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ON ILYEFF’S CONJECTURE

A. MEIR AND A. SHARMA

An apparently easy problem due to Ilyeff states: If all

zeros z,,?s, **+, 2, of a complex polynomial P(z) lie in |2z| =1
then there is always a zero of P'(z) in each of the disks
lz—2;]=1,5=1,---,n. If true, the conjecture is best

possible as one can see from the example P(z) =2"—1, In
full generality the conjectured result was proved omnly for
polynomials of degree < 4. In this paper the conjecture is
proved for quintics and extensions of earlier results are
obtained for zeros of higher derivatives of polynomials having
multiple roots,

The above conjecture of Ilyeff was published in Hayman’s Research
Problems in Function Theory. Its validity for polynomials of degree
< 4 was proved in [1] and [5]. Rubinstein has shown in [5] that the
statement holds in general if |z;| = 1. A conjecture stronger than that
of Ilyeff was announced in [2] and was proved for those zeros z; of
P(z) for which |z;| = 1.

2. Zeros of multiplicity ¥ on the boundary.
THEOREM 1. Let P(2) = (z — 2)*Q(2), Q(z) = [1=F (2 — z,) with

2] =1, and |2;|<1,2; #2 (j=1,---,n — k). Then at least one
zero of P¥(z) L=y <mn — 1) lies in the disk

k k
2.1 - =1- .
@1 ¢ vy+1 “l = v+1
For v >k, strict inequality will hold in (2.1) except when v =n — 1
and P(z) = (z — 2)(z — 2)"* with |z,| = |z,| = 1.

REMARK. The conjectured result of Goodman, Rahman and Ratti
[2] for zeros on the boundary is included in Theorem 1 as a special
case when k =1,y = 1.

Proof. Without loss of generality, we may assume z, =1,y = k.
Then we easily have

(2.2) p>(1) _ v+1 QU+ (1)
p(y)(l) v—Lk+1 Q(v—k)(l)

Denoting the zeros of P™(z) by ¢, «+-, {,_, and those of Q*~*(z) by
w, -, W,_,, we have from (2.2)
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R n—y _ v_*_l R n—y
ezl—{, vk 11 ezl—w

Since by Gauss-Lucas theorem we have |w;| < 1, it follows that
R |
Re (1 - w:i) = ?

for all 5. Thus

=y 1 1 v+1
2.3 R > . ,
23) n—vaz el—C,-"2 v—k+1
so that
- 1 y+1
2.4 Re(l —-C¢)y't>—. 21T =
(2.4) max; Re (1 - {)~ = 5 -0

which is equivalent to (2.1).

In (2.3), strict inequality will hold unless all the zeros of Q®*(z)
lie on the unit circle. This can happen only if z, =2, = +++ = 2,_,
and |2, = 1. For suppose Q“~*(z) has p distinct zeros w,, ---, w, with
multiplicities m,, - -+, m,. Then by the Gauss-Lucas theorem Q(z) must
have the same zeros with multiplicities m, +v — k&, «--,m, + v — k
so that the degree of Q(z) will be n — v + p(v — k) = n — k. Hence
p=1,1ie., Q") =(z— w)andsow, =2 and QRR) = (z — z)"".
Thus P(z) = (z — 1)¥(z — 2,)"* and so all zeros of P*“(2) must lie on
the line segment connecting 2, and 1. Strict inequality will hold in
(2.4) unless

—Lk+1 .
2. o ':” , =1,--,m—vy,
(2.5) i S ] J n—y

sothat {, =(, =+ =, . =&/ v+ 1) + ¥ —k+1)/(v+1)z. Since
the centroid of the zeros of polynomial is invariant under differentia-
tion, we must also have

k+m—ke _ _k_ v+k+1

“= n v+1 y+1

%
so that v = n — 1, which proves the assertion.

Taking P,(2) = (z — 1)(z2* — 2az + 1) with —1/2=<a <1, we see
that the zeros of P)(z) fill the entire circumference of the circle
|z — 1/2] = 1/2, so that for v = k = 1, the result (2.1) cannot be im-
proved.

3. Some lemmas. If the polynomial P(z) = (2 — 2,)*Q(?), Q(z) =
k(2 —2;), #2555 =1,+--,mn —k, then as in (2.2), we have for
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v >k (if P(z) = 0),

Pet@) _ w4l QUi

(3.1) PYz) v—k+1 Q" 9(z)

Denoting the zeros of P*'(z) by ¢, +--, ., and of Q*~*(2) by w,, +--,
w,_, and setting

lzo—wjl =7.j’{z0_cj[ =.0,~,j=1, e, — Y,

r=Ers =70 =0=- - =p0,,) we have

w1 v+1 1
3.2 = .
3.2) i1 gy — (; u—k+1j2'=1z0~w,~

Gy ™

where the last relation follows from the fact that

(3.3) 1j s

I

n n—y
P¥(z) = (y) VT (2 — &)
n — k n—y
= (v _ k)V!L_[l(zo - Wj) .

In the sequel we shall need the following lemmas.

