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ON THE SUM £ (nay1 AND NUMERICAL INTEGRATION

SEYMOUR HABER AND CHARLES F. OSGOOD

Let " <#> " denote the distance of the real number x from
the nearest integer. If a is an irrational number, the growth
of the sum

(A is a fixed number, > 1) as K —> oo depends on the nature
of the rational approximations to a. We shall find estimates
of this sum, for certain classes of irrational numbers. Part
of the motivation for these estimates is an application to
Korobov's theory of numerical evaluation of multiple integrals.

A few years ago N. M. Korobov [8], [9] (and independently E.
Hlawka [4]) invented a number-theoretical method for the numerical
integration of periodic functions of several variables. Let E"(C),
n > 1, be the set of all functions f of s real variables having period
1 in each variable, and whose Fourier expansion

(1) f{x) = Σ C(m)e^*m

m

(here Λ: and m are s-tuples, of real numbers and of integers respec-
tively, and the sum is over all possible m) satisfies the condition

(2) I C(m) I <; c(U max (1, | ro, |))\

We shall denote the product inside the parentheses in (2) by " || m || " .
(It is not a norm in the usual sense.)

Let G8 be the unit cube in s-space. Korobov considered the ap-
proximation of

!=/(/)= t Λx)dx

by the sum

( 3 ) Q(f) = Q(/, N, a) = τ=
N r=l

the problem is to choose a = a(N) — {a^N), •••, a8(N)) so that
I Q — I\ will go to zero rapidly as N increases. He made the follow-
ing definition: ([9], p. 96; we have modified the form slightly).

DEFINITION. Let Nίf N2, be an increasing sequence of positive
integers. Then a sequence α ^ ) , α(JV2), of s-tuples of integers is
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called an ' * s-dimensional optimal coefficient sequence M (and each α(iV, )
is called a "set of optimal coefficients modJV;") if:

(1) for i = 1, 2, , each component of a(Ni) is relatively prime
to Nt

(4) (2) V δjm ajNthNt) _ o/log>3 NA
m1,...,m, = -(.V i-l) | | l f l | | \ Ni /

as Ni—+oof for some fixed number β; where δ(p, q) — 1 if g divides
p, and is 0 otherwise, (The prime on the sum indicates that the
term with m = (0, , 0) is omitted.)

The lowest β for which (4) holds is called the " index7' of the
optimal coefficient sequence.

Korobov then proves ([9], p. 101):

THEOREM A. Let a(Ni)9 a(N2), be an optimal coefficient se-
quence of index β. Then for any feE"(C),

K, a(Nt)) \ £ C'C l°g^n

Nί

where C is a constant depending on s, n, and the sequence.

He further proved that if N19 N2, is the sequence of prime
numbers, then there does in fact exist an optimal coefficient sequence,
of index at most equal to s; thus quadrature formulas Q of the form
(3) exist for which

for the function class En

s{C).
N. S. Bahvalov [1] showed that the exponent ns in (6) can be

improved to n(s — 1); I. F. Sharygin [10] showed that it cannot be
lowered beyond s — 1. The gap between n(s — 1) and s — 1 has been
closed only in the case s — 2 (and the case s = 1, which is trivial):

Using the expansion (1) in (3), we obtain

( 7 ) Q(f) = C(0, • •, 0) + Σ ' C(m)δ(rn.a, N) .

Since C(0, ••-, 0) = /(/), we have, for feEn

s

( 8 ) I Q - I | ^ Σ ' I C(m) I δ(m.a, N) < CΣ/^™"^

It's easy to show that
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m τ,δ(m a,N) _ y , δ(m-a,N) Q(log-ιN\
K ' ^ \\m\\" ι.<ιsT*-i/« | | m | | M V N" )

i = l, ,β

so that only the finite sum in (9) need be considered. Furthermore,
if we let b be the integer such that bax = l(mod N)9 it is clear from
(3) that Q is unchanged if α is multiplied by b and then each of its
components is reduced mod N. Thus we may take a1 — 1.

