ON $(\mathfrak{n}-\mathfrak{n})$ PRODUCTS OF BOOLEAN ALGEBRAS

Abstract

R. H. La Grange

This discussion begins with the problem of whether or not all ($\mathfrak{m}-\mathfrak{n}$) products of an indexed set $\left\{\left\{\mathcal{R}_{t}\right\}_{t \in T}\right.$ of Boolean algebras can be obtained as m-extensions of a particular algebra $\mathscr{F}_{\mathfrak{n}}^{*}$. The construction of $\mathscr{F}_{\mathfrak{n}}^{*}$ is similar to the construction of the Boolean product of $\left\{\mathfrak{R}_{t}\right\}_{t \in T}$; however the \mathscr{A}_{t} are embedded in \mathscr{F}_{n}^{*} in such a way that their images are n-independent. If there is a cardinal number n^{\prime}, satisfying $n<n^{\prime} \leqq n$, then ($m-n^{\prime}$) products are not obtainable in this manner. For the case $\mathfrak{n}=m$ an example shows the answer to be negative. It is explained how the class of m-extensions of \mathscr{F}_{n}^{*} is situated in the class of all $(\mathfrak{n t}-\mathfrak{n})$ products of $\left\{\mathfrak{N}_{t}\right\}_{t \in T}$. A set of m-representable Boolean algebras is given for which the minimal ($\mathrm{ml}-\mathrm{n}$) product is not n -representable and for which there is no smallest ($\mathfrak{m}-\mathfrak{n}$) product.

These problems have been proposed by R. Sikorski (see [2]). Concerning $\left\{\mathcal{H}_{t}\right\}_{t \in T T}$, it is assumed throughout that each of these algebras has at least four elements. \mathfrak{m} and \mathfrak{n} will always denote infinite cardinals with $\mathfrak{n} \leqq \mathfrak{m}$. All definitions are taken from [2]. An \mathfrak{m}-homomorphism is a homomorphism that is conditionally m-complete. We denote the class of $(\mathfrak{m}-\mathfrak{n})$ products of $\left\{\mathfrak{N}_{t}\right\}_{t \in T}$ by $\boldsymbol{P}_{\mathfrak{n}}$ and the class of ($\mathrm{m}-0$) products by \boldsymbol{P}. Let $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\}$ and $\left\{\left\{j_{t}\right\}_{t \in T}\right.$, © $\}$ be elements of \boldsymbol{P}. We say that

$$
\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \leqq\left\{\left\{j_{t}\right\}_{t \in T}, \text { ©ऽ }\right\}
$$

provided there is an nt-homomorphism h from \mathbb{C} onto \mathscr{B} such that $h \circ j_{t}=i_{t}$ for $t \in T$. The relation " \leqq " is a quasi-ordering of \boldsymbol{P}. Two ($\mathrm{nt}-0$) products are isomorphic if each is \leqq to the other.

The particular product, $\left\{\left\{g_{t}^{*}\right\}_{t \in T}, \mathscr{F}_{1}^{*}\right\}$ of $\left\{\mathfrak{R}_{t}\right\}_{t \in T}$ mentioned above is defined as follows. For each $t \in T$ let X_{t} be the Stone space of \mathfrak{A}_{t} and let g_{t} be an isomorphism from \mathfrak{N}_{t} onto the field \mathscr{F}_{t} of all open and closed subsets of X_{t}. Let X be the Cartesian product of the sets X_{t}, and for each $t \in T$ and each $b \in \mathfrak{N}_{t}$, set

$$
\begin{equation*}
g_{t}^{*}(b)=\left[x \in X: x(t) \in g_{t}(b)\right\} . \tag{1}
\end{equation*}
$$

Let G_{11} be the set of all subsets a of X which satisfy the following condition:

$$
a=\bigcap_{t \in S} g_{t}^{*}\left(b_{t}\right) \text { where } b_{t} \in \mathfrak{A}_{t}, S \subseteq T \text { and } \overline{\bar{S}} \leqq \mathfrak{H}
$$