LEMmA 1. Let f(z) = 2?20(?>a1~z", g(z) = ng:o(?)bjzf, h(z) =

Zn‘, ?)ajb,-zf, and suppose that the zeros of f(z) lie in the annulus
=0

})g 2] < q, and those of g(2) lie in r < |2| < s, then the zeros of
h(z) lie in pr < |z] < gs.

This lemma is a special case of a theorem due to Szego [4; p. 65,
Th. 16.1]. In particular if R(¢) is a polynomial of degree n — k, and
J@t) = d*/dt*{t*R(t)} and h(t) = R*~"(t)(v = k), then an easy computa-
tion shows that the polynomial g(t) of the above lemma may be chosen,
except for a constant factor, as follows:

(3.32) g(t) = imt
i=0 (x) -IL- j)

LEMMA 2. Letr, ---,r,and a,b, c (@™ = ¢ < b™) be positive num-
bers satisfying
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(3.4) a<r <b

(3.5) I’"I oz o

Then

(3.6) i 1 < m—- [ + )2 —0 1 4 <am~/tb,a—1 )2
7= 7 a’ b ¢

where

(3.7 4 = min {v| b*a™> = ¢, v integer) .

Proof. We first observed that the maximum of 37 »,* is not at-
tained unless equality holds in (3.5) for if [[™,»; > ¢, then at least
one of the r;’s say 7, is strictly greater than a and so replacing it by
(1 — ¢)-r, with a suitable ¢, we can increase the sum > 7%

Also at most one of the r,’s can lie in the open interval (a, b).
For if we had for some ¢ and j, @ < r; < r; < b, then replacing »; by
r;/1 + ¢, and r; by r;(1 + ¢) with suitable ¢, such that (3.4) and (3.5)
remain valid, the sum 3, #;* would be increased by

@A+ep—1 , 1L+re=2—1
2 + 2
73 s

which is strictly positive.
So to maximize 3 ;% we must have

PL=Ty= s =, =Sy oy S Ty iy =t =1, =Db
so that from a™*r,_, ..b*"' = ¢ we obtain
am T T < e < a™ b
which gives (3.7).

LEMMA 3. Let 0 < a <1 and suppose w s a point in the closed
unit disk. Then

1 1—a* 1

(3.8) Re— Lt >1 _
a—w 2c 2c 7

Y

, r=la—w|.

The proof follows from elementary geometric considerations.
4, Zeros inside the disk. We shall prove the theorems:

THEOREM 2. If P(R) = (2 —2)'Q(2), (k=1,n=2+ k), |2| £ 1,
Q(z) = H?—k (Z - zi)! 2 F 2y IZJI = 1 (.7 = 1: ey, M — k)y then at least
one zero of P™"(z) lies in the closed disk
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2 —k—1) /n—1+ |z)] )
n—1 n

4.1) |z — 2| =

REMARKS. (i) When n = 8, k = 1, the theorem asserts the exist-
ence of a zero of P'(2) in |2 — 2,| < V2 + |2,|/3 which implies the Ilyeff’s
conjecture in this case. A comparison of (4.1) with (2.1) in the special
case n =4,k =1,y =2 and z, = 1 shows that Theorem 1 asserts the
existence of a zero of P”(z) in |z — 1/3| < 2/3, while (4.1) does so in the
disk |z — 1| < 4/3. However, Theorem 2 holds even when |z,| < 1.

(ii) TUnder the hypothesis of Theorem 2, it is possible to replace
the right side of (4.1) by

n—k—1
2R 24z,
n—1 (=)

where 0(2)) = || + V2 — [2[°, which for large values of n yields a
disk smaller than the one given by (4.1).

Proof. Without loss of generality, we may takez, =, 0 S a < 1.
Setting in Lemma 1, f(f) = P™¥(a + t) = (d"*/dt"*)(t*"Q(a + %)) and
h(t) = Q"*"(a + ¢t), we have by (3.3a)

2n n(n — 1)

00 = T D =)

For the zeros 5, and B, of g(t), we have

nn — 1)
n—kmn-—k—1) "

18P = |B:]* = (

Assuming that o, < p, and r, < r, (see notation proceeding (3.2)) we
have by Lemma 1,

n(n — 1)
4.2) pq/(n—k)(n—k-l) =SrETy,

whence

1 1 _(n-he-k-1 2

72 r: = n(n — 1) 0

Suppose now the theorem is false. Then

n—k—1) /n—-—1+a

4.3) 0.z p > 2
n—1 n

’

and thus
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(4.4) 1,1 1 @=-Hn-—k .
75 r: 2m—k—-1)n—-1+a

Also from (4.3) and (4.2) and from n — k = 2, we have », > 1, which
for a = 0 yields the desired contradiction.
If a0 then from (8.2), (4.4) and Lemma 3 we get
1
J'Zl a—g;
s _n—1 {i“_l—w. (n — 1)(n — k) }
a
1

-1—Re
2

2

2(n —k—1) da m—Fk—1n -1+ )

n—1 . fo (1 —a)(n—-1)
(4.5) gzm—k—n mlz n—1+a«a }

e TR L SE T |
dam — k — 1) | n—1+4+a«a

v

n—1 n
mn—k—n/n—1+a’
observing that » —k < 2(n — k — 1). Since 1/0; = Relja —¢;,j =

1, 2, (4.5) yields a contradiction to (4.3) which completes the proof of
the theorem.

