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INFINITE SELF-INTERCHANGE GRAPHS

B. L. SCHWARTZ

Let G be an unoriented graph. Let I(G) denote the inter-
change graph of G. If G = I(G), we shall say G is a self-
wnterchange graph (SIG). If for some positive integer m =1,
we have I"(G) = G, we shall say G is eventually self inter-
change (ESIG). This paper extends previous results to charac-
terize all finite degree SIG’s and ESIG’s, (loops and parallel
edges permitted), finite or infinite, connected or disconnected.
It will be seen that when infinite graphs are considered, several
earlier results change. For example, there are ESIG’s which
are not SIG’s; and loop-free SIG’s which are not regular,

1. Terminology. In this paper, we shall use the unmodified
term graph to mean locally finite s-graph with loops permitted. The
case of parallel edges forbidden will be denoted restricted graph. An
elementary chain will be called a line. The interchange operation is
so defined that the interchange of a loop is again a loop'. A loop is
considered a complete 1-graph'. A loop contributes 1 to the degree
of its vertex'. If a graph G has two parallel edges, the corresponding
two vertices of I(G) are likewise joined by two parallel edges'.

DEFINITION. Let G be a graph. Suppose the components of G are
{G;|ie A} where A is some index set. We shall say that H is compo-
nent-subgraph (hyphinated), or C-subgraph for short, if and only if
components of H are {G;|7 e B} where B is some subset of A.

Similarly, if G’ and G” are disjoint graphs whose components are
{G;| i€ A} and {G;| i € B} respectively, where A and B are disjoint index
sets, we say the graph consisting of the components of G’ and the
components of G, {G;|i€ AU B} is the C-union of G’ and G”’. Where
context makes it clear, we shall sometimes write this using the ordinary
union symbol U, e.g. G UG".

2. Preliminaries. It has sometimes been asserted that G is a
SIG if and only if G is regular of degree 2[8],[12]. This assertion
is valid only if the hypothesis include that G is loop-free and finite.
Nonregular SIG’s with loops have been known for some time [5]. The
author has elsewhere [17] characterized all finite connected s-graph
SIG’s (loops permitted). We restate the result here for later use: all

! For the present purpose, these conventions appear to be the most appropriate,
although we recognize that other conventions for these concepts are sometimes used.
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finite, connected ESIG’s are SIG’s; and the only finite connected SIG’s
are graphs of the form of Figures (lc), (2b) or (2c¢) below.

The extension to infinite graphs is given in the following sections.
The passage from finite to infinite graphs requires that certain existing
tools be sharpened, since much of the current literature on interchange
graphs applies only for finite ones, and sometimes to restricted and/or
loop-free graphs [1], [7], [9], [11], [16].

The main result we use is an extension of a result of Krausz,
originally given for finite restricted loop-free graphs [10]. Alternate
approaches would involve extending various other theorems from the
finite to the infinite case. One reviewer of this manuscript has sug-
gested a result of van Rooij and Wilf [16] as one such possibility.
While this would be quite possible, we believe our method is equally
suitable.

The theorem of Krausz is stated for restricted finite loop-free
graphs in [7] as follows:

KrAUusz” THEOREM. A graph H 1is an interchange graph of
(another) graph G if and only vf there exists an edge-disjoint partition
of the edges of H into complete subgraphs, such that no vertex of G
lies in more than two of those subgraphs.

We now state and prove the following extension to locally finite
s-graphs with loops.

EXTENDED KRAUSZ' THEOREM. A locally finite s-graph G is an
wnterchange graph if and only if it has no vertex with two or more
loops, and there is an edge-disjoint partition of its edges into a set
of complete graphs such that no vertex of G ts in more than two of
these subgraphs.

Proof. It is obviously sufficient to consider only connected graphs
of degree > 1.

The proof of Ore in [14] applies word for word to establish the
following:

If G is a graph, then I(G) has an edge-disjoint partition into
complete graphs in which no vertex is in more than two of these
subgraphs. (It remains undetermined whether I(G) can have multiple
loops.) Conversely, if H is a graph in which such an edge-disjoint
partition exists, and no vertex of H has two loops, then there is a
graph G such that I(G) = H.

The only thing remaining to prove is that an interchange graph
cannot have any vertex with two or more loops. For this, we invoke
the following obvious:
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LEMMA. For any finite graph G, the number of loops in I(GQ)
is the same as the number of loops in G.

