we prove that
given a and &, there exists d, k such that if for pe N(F)

(1.12) [ 2tllpr <@ and |f(v)|<é for vel™
' @(y) is an element of U.,.

In view of Lemma 1.1 (1.12) follows if we can show that given
a,¢e, and M then there exists J, k such that for pe N (&),

[ #1lpxr =@ and /2(”/) <o for vyerl*
(1-13) then

PN
lp(p)(x)| < e for |a|< M.

P S
We first estimate | p(¢) — o(pt)| for pe M(E*).
S S s—1 P T
lp()(@) — Pt (@) | = 2. Pt ) (@) — P(12)(@) |
= 5 lexp (—ar( + 1) = 1|+l @(t£) Lo -

By Lemma 1.1, for any s

o~ ~ o
|P()@) — p(p)(@) | = ArCl 2 || fellpa 35 7(9) -

For p with || ¢t]|px = a, pick 6 < ¢/2C where C is the constant of

Lemma 1.1 and choose k so that 4nCMa 35, 7(j) < /2. If [f(v)| < &
for vyeI'™*, then || ¢ ||p» < 6 and by Lemma 1.1 || p(z4) |lpx < /2. If

PN ~
|| = M, then [p(p)(x) — p(t)(x) | < &/2 so

PN
lp(@) | <e for |z|<M.

The conditions of Lemma 1.10 are satisfied so ¢ = @* for some
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linear @: A(F) — A(E). For pe N(E) and f ¢ A(F)
@f, 1) = (f, () -
Therefore if ©e s E*
2f(x) = flp()) .

Since @, f and @ f are continuous, @ is the linear map wanted.

LEMMA B. Let F, be a symmetric set with X(r(j + 1)/r(7))* < oo.
Let +:F,—E, be the standard homeomorphism of F, with some
E,. Then there is an isomorphism into ¥: A(E,) — A(F,) given by

U(f)=feov, [feAE,).

Proof. There is an [ so that 3., (#(J + 1)/r(Jf))* < 1/24. F is
a union of 2' sets which are translations of the set F' = {x:2 =
S er(g)}. It is therefore sufficient to prove the theorem for F".
For convenience, assume F, has the property > (r(7 + 1)/r(J))* < 1/24.
We shall show as in Lemma A that «: N,(F,) — N,(&#,) has the re-
quired continuity properties to be the adjoint of a continuous linear
map ¥: A(E,) — A(F,) satisfying T(f) = f o

Using Lemmas 1.6 and 1.10 as in Lemma A, it is enough to show
that if a,&, M are given, then there exists ¢, x, ---, 2, so that the
following holds.

If yveN(F), ||V|lpx <@ and P(z;) <o for j=1,.--,¢ then

17O | < & for ve I,
Choosing v e N,(F') with ||V||,» < @ and estimating |J — D, | gives

19(@) — Du(@) | < 31 [9,1(2) — D,;(@) |

Me M-

=3 lexp(—ar(y + 1)) — 1| [[Yiallpw -

I

Lemma 1.1 and 1.6 show that the PM norm on N,(F,) and N(E,)
are equivalent when 3 (1/m’(j))* < . Hence

19@) — 9u(@) | < 472C.C | v [[x 3, 7(9)
=8r|x|CCark +1).

An easy consequence of the condition X(»(j + 1)/7(5))* < 1/24 is that

lim 8C..C.a. (51‘1 2/r(j)).r(k +1)=0.



188 R. SCHNEIDER

Pick k£ = M large enough so that
&TCLCa(i 2/7( j))r(lc + 1) < ¢/4C, .

Then
1.14) [D(x) — Du(x) | < €/4C,
for |x| < 3¥(2/r(j)). By Lemma 1.6 there is an x, with

k
7] < 3 @/r())
so that for v, e M(F'")

Vi ax/l Da@o) || < C
By a theorem of Bernstein [1, p. 138]

|9ua) = 9u(w,) | < Cu| D@ | (7)) |2 — ] -

Therefore, if |z, — «,| < 1/2 »(4))-C,
(1.15) Ve hax/| D) | = 2C,

Choose for ¢ =1, ---,t; &; with |z;| £ 3.¥(2/r(J)) so that for every x
with || < 338 (2/7(j)) there is an «; with |x — w;| < 1/2(27(J))-C..
If |D(x;)| < ¢/4C, for x;,5 =1, ---, ¢, then |D.(z;)]| < ¢/2C, by (1.14),
and by (1.15) || v, |lwax < €. Consequently, || (V,) ||px < €. Since k> M
we see that Iajr/(;)(v)l < ¢ for yerl™.

As in Lemma A, the continuity conditions of Lemma 1.10 are
satisfied and

T(f)y=Ffoy.