Finally, let \mathscr{F}_{n}^{*} be the field of subsets of X which is generated by G_{n}.
$\mathscr{F}_{\mathfrak{n}}^{*}$ is a base for the \mathfrak{n}-topology on $X . g_{t}^{*}$ is a complete isomorphism from \mathfrak{N}_{t} into $\mathscr{F}_{\mathfrak{n}}^{*}$. The set $\left\{g_{t}^{*}\left(\mathfrak{U}_{t}\right)\right\}$, of subalgebras, is $\mathfrak{n -}$ independent.

A Boolean ($\mathfrak{n}-\mathfrak{n}$) product $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\}$ is said to belong to $\boldsymbol{E}_{\mathfrak{n}}$ if and only if there is an m-isomorphism h (from $\mathscr{F}_{n} *$ into \mathscr{B}) such that $\{h, \mathscr{B}\}$ is an m-extension of \mathscr{F}_{n}^{*} and for each $t \in T h \circ g_{t}^{*}=i_{t}$.

For every m-extension $\{h, \mathscr{B}\}$ of $\mathscr{F}_{n}{ }^{*},\left\{\left\{h \circ g_{t}^{*}\right\}_{t \in T}, \mathscr{B}\right\} \in \boldsymbol{E}_{\mathrm{n}}$. Clearly $\boldsymbol{E}_{\mathrm{n}} \subseteq \boldsymbol{P}_{\mathrm{n}}$ and $\boldsymbol{E}_{\mathrm{n}}$ is not empty. m-extensions of $\mathscr{T}_{\mathrm{n}} *$ seem to provide the most natural examples of Boolean $(\mathfrak{m}-\mathfrak{n})$ products.

1. Lemma 1.1. Let $\left\{\mathscr{B}_{t}\right\}_{t \in T}$ be an $\mathfrak{n t}$-independent set of subalgebras of a Boolean algebra \mathfrak{Y} and let S and S^{\prime} be subsets of T with $\overline{\bar{S}} \leqq \mathfrak{n}$ and $\overline{\bar{S}}^{\prime} \leqq \mathfrak{n}$. For each t let a_{t} and b_{t} be nonzero elements of \mathscr{B}_{t}. Then
(i) $\prod_{t \in S}^{\mathfrak{Y}} a_{t} \leqq \prod_{t \in S}^{\mathfrak{Y}} b_{t}$ if and only if $\alpha_{t} \leqq b_{t}$ for each $t \in S$;
(ii) $\Pi_{t \in S}^{\mathfrak{Y}} a_{t}=\prod_{t \in S^{\prime}}^{\mathfrak{M}} b_{t}$ implies that $a_{t}=b_{t}$ for $t \in S \cap S^{\prime}, a_{t}=1$ for $t \in S-S^{\prime}$, and $b_{t}=1$ for $t \in S^{\prime \prime}-S$.

Proof. (i) Assume that for some $t_{0} \in S, a_{t_{0}} \not b_{t_{0}}$. Define

$$
C_{t}=\left\{\begin{array}{l}
a_{t} \text { if } t \in S \text { and } t \neq t_{0} \\
a_{t_{0}} \cdot\left(-b_{t_{0}}\right) \text { if } t=t_{0}
\end{array}\right.
$$

Set $c=\prod_{t \in S}^{\mathfrak{Y}} c_{t}$, and note that $c \neq 0, c \leqq \prod_{t \in S}^{\mathfrak{R}} a_{t}$, and $c \cdot \prod_{t \in S}^{\mathfrak{Y}} b_{t}=0$. The converse is clear.