Now suppose H = I(G) is an interchange graph with some vertex
« incident to two loops. Since H can be decomposed into complete
graphs K, (by Ore’s argument) and « can be included in only two of
the K, it follows that no other edge of H is incident to «. Hence
one component H, of H, must consist of just these two loops, Figure
(2e). But by the lemma, the corresponding component G, of G must
have two loops, and therefore at least two edges. Hence by definition
of the I operation I(G,) = H, has at least two vertices. But Figure
(2e) has only one vertex. This contradiction completes the proof.

3. Graphs of degree 2. For reference, we catalog here certain
graphs referred to later. These include all possible connected graphs
of degree less than 3. In Figure 1 are the graphs of degree 0, and

(a) (b) (¢)
Figure 1.

1. The only graph of degree 0 is Figure (1a), the isolated vertex.
The two graphs of degree 1 are in Figure (1b) and (1c): a line of
length 1 and a loop, respectively. Figure 2 shows all the finite graphs
of degree 2. These include a line of arbitrary length > 2 (Figure (2a));

—

(a) (b) (c)

(d) (e)

Figure 2.
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a cycle of arbitrary length = 2 (Figure (2b)); a line of arbitrary length
=1 with a loop adjoined to one end (Figure (2¢)); a line of arbitrary
length > 1 with a loop adjoined to each end (Figure (2d)); and two
loops on the same vertex (Figure (2e)). Finally, Figure 3 shows the
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Figure 3.

infinite graphs of degree 2. These are: an infinite line whose edges
can be consecutively numbered from —c- to + o (Figure (3a)); a semi-
infinite line, with edges numbered from 1 to o (Figure (3b)); and a
loop with a semi-infinite line adjoined (Figure (3c)).

4. Finite disconnected SIG’s. Theorem 1. Let G be a finite
graph with p distinct components G,, «++, Gy, -+, G,.

If G is an ESIG, then G; is a SIG for 1 =1, ---,p. Hence, each
G; is of either the form of Figure (1), (2b), or (2¢); and G is a SIG.

Proof. The I mapping clearly preserves connectivity. And since
for a known fixed m =1, we have I"(G) = G each component G, is
mapped into (another) component of G by the function I, i.e., the
mapping on the set of components {G,} induced by I™ is a permutation
of order p. From group theory, we know that this permutation is
the product of disjoint (algebraic) cycles [3]. Let » be the l.c.m. of
the orders of the algebraic cycles. Then (I™)" = I induces the identity
mapping on the components G,. Hence, for any component G, we
have I™(G;) = G;; that is, G; is an ESIG.

But since G; is connected and finite, we can use the previous
results cited in § 2 to conclude that G; is a SIG, and of the form of
Figure (1c), (2b), or (2¢).

5. Infinite SIG’s first result. Now consider a general G. We
require neither finiteness nor connectedness of G.

THEOREM 2. Let G be an ESIG. There exists a SIG, H such
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that G is a C-subgraph of H; and, if G is of finite degree, so is H.

Proof. Let the components of G be {G;|7 e A} for some index set
A. The components of H consist of the components of G, plus the
components of I’(G) for 5 =1,2, ---,m — 1. viz

H=U{IE).
The result is then immediate.
6. Infinite SIG’s of finite degree.

THEOREM 3. If C is a SIG of finite degree, then G is of degree < 2.
(This theorem is of interest only for infinite SIG’s, since all finite SIG’s
have already been characterized in Theorem 1.)

Proof. If G is a SIG of finite degree, clearly I*(G) is of the same
degree for all k. Hence it suffices to prove that if degree G > 2, then
for some k, degree I*(G) is arbitrarily large. Menon [12] has proved
that if G is of degree > 3, then I*(G) is of arbitrary high degree for
sufficiently large k.

The case of degree 3 is more delicate.

Let « be a vertex of G of degree 3. Let the three incident edges
to a be denoted a, b, and ¢. By the extended Krausz’ theorem, « is part
of one or two complete graphs. Since there are three edges incident
to a, there are just two possible cases.

Case 1. All three edges are part of a complete graph. In this
case, the complete graph clearly must be a complete 4-graph. Then
G must contain this complete 4-graph, K,.