Thus in the case 5 — 2, we have to estimate the sum

YJ g(mt + a2m2, N)

Now JV divides m1 + a2m2 if and only if (mJN) and (mza2/N) sum to
an integer; and then (since each m is smaller than JV/2),

N

(where "(xy" denotes the distance from x to the nearest integer).
For each m2 Φ 0 there is exactly one mx such that δ(mί + a2m2, N) = 1.

Thus (10) can be rewritten as

(11) Λ Γ - |

To estimate this we use the following result of Hardy and Littlewood

([2] - [3]):

THEOREM. // a is an irrational number, or a rational number
whose denominator (when a is expressed in lowest terms) is greater
than K, and the partial quotients of the continued fraction expan-
sion of a are bounded by a fixed number M, then

C2K
ι , t > if έ i I sin 2πna \* (CJK* , t > 1

where the C's depend only on M and on t.

The left-hand inequality is stated without proof by Hardy and
Littlewood, and is in fact true without any hypothesis on the partial
quotients of a. For completeness we include a proof here (the
scheme of this proof will be used again in this paper):

Since | sin 2πx \/ζxy is bounded away from zero and from infinity,
the sum in (12) may be replaced by

(13)
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Let B G (0,1) be a real number to be specified later. Partition
[0,1] into [BK] equal subintervals (where " [#]" is the greatest
integer less than or equal to x). Some one subinterval must contain
{an} -the fractional part of an- for at least [1/JB] distinct values of n
between 1 and K. It follows by substraction that for at least
[1/JS] - 1 values of n,

(nay < 1/[BK] .

Choose [1/2?] — 1 such values, and note that each of them contributes
at least [BK\ to the sum in (13). Now partition [0,1] into [BKJ2]
equal subintervals. We see, as before, that there are at least [2/B] — 1
values of n for which

<nα> < 2/[BK] ,

and that at least [2/B] - [1/B] ̂  [1/B] of them are distinct from the
n's previously chosen. We now choose [1/B] of these new %'s the
resulting set contributes least

to the sum in (13).
Repeating this process with [BK/A] subintervals, we find a second

group of n's, distinct from the previous ones, which contributes at
least

4

Continuing in this manner for [log BK] steps, we see that

Σ<αw>-' ^ [BKγll°^\2s-ιIB]2~st .

Taking B = 1/2, the sum on the right becomes

dog/2j / l y

which is bounded below for any t > 1, and is of the order of log K
for t — 1 and the inequality follows.

Returning to (11), we rewrite the sum as

4

Σ
m — l m=3 m—b

iV

(14) Σ + Σ + Σ + + Σ
+

where p is the highest power of 2 below N — 1. If we now assume
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that α2 = a2(N) is such that the partial quotients of the continued
fraction expansion of a2/N are bounded by some number M inde-
pendent of N, we can apply (12) to these sums and conclude that
each one is

r2C3logi\Γ, n = l
= \2nC4 , n > 1 #

Since the number of these sums is < 2 log N, we conclude that

N, n>l

By (8)-(ll), the case n > 1 implies:

THEOREM B. (N.S. Bahvalov; L.K. Hua and Y. Wang [5]). //
N19 N2, is an increasing sequence of positive integers, and a(Nt)f

a(N2), are integers relatively prime to Nίf N21 respectively
and such that the partial quotients of the simple continued fraction
of a(Ni)/Ni are bounded uniformly for all i, then there is a constant
C such that if feEϊ(C),

(16) I /(/) - Q(f, Nif (1, αffi))) | £ C'C ^ L .

In particular, if a is an irrational number having bounded partial
quotients and pjqi is the i'th convergent to a, then (16) holds with
Ni = gi9 a(N4) = pt.