Theorem 1.11 is an immediate consequence of Lemmas A and B.
Meyer [12] has proven that if XY(r(j + 1)/7(J)) < = and

2(s(5 +1)/s(7)) < oo

then A(F,) = A(F,). Lemmas 1.6 was an analogue and improvement
on his main lemma which allowed us to obtain the theorem with

square summability.
If ry(j) = {¢7-27"} then every A(F,) and A(E,) with

2(r(f + D/r(5)) < e and J(1/m(j))* < oo
is isomorphic to A(F',). The isomorphisms are given by

f—feop
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where f is in an appropriate restriction algebra and ¢ one of the
standard homeomorphisms. We shall call an isomorphism between any
two restriction algebras induced in this manner a standard isomorphism.
If A(F,) or A(E,) is isomorphic to A(F,) by standard isomorphisms,
F,. or E, will then be said to belong to the class M,. One should
note that for pce NI(FTO)’ et llpw = I 2 | lwaxe

Define sets of multiplicity and uniqueness as in [7,p.52]. In
[7, p.100] it is shown that if a€[0,1/2) one can construct sets F', of
multiplicity with »(5 + 1)/»(j) = 0(;7%). The next theorem shows, in
particular, that if »(5 + 1)/»(j) = 0(57*) with a e (1/2, ) then F, is
a set of uniqueness.

THEOREM 1.16. Suppose that S (r(3 + 1)/r()))* < eo. Then F, is
a set of synthesis and there is a constant B so that for all Se N(F,)

IS llew < Blim | S(@) ]| .

Hence F', is a set of uniqueness.

Proof. Choose I so that >, (r(7 + Dr(7))? < 1/24. Then F' is a
union of 2' disjoint sets of the form a(¢) + F'(I) where ¢ = {¢,, ---,¢,>
and F(l) = {x:x = 30, 6;7(9)}. We can find 2' functions ¢, in A(R)
where . =1 on a(¢) + F(I) and 0 on the other sets. Let SePM
with support in F.. S = Y..S and hence if ¢.Se N(a(e) + F(l)) for
each ¢, Se N(F,). Moreover, for some ¢ the inequality

@S llenw = 27 Sllpa

must hold. If || S|py > Blim|S(x)| we see that

2°'B

N
lim | p.S() | .
e L4

oS llen =

We may therefore assume that X(r(j + 1)/7(5))* < 1/24.

Lemma 1.6 and [12, Proposition 2.2.3] imply that there is a
natural isomorphism T from A(F'* x [—2r(k + 1), 2r(k + 1)]) in A(R X R)
to A(F: + [—2r(k + 1), 2r(k + 1)] with norm

T= (- atr(k + D-(SHLrE)~

and || T'|| =1, where ¢ <1 and is independent of k. For large
enough & the norm is smaller than some constant B,. For each ze¢ R
consider the funtion f, e A(F* + [—2r(k + 1), 2r(k + 1)])

fu(y) = exp (vy) — exp (x-Jie;r(j)) for |y — Jigr(d)| = 2r(k + 1) .
Its image in A(F'% x [—2r(k + 1), 2r(k + 1)] is
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FuAt, y) = exp (xt)-(exp (xy) — 1) .
Then
|| fa ”A(F]ﬁ+[']) < B, Hfa Nawksrn = B,|x|r(k+1).

Define v, € M(F'*) by
. /\
v({Zer(N) = (S i):’l‘ejr(j)+[~])(0) .
where S is a given element of PM with support in F,. Then for
sufficiently large k&
|S@) — 9u(@) | = (S, £.)| < Bo-|@ ||| Sllpu-r(k + 1) .
By Lemma 1.6 we have that
u(x) — S@)Va e R; lim || 0, || = C || S ] pr

and hence Se N(F,) and F, is a set of synthesis. R
For convenience assume that || S|/, =1 and |S(0)] > 1/2. Sup-
pose that | S(z)| < e for x > x,. Pick a constant %, so that

(@, + 4-217r(5))B, || SHPM°T(k +1)<e
for £ > k,. Then if k > k,
| D(2) | < 2e

for all z satisfying |2 — 2z, | < 2¥@2/r(j)) where z, is the center of
the interval [x,, 2, + 42%(1/r(j))]. Since | 9,(0)| > 1/2 Lemma 1.6 shows
that

e > 1/4C,;.

Theorem 1.16 is essentially methods of McGehee and Meyer utiliz-
ing Lemma 1.6.

We next examine the sets E,. By [15,p.166] they are sets of
synthesis. If m(j) =2 for all but a finite number of j, E, has
positive measure and there is an S e N(E,) with inf, sup, ..., | S()|= 0.
The following is a converse.

THEOREM 1.17. Let m(J) be a sequence of integers with infinitely
many m(j) = 3. Then there is a constant C so that for all Se N(E,)

| S ||px < Cinf sup | S(7) |
T pe~T

where T is any finite set in XZ, ;.
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Iiroof. Let Se N(E) and assume for simplicity that || S|y =1
and S(0) > 3/4. Let {¢,} be the measure defined by

e = (ST =)o
e Im)
where x = {&;,+++,&,0,0,--->. Let v¢ >, I, ;) be that element with
. (0 if g~
A/jgzl if j=s"
Then for 1 <s=<k
2u(7?) =e(;=0a(€(1), .-, (k)
+ (21 a(e(l), - - -, e(k)) exp (1/m(s)) .

e(s)=

If we call Zs(s)=0 a(e(l)i ] E(k)) =«
S a(e(l), +--,e(k) =B then 2,0)=a+ 8.

e(s)=1

It is easy to see that « <1 and 8 < 2. Therefore

[ 2u(v*) — £(0) | < 2] exp (1/m(s) — 1) |
< An/m(s) .