Case 2. Two edges, say a and b, are part of a complete graph;
and one edge, say ¢, is part of another complete graph. Then a and
b are two edges of a complete 3-graph. And either ¢ is a loop, and

(a) (b)
Figure 4.
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thus a complete 1l-graph, or ¢ is a complete 2-graph of one edge.
These two possible cases are illustrated in Figure 4.

By direct calculation, in each case, it is verified that I(K)), I*(4a),
and I*(4b) all contain vertices of degree = 4. By Menon’s result, we
have a contradiction. This completes the proof.

COROLLARY. If G is an ESIG of finite degree, then G 1is of
degree < 2.

Proof. By Theorem 2, G is a C-subgraph of a SIG, which fulfills
the hypotheses of Theorem 3.

7. Connected infinite SIG’s.

THEOREM 4. Let G be a connected infinite ESIG of finite degree.
Then G is of one of the three forms of Figure 3, and therefore is
a SIG.

Proof. By the corollary to Theorem 3, G is of degree < 2. Hence,
the only candidates are the connected infinite graphs of degree 2; these
are completely listed in Figure 3. By direct calculation, each of these
is shown to be a SIG.

8. Disconnected infinite SIG’s. We have shown that for con-
nected graphs of finite degree, all ESIG’s are SIG’s. If the connectivity
condition is dropped, the result no longer holds. However, in view of
Theorem 2, it suffices to consider SIG’s in the infinite disconnected case,
since all ESIG’s are C-subgraphs.

We shall use the notation L; to denote a line of length ;7 = 0,
1,2, .--. (Hence L, and L, are graphs of the forms Figure (la) and
(1b), respectively.) We shall denote graphs of the forms Figure (2d)
and (2¢) by M;, where 4 is the length of the line between the two
loops.

The graph & = U, L; is obviously a SIG, as is immediately
verified by direct calculation. We now show that this is essentially
the only SIG of finite degree beyond those we have already described.

LEMMA 1. For + =0, L; is a component of I(G) if and only if
L;,, 1s a component of G [18].

LEMMA 2. For i >0, M; is a component of I(G) if and only if
M,_, is a component of G.

The proofs of these lemmata are easy, and are omitted.
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THEOREM 5. Let G be a SIG of finite degree which does mnot
contain as a C-subgraph any of the following forms:

Figure (2b), a cycle;

Figure (2¢), a finite line with attached loop;

Figure (3a), an infinite line;

Figure (3b), a semi-infinite line;

Figure (3¢), a semi-infinite line with attached loop; or

Then G 1is the empty graph.

Proof. If L, 1 >0, is a component of G, then -~ is a C-subgraph
of G. This follows by infinite induction, using Lemma 1.

Since by hypothesis G does not contain ., we conclude that G
.does not contain any L;, 7 =10,1,2, ---, as a component.

All other components of degree less than 3 have been explicitly
excluded except M,.

If for some 7 > 0, M, is a component of G, then M, _, is a component.
This follows as above from Lemma 2.

Hence by finite induction, if M, is a component of G, so is M,
(Figure (2e)). By the extended Krausz theorem, however, M, is not
an interchange graph. But this is a contradiction.

It follows that G contains no component M,. Hence G contains
no component at all, and hence is empty. This completes the proof.

COROLLARY. A graph G of finite degree 1s a SIG ©f and only
if it 1s C-union of graphs of the form of (le), (2b), (3a), (3b), (3¢),
and £

9. ESIG’s that are not SIG’s. From Theorem 5, we can char-
acterize all the ESIG’s of finite degree which are not SIG’s. They
are all C-subgraphs of the graph & of the previous section. Let G
be an ESIG. Clearly if L; is a component of G, so is I™(L;) = L;_,
for m < 4. It is therefore easy to see that any graph of the following
form is an ESIG of this type.

T = U0 Lipizn, Where m, n are positive integers and n < m.
Furthermore, we have:

THEOREM 6. C-unions of these graphs J,,, are the only ESIG’s
of finite degree which do not contain any SIG C-subgraphs.

The proof follows the lines of the proof of Theorem 5. We omit
‘the details.
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COROLLARY. A graph G of finite degree is an ESIG if and only
if it is the C-union of graphs of the form of (lc), (2b), (2¢), (3a), (8b),
Be), & and J,,,.

The corollaries of this and the previous section provide the charac-
terization of finite degree SIG’s and ESIG’s promised in the introduection.
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