Although Sharygin's theorem shows that (16) is best possible, it
is desirable to have a direct proof that (15) cannot be improved.
This will have implications for the " index" of optimal coefficient
sequences. To do this it is sufficient to get lower bounds on sums
of the form occurring in (14). We thus show

THEOREM 1. If t 2> 1 and A > 1, and M and r are fixed positive
numbers, then

K, ί = l

if the convergents pjqlf p2/q2f of a satisfy

(18) qi+ι < Mq\

and a is either irrational or is a rational number whose denominator
(when a is expressed in lowest terms) is greater than AK. C =
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C(t, A, M9 r) is independent of a and of K.

Proof. Set D = (A - l)/2. Following the proof of the left half
of (12), we see that

[DίΓ] [log BDK] Γ Os-1 "I

Σ <««>-' ̂  [BDKY Σ 2 - M — .
w = l β = l L B J

The s'th term in the sum on the right arose from the consideration
of [2s/i?]w's-all between 1 and DK-e&ch of which satisfies the condition

<na> 2S

[BDK]

we shall show that to each such n there corresponds a distinct n'f
with K < nf ^ AK, such that

(19) <n'a> < 2<na>;

and it will follow that

[AK] 1 [logBDK] Γ Oβ-1 -1

(20) Σ <«»>-'> 4 I^^^I* Σ a- ' P s -
n=K + l £ s — l L J[> J

To define n\ we let ĝ^ be the greatest denominator of a convergent
of a which is less than DK. Then

and by our hypothesis on the g?s, there is a constant i£ such that
qt > EKllr. There is therefore a number N < E~ιKι~lίr such that for
every one of the ny$ under consideration n + Nq{ is between iΓ + 1
and [AK]. We set n' = n + Nqi; then

If we now choose B to satisfy BDK = EDKίSr, (19) will hold, and
(20) becomes

Uiπ I iif Γ O8-i - |

Σ <«»>-• > i (ί?i?)'Λ: " Σ 2-H ̂ — ,
*=x+i 2 s=i L β J

where ilί = [1/r log ίΓ + log ED]. Since

J f Γ O s - 1 - K M / O s - 1 \

s 2 ""[V]=s 2 ""(V) + 0 ( 1 >

the theorem follows.
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COROLLARY. // Nlf Nif and aiNJ, a(N2), are sequences
satisfying the hypotheses of Theorem B, then (1, a(N$), (1, α(JV8)),
is an optimal coefficient sequence of index 2.

Proof. By (9), and the equality of (10) and (11),

U δjm, + nw(Nt), N<) = JL_ g / / tt(iNΓ<) Vr1

m1,m2=l-ΛΓ 11 m | | JVrm=l\ \ JV* //

(21)

If δy is the j'th partial quotient in the continued fraction of a(Ni)/Nif

and Pjlq,- the r ' th convergent, then

for some constant M, by the assumptions on the a(Ni). Thus the
a(Ni)/Ni satisfy the hypothesis of Theorem 1., with r = 1. Breaking
up the sum on the right of (21) as in (14) and using (17) (with t = 1),
we see that

for some d independent of i. Thus

( 2 3 )

 Λ g g(m, + m2a{Nd, (Nζ) > C, log2 N* ̂
mlfm2=l-N | | m | | 2 Ni '

The case ^ — 1 of (15) is a reverse of (22), and (23) can similarly be
reversed by using (15) in place of (22); so that (1, α(iN/Ί)), (1, a(N2)),
is an optimal coefficient sequence of index fg 2. By (23), its index is
also ^ 2.

It follows that for these sequences, Korobov's Theorem A proves
much less than Theorem B. Korobov's proof of Theorem A seems to
leave no opening for reducing the exponent on the right side of (5)
below /S. It thus seems that the concept of " index' ' for optimal
coefficients does not seem helpful for indicating the accuracy of the
optimal coefficient sequence in evaluation of integrals.

(It appears likely that any 2-dimensional optimal coefficient se-
quence is of index 2 or higher.)

Theorem 1 suggests further consideration of sums of the form

[]

Σ
K
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In the following theorems A is any fixed number greater than 1.