To prove (ii) we define

$$
x_{t}=\left\{\begin{array}{l}
a_{t} \text { if } t \in S, \\
1 \text { if } t \in S^{\prime}-S ;
\end{array} \quad \text { and } \quad y_{t}=\left\{\begin{array}{l}
b_{t} \text { if } t \in S^{\prime} \\
1 \text { if } t \in S-S^{\prime}
\end{array}\right.\right.
$$

Now

$$
\prod_{t \in S \cup S^{\prime}}^{\mathfrak{U}} x_{t}=\prod_{t \in S}^{\mathscr{M}} a_{t}=\prod_{t \in S^{\prime}}^{\mathfrak{U}} b_{t}=\prod_{t \in S \cup \mathcal{S}^{\prime}}^{\mathfrak{U}} y_{t}
$$

and (ii) follows from (i).
Lemma 1.2. Let $\left\{\mathscr{B}_{t}\right\}_{t \in T}$ be an n-independent set of subalgebras of a Boolean algebra \mathfrak{H}. Let G be the set of all meets $\prod_{t \in S}^{\mathfrak{2 t}} a_{t}$ such that $S \subseteq T, \overline{\bar{S}} \leqq \mathfrak{n}$, and for each $t \in S a_{t}$ is a nonzero element of \mathscr{B}_{t}. Assume further that G generates \mathfrak{H}. Then G is dense in \mathfrak{H}.

Proof. First note that for $g, g^{\prime} \in G$ either $g \cdot g^{\prime}=0$ or else $g \cdot g^{\prime} \in G$. Thus every nonzero element of \mathfrak{A} is a finite join of elements of the form $g \cdot \Pi_{i<k}^{2}\left(-g_{i}\right)$ with $g, g_{i} \in G$ and k finite. (This notation is intended
to include the special cases g and $-g$.) Now suppose $g \cdot \prod_{i<k}^{2 t}\left(-g_{i}\right) \neq 0$, so that $g \neq \sum_{i<k} g_{i}$. We write a common form $g=\prod_{t \in S}^{\mathfrak{R}} a_{t}$, and for each $i<k g_{i}=\prod_{t \in S}^{2 t} a_{i, t}$ where $S \subseteq T, \overline{\bar{S}} \leqq \mathfrak{n}$, and for each $t \in S a_{t}$ and $\alpha_{i, t}$ are nonzero elements of \mathscr{S}_{t}. Since k is finite every Boolean algebra is $(k-\mathfrak{n})$-distributive (see [2], p. 62). We have

$$
\prod_{t \in S} a_{t} \not \equiv \sum_{i<k} \prod_{t \in S} a_{i, t}=\prod_{\psi \in S^{k}} \sum_{i<k} a_{i, \psi^{\prime}(i)} .
$$

(Here S^{k} denotes the set of all functions from $k=\{0,1, \cdots, k-1\}$ into S.) Choose $\phi \in S^{k}$ such that $\prod_{t \in S} a_{t} \neq \sum_{i<k} a_{i, \phi(i)}$. We have, for each $s \in\{\dot{\phi}(i): i<k\}, a_{s} \not \sum_{\phi(i)=s} a_{i, \phi(i)}$. Define

$$
b_{t}=\left\{\begin{array}{l}
a_{t} \text { if } t \in S-\{\dot{\phi}(i): i<k\} \\
a_{t} \cdot-\sum_{\phi(i)=t} a_{i, \phi(i)} \text { if } t \in\{\phi(i): i<k\} .
\end{array}\right.
$$

Finally let $b=\prod_{t \in S}^{\mathfrak{A}} b_{t}$. Clearly $b \neq 0, b \in G$ and $b \leqq g$. For each $t \in\{\dot{\phi}(i): i<k\}, b_{t} \cdot \sum_{\phi(i)=t} a_{i, \phi(i)}=0$, so that $b \cdot \sum_{i<k} a_{i, \phi(i)}=0$. It follows that $b \cdot \sum_{i<k} g_{i}=0$, hence $b \leqq g \cdot \prod_{i<k}\left(-g_{i}\right)$.