THEOREM 3. Suppose P(z) = (2—2,)"Q(2), (k=1, 2k=<n—2), |z,| <1,
QR) =TIz —2,),2; 2, 2| < 1(F =1, ---,n — k). Then at least
one zero of P"(z) lies in the disk

(4.6) 2 -z = L=k =2 g
n—2

where 0(z,) = |2] + V2 — [z

REMARK. (i) In the special case n = 4, k = 1, the above theorem
gives an improvement on Theorem 2 of [5], since it guarantees the
existence of a zero of P’(z) in |z — z,| < 1/2(]2,| + V2 — [2,) < 1 if
|2] # 1.

(ii) In case 2k >n — 2,n = k + 3 we can prove that under the
conditions of Theorem 3, the disk |z — 2z,| < (n — k — 1/n — 1)0(z,) will
contain at least one zero of P"~*(2). In particular the disk

2 — 2| g—;—a(zogl

will include at least one zero of P-*(z) when

n—2

k
- 2
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Proof. As in Theorem 2, we set z, = &, 0 < o <1 and identify
the polynomials f(t), ¢(¢f) and A(t) of Lemma 1, as follows:

f(t) = P (@ + 1), h(t) = Q" M(a + ¢),

and except for a constant factor

-SG5

Since ¢’'(t) > 0 for real ¢, it follows that g¢(¢) has exactly one real zero.
A straightforward substitution yields

(=) s s o2 25)

on using the assumption 2k < n — 2. So denoting the zeros of g(t)
by ¢, ¢, t, then for the real zero, say ¢;, we have

n

n— 2
<l < "
13#——75—“16—1

n—k—2"

Since t, = t,, and |tt,t,]| = |t ]*|t,] = (g)/(n E k), we obtain

(n — 1)(n — 2)
n— k)(n —Fk— 2)
< n(n — 1)
T m—=kn-—-k—-1)

=3I A

fIA

(rgte) e

Now by Lemma 1 (using the notation of §3)

2 (n—l)(n—2) 2 2
(47 O G g STisns

Suppose the theorem were not true, i.e.,

4.8 01 > ”—“—k:—z(a +V2-a).

Then for all &, p, > (n — k — 2/n — 2)1/2 which would imply that

2 (mn—=1m -k —2)
4.9) ri > 2 " D= B =1.

For a = 0, this already gives a contradiction. If 0 < @ < 1, then from
(8.2) with vy = n — 8, from (4.7), and (4.8) and Lemma 3 we have
1 1 n—2 $

1 1
—_ = — R -
s T T ok PR A,
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n——2.[1 l-aw (n—kn-—2 1]
n—k—2 L 2a 20 (m—1)n—k—2) a)d’

Since (n — k)(n — 2) < 2(n — 1)(n — k — 2) and |Re (@ — {;)'| < 1/p;,
we have

1 1 n— 2 1 2 Za}

= _r—a J1(1__~ o

3:gfpj>2(n—k—2){a( 02)+02
Therefore

which contradicts (4.8). This completes the proof of Theorem 3.

5. Quintic polynomials. We shall prove the

THEOREM 4. If P(z) = (2 — 2)Q(2), Qz) = [[1 (¢ — 2), [2;| =1 (7 =0,
1, ..-,4), then at least one zero of P’'(z) lies in the disk

(5.1) |z-z0|§%1/2—|zoi2)-

REMARK. This in particular proves Ilyeff’s conjecture for quintics
since the right side of (5.1) is < 1 if |z, < 1.

Proof. Without loss of generality we may assume 2z, # z; (j = 1,
e, d)and 052, < 1.
From (3.3) with » = 5, v = 1, we have

(5.2) Ty = 5401402103(04 .

Now identifying in Lemma 1, f(¢) with P’(z, -+ t), h(t) with Q(z, + t),
9(t) becomes, except for a constant factor, the polynomial

(1 + t)* — 1]
whose zeros t,, t,, t,, t, satisfy

It = |6 = 4sin2%, L2 = |4 = 4sin22?7r

and tt,tt, = 5. It follows then from Lemma 1 that

Il
-

(5°3) p1°‘t11§,rj§lo4'|t4[y (.7 "’4)°



ON ILYEFF’S CONJECTURE 467

From Lemma 2, (5.2) and (5.3) we conclude that >}%i_, 77> cannot be
larger than the corresponding expression for

1

Y= = |t 0, 7} ="—;"3—|t4|,r: = |t,] o -

Thus on using 0, < 0, < 0, < 0, and [, |7 + |t,]™* = 1, we have

K;M‘

(5.4) 2 =320

If 2z, 0, then on using Lemma 3 and (3.2) with k =1,y =1,n =5,
we have from (5.4)
4
0,
from which the result follows by elementary calculation. If z, = 0,

then », <1 (5=1,2,3,4) and so by (5.2) p, <5~ < 2=, This
completes the proof.

IIV

: 2 1—22 2
> z{—_ - 0._} ,
; - C,- - Uy 2z, Qo
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