THEOREM 2. // a is any irrational number, then

1 IAK1 1
X v—\ Λ.

> , • CO

K nάt+ι /nay

as K —> oo but if f is any (however slowly) increasing function such
that lim^^ f(x) — oo, then there is an a such that

lim inf CV3 — — = 0 .
K- Kf(K) . i i <nay

Proof. For the l?st part, let pjqt be the £'th convergent of α,
and let g be a monotonic increasing function such that qi+1 < g(qι), i —
1, 2, •••. Then the proof of Theorem 1 (in the case t — 1) can be
carried through with s~ι(K) in place of KUr until

[AK] I M

Σ <«»>-'>-±-£7Z)flf-1(ίΓ)Σ2
n=K + l Z s = l

is obtained, with M = [EDlog g-'iK)]; and it follows that

Σ K ^ ) " 1 > CiΠog g~\K)

for some constant C.
For the second part, we first specify that a{1 the i'th partial

quotient of the simple continued fraction of a, be ^ 1000 A, £ = 1, 2 .
For large £ we can then choose K so that #;+i/10 < ^4if < qi+1/5.
Let

r _l s —
,

ĝ  + g ^ 10Abe any ^intermmediate fraction" (see, e.g., [6], p. 22) whose denomi-
nator lies between K and [AK] + q{. Then

sqi + g -i < — (ai+1qi + g^) + qt;
5

so that

and therefore (since s > 100)

ft 4 x q,
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Now

Pi+1

and since

we have

= λ H v '.
*«(,

ffί

3/4 1 > 3/4
Ql

a2

i+1ai+2qϊ lOOsqϊ

Now if m/n is any rational number with

then either | m/n — α
first case

^ | /s — a | or | m/π — a \ ̂  | pf/gf — α |. In the

<nay^

and in the second

ζnay ^ ti I pjqi

We therefore have

2qiqi+1 2qiqi+

20A(A - l)KQi

and we now specify that ai+1 be also sufficiently large that

^ V10A/ ^

and the construction is complete.
We conclude by showing that the results of Theorem 1 cannot be
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improved. If t = 1 or r = 1, this is clear from the theorem of Hardy
and Littlewood. In the remaining case we have:

THEOREM 3. // t and r are any real numbers greater than 1,
then there is a constant C and an irrational number a whose con-
vergents pjqi satisfy

(for some fixed M) such that

n = K + l

for arbitrarily large values of K.

Mql

CK1+{t~1)lr

Proof. As before, we specify that each partial quotient of a be
Ξ> 1000A, and for each of a sequence of numbers mly m2, (which
we shall later construct inductively), we choose K to satisfy

AK < qmi+1/5 .

Then by the previous argument,

;>
20Aqmi

for all n between K + 1 and [AK*].
Now if nx and n2, nι > n2y both satisfy

(24) (ndy ^

then

This implies that n^
and <gm._2α> >

while

qm. — 2; for otherwise
since

— n2)ay ^

._2gm._

Therefore there are at most (A - l)K/qm._2 n's satisfying (24); and.
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their contribution to the sum in (17) is at most

{A ~ 1)K(20Aqm.y .

Similarly, the n's between K + 1 and [AK] which satisfy

< ζnay g

contribute at most

etc.; therefore

[AK] fa

(25) Σ <^Tι ^ (20AY(A ~ 1)K(~^- +

Now we suppose that the q's have been determined through
qm._1+ι. For some constant Co > 1000^4, we determine

so that

=

where — 1 <£ 61, ̂  1 and L is the least positive integer satisfying

(Co - 1)L > (gw,)(<+1/2ί) .

Then the sum of the first L + 1 terms in the sum on the right
of (25) is no greater than

(Co + lftί.-1 + <c' + ̂  g ,-' + J&±lZ;q% + ... ̂  C ^ 1

and the sum of the remaining terms is no greater than

(since there are less than 3 log qm. terms). Therefore

we finally specify that qr

m. < qmi+ί < 2qr

m. and m^j, < m^ — L and con-
clude that



394 SEYMOUR HABER AND CHARLES F. OSGOOD

so that

IAK]
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