Corollary 1.3. If $\overline{\bar{S}}>\mathfrak{n}$, and for each $t \in S, a_{t} \neq 1$, then $\prod_{t \in S}^{\mathscr{L}} a_{t}=0$.

Theorem 1.4. Let $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \in \boldsymbol{P}_{\mathrm{n}}$. Theve is one and only one isomorphism h_{n} from $\mathscr{F}_{\mathrm{n}}{ }^{*}$ into $\mathscr{B}_{\mathscr{B}}$ which satisfies the following completeness condition:

$$
\begin{align*}
& h_{\mathrm{n}}\left(\prod_{t \in S}^{\mathscr{F}_{\mathrm{n}}^{*}} g_{t}^{*}\left(\alpha_{t}\right)\right)=\prod_{t \in S}^{\infty} i_{t}\left(\alpha_{t}\right) \text { whenever } S \leqq T, \overline{\bar{S}} \leqq \mathfrak{n}, \tag{c}\\
& \quad a_{t} \in \mathfrak{H}_{t} \text { and } a_{t} \neq 0 .
\end{align*}
$$

Proof. Let G be the set of all meets $\prod_{t \in S}^{\mathscr{S}} i_{t}\left(a_{t}\right)$ such that $S \subseteq T$, $\overline{\bar{S}} \leqq \mathfrak{n}$, each $a_{t} \in \mathfrak{N}_{t}$ and $a_{t} \neq 0$. Let \mathfrak{N} be the subalgebra of \mathscr{B} which is generated by G. For $\Pi_{t \in S}^{\mathscr{S}} i_{t}\left(a_{t}\right) \in G$ it is clear that $\Pi_{t \in S}^{\mathscr{E}} i_{t}\left(a_{t}\right)=$ $\prod_{t \in S}^{\mathfrak{2}} i_{t}\left(a_{t}\right)$. By Lemma 1.2 G is dense in \mathfrak{A}. Also G_{n} is dense in $\mathscr{F}_{\mathrm{n}}{ }^{*}$. For $a \in G_{\mathfrak{n}}$ write $a=\bigcap_{t \in S} g_{t}^{*}\left(a_{t}\right)=\prod_{t \in S}^{\sigma_{n}^{*}} g_{t}^{*}\left(a_{t}\right)$. Define $h(a)=\prod_{t \in S}^{\mathscr{A}} i_{t}\left(a_{t}\right)$. It is easily seen, using Lemma 1.1, that
(i) h is a one to one function from G_{n} onto G;
(ii) for $a, b \in G_{\mathrm{n}}, a \leqq b$ if and only if $h(a) \leqq h(b)$.

It follows (see [2], p. 37) that h can be extended to an isomorphism $h_{\mathfrak{n}}$ from $\mathscr{F}_{\mathfrak{n}}^{*}$ onto \mathfrak{N}. $h_{\mathfrak{n}}$ is uniquely determined by condition (c) because G_{n} generates $\mathscr{F}_{\mathrm{n}}{ }^{*}$.

Corollary 1.5. The product $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \in \boldsymbol{E}_{\mathfrak{n}}$ if and only if $h_{\mathfrak{n}}$ is \mathfrak{n}-complete.

Proof. Let $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \in \boldsymbol{E}_{\mathrm{n}}$. There is an m-isomorphism f from $\mathscr{F}_{\mathrm{n}}{ }^{*}$ into \mathscr{B} such that for each $t \in T, f \circ g_{t}^{*}=i_{t} . f$ satisfies condition (c) so $f=h_{\mathrm{n}}$.

Corollary 1.6. Assume $\overline{\bar{T}}>\mathfrak{n}$ and that $\mathfrak{m} \geqq \mathfrak{n}^{\prime}>\mathfrak{n}$. Then $\boldsymbol{P}_{\mathfrak{n}^{\prime}} \cap \boldsymbol{E}_{\mathfrak{n}}$ is empty.