Therefore, if m(s) > 8«
27| > 1/4.
Let ¥ €3I, be the element with

o [0 if j#s
T m(s) =1 if j=s"
Then
2:(7) = a + B exp (—1/m(s))
and hence

| 2u(v) — Bu(7°) | = 28 sin (27/m(s)) .
If 3 < m(s) < 87 and | (") | < (1/100) then 8 > (1/3) and
| 2(7") — B(3) ] > 1/50

and hence | ,(7°)| > 1/50. Therefore we may conclude that for all &
either | Z,(v*)| or IﬁAk("y’s)l is greater than 1/100 provided m(s) = 3.
On I'*, i1, and S are identical. Suppose there is a ¢ so that
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(1.19) 1S(v) | < 1/200

for ye¢I". Pick a k>t so that there is an s with k> s >t for
which m(s) = 3. Then either | Z,(7°)| or |Z(7")| is greater than 1/100.
Hence | S(v*)| or | S(¥°)| is greater than 1/100 contradicting (1.19).

2. In this section we shall exhibit sets E,, F, that do not have
A(E,) or A(F,) isomorphic to A(F',) by standard isomorphisms. They
are then not in the class M,.

The first theorem is a converse to Lemma A.

THEOREM 2.1. If ¥(1/m(j))* = o, then E, is not an element of
the class M,.

Proof. It is sufficient to show that

8D | £ {laax/[] £ ||z = o0

since for v € Ny(F,) ||V ||px = ||V [luax. For each integer s, let x° € [1Z,;,
be that element with x; = ¢:. Let a, be the two point measure

ax} = exp (1/3m(s)) .
For each k, define an element g, of M(E*) by
P = Q% »oe X0 .
we see that
[ 2 lluax = 2°

while

b

1 e llew = sup| IL (L + exp (L/Em(s)-,
where the &, are m(s) roots of unity. Since
|1+ exp (1/3m(s)) | = | 1 + exp (1/3m(s))5, |
for &, any m(s) root of unity, and since cos (§) < 1 — #%/4 for 6 < 1
1t = 2 11 cos (z/3m(s)
<271 (L — (13m(s)) .
Therefore

et sl 1l = 1/ TLAL = (13m(s))")
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and since 3(1/m(s))* = oo, || ft [lwax/I| ta |lpar — o= a8 k— co.

We have actually shown more than claimed in Theorem 2.1. The
proof shows that if {#(j)} is any independent sequence and X(1/m(j))* =
oo, then A(E,) is not isomorphic to A(F',) by a standard isomorphism.

The next theorem will imply that no condition on the convergence
of (r(5 + 1)/r(y)) weaker than

3(r(7 + D/r(9) < oo,
is sufficient for a set F', to be a member of the class M,.

THEOREM 2.2. Suppose that n; is an increasing sequence of inte-
gers. Let b =2 be an integer and put r(j) = b="i. If

20 + DG = o

then F', is not an element of the class M,.

Proof. Let us assume for convenience that 37 (7(25)/r(25 — 1)) =
and b = 10. We can also assume our set F to be on the circle. For
any integer j define the two point measure v; by

7_7’{0} = 1
N = _1
vi{r(9)} = exp( 5 ) .
For each k, define an element v, of M(F*) by
Vi = Yk soe %7 .

Then for any integer s

| Dans) | = 2%

2% i 1
]‘1[ cos (77:(3 10-" ?»' .
In this product, consider terms §,(s) of the form

lcos <7r<s-10‘”2:‘-1 — %))-cos <7r<s~10‘”2i — —é—))’ .

If

a1

! 5-10-"2
2

’ < 1/10mod 1,

then

, 1 1 ) )
1072 — _| > L (10%i-1/10m .
's AR ( /10725) mod 1
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Then
[u(e) | = 2% [T | 3,(5) |
< 2w ﬁ (1 — D-(10"/10%5) |
where D is an absolute constant. Therefore
19 lew < 2% 11 (L = Dr(24)/r@5 — DY) -

However, || vy |luax = 2%, so

i [ax/ | Yk | par = /J_lkl(l — D(r(25)/r(25 — D)) |.

Therefore || vy, ||sax/l| Yaor [|pr — o a8 k — . Hence F', is not a member
of the class M,. The proof with b == 10 is completely analogous to
the proof with b = 10.

The author wishes to thank Paul Cohen, Karel de Leeuw,
Yitzhak Katznelson, and Carruth McGehee, for their counsel.
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