Proof. Let $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \in \boldsymbol{P}_{\mathfrak{n}^{\prime}}$. Consider the isomorphism $h_{\mathfrak{n}}$ from $\mathscr{F}_{\mathfrak{n}}{ }^{*}$ into \mathscr{B}. Choose $S \subseteq T, \overline{\bar{S}}=\mathfrak{n}^{+}$, and for each $t \in S$ choose $a_{t} \in \mathfrak{U}_{t}$ with $a_{t} \neq 0, a_{t} \neq 1$. By Corollary 1.3

$$
\prod_{t \in S}^{\mathscr{I}_{n}^{*}} g_{t}^{*}\left(a_{t}\right)=0
$$

However $0 \neq \Pi_{t \in S}^{\mathscr{E}} i_{t}\left(a_{t}\right)=\Pi^{\infty} h_{\mathfrak{n}} \circ g_{t}^{*}\left(a_{t}\right)$ so that h_{n} is not m-complete.
There is an interesting contrast between $\boldsymbol{E}_{\mathrm{n}}$ and $\boldsymbol{P}_{\mathrm{n}^{\prime}}$, (under the hypotheses of Corollary 1.6). Let $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\}$ and $\left\{\left\{j_{t}\right\}_{t \in T}, \mathfrak{C}\right\}$ be elements of $\boldsymbol{P}_{\mathfrak{n}}$ with $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \leqq\left\{\left\{j_{t}\right\}_{t \in T}\right.$, © $\}$. It is known (see [2], p. 179) that if $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \in \boldsymbol{P}_{\mathfrak{n}^{\prime}}$, then $\left\{\left\{j_{t}\right\}_{t \in T}, \mathfrak{C}\right\} \in \boldsymbol{P}_{\mathfrak{n}^{\prime}}$. On the other hand if $\left\{\left\{j_{t}\right\}_{t \in T}, \mathfrak{C}\right\} \in \boldsymbol{E}_{\mathfrak{n}}$ then we have $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \in \boldsymbol{E}_{\mathfrak{n}}$.

Corollary 1.7. Assume $\overline{\bar{T}}>\mathfrak{n}$ and $\mathfrak{m}>\mathfrak{n}$. Then $\boldsymbol{E}_{\mathfrak{n}} \cup \boldsymbol{P}_{\mathfrak{n}+} \neq \boldsymbol{P}_{\mathrm{n}}$.
Proof. Let $S \subseteq T$ with $\bar{S}=\mathfrak{n}^{+}$. Choose, for each $t \in S, d_{t} \in \mathfrak{Y}_{t}$ with $d_{t} \neq 0, d_{t} \neq 1$. Let $d=\bigcap_{t \in S} g_{t}^{*}\left(d_{t}\right)$. Let \mathscr{F} be the field of subsets of X which is generated by $\mathscr{F}_{\mathrm{n}}^{*} \cup\{d\}$. Note that g_{t}^{*} is a complete isomorphism from \mathfrak{U}_{t} into \mathscr{F}. Let $\{f$, $\mathfrak{b}\}$ be any m-extension of \mathscr{F}. It is easily seen that $\left\{\left\{f \circ g_{t}^{*}\right\}_{t \in T}, \mathfrak{b}\right\} \in \boldsymbol{P}_{\mathrm{n}}$.

Consider the isomorphism $h_{\mathfrak{n}}$ from $\mathscr{F}_{\mathfrak{n}}^{*}$ into ($5 . h_{\mathfrak{n}} \circ g_{t}^{*}=f \circ g_{t}^{*}$ for every $t \in T$. By Corollary $1.3 \Pi_{t \in}^{\sigma_{n}^{*}} g_{t}\left(d_{t}\right)=0$. However $\prod_{t \in S}^{\stackrel{S}{s}} h_{\mathfrak{n}} \circ g_{t}^{*}\left(d_{t}\right)=$ $f(d) \neq 0$. Thus $h_{\mathfrak{n}}$ is not m-complete and $\left\{\left\{f \circ g_{i}^{*}\right\}_{t \in T}, \mathfrak{c}\right\} \notin \boldsymbol{E}_{\mathrm{n}}$.

In order to show that $\left\{\left\{f \circ g_{i}^{*}\right\}_{t \in T}, \mathfrak{C}\right\} \notin \boldsymbol{P}_{+\mathfrak{n}}$ it suffices to show that $\Pi_{t \in S} f \circ g_{t}^{*}\left(-d_{t}\right)=0$. In particular suppose $b=\Pi_{t \in S}^{\mathscr{F}} g_{t}^{*}\left(-d_{t}\right) \neq 0$. Since $b \cdot d=0$ the definition of \mathscr{F} enables us to write $b=\bigcup_{t \in S} b_{1}$. $g_{t}^{*}\left(-d_{t}\right)$ with $b_{1} \in \mathscr{F}_{n}^{*}$. Choose $t_{0} \in S$ such that $0 \neq b_{1} \cdot g_{t_{0}}^{*}\left(-d_{t_{0}}\right) \leqq b$. By Lemma 1.2 there is a nonzero element $a=\bigcap_{t \in S^{\prime}} g_{t}^{*}\left(a_{t}\right)$ of G_{n} such that $a \subseteq b_{1} \cdot g_{i_{0}}^{*}\left(-d_{t_{0}}\right)$. Now $\overline{S^{\prime}} \leqq \mathfrak{H}$ and $\overline{S^{-}}=\mathfrak{n}^{+}$and it follows that $a \not \equiv b$. Thus $\Pi_{t \in S}^{\mathscr{F}} g_{t}^{*}\left(-d_{t}\right)=0$ and since f is m-complete, $\prod_{t \in S}^{〔} f \circ g_{t}^{*}\left(-d_{t}\right)=0$.

We now consider the case $\mathfrak{n}=m$. It is known that $\boldsymbol{E}_{\mathfrak{m}} \neq \boldsymbol{P}_{\mathfrak{m}}$ if $\mathfrak{m}=\mathbf{K}_{0}$ (see [2], p. 190, Example D). In this example T is the two element set $\{1,2\}, \mathfrak{N}_{1}$ and \mathfrak{H}_{2} are σ-complete Boolean algebras which satisfy the σ-chain condition. The Boolean σ-product $\left\{\left\{i_{1}, i_{2}\right\}, \mathscr{B}\right\}$ is such that the subalgebra \mathscr{B}_{0} of \mathscr{B} which is generated by $i_{1}\left(\mathfrak{H}_{1}\right) \cup i_{2}\left(\mathfrak{H}_{2}\right)$
is not a σ-regular subalgebra of \mathscr{B}. Let $\{f, \mathfrak{C}\}$ be any m-extension of \mathscr{B}. It follows, using the σ-chain condition on \mathfrak{A}_{1} and \mathfrak{H}_{2}, that $\left\{\left\{f \circ i_{1}, f \circ i_{2}\right\}, \mathfrak{\Xi}\right\} \in \boldsymbol{P}_{\mathfrak{m}}$. Since T is finite $\left\{\left\{g_{1}^{*}, g_{2}^{*}\right\}, \mathscr{F}_{m}{ }^{*}\right\}$ is the Boolean product of $\left\{\mathfrak{R}_{1}, \mathfrak{N}_{2}\right\}$. Let h be the homomorphism from $\mathscr{F}_{\mathfrak{m}}^{*}$ into \mathscr{B} such that $h \circ g_{1}^{*}=i_{1}$ and $h \circ g_{2}^{*}=i_{2}$. Then h is an isomorphism from $\mathscr{F}_{\mathfrak{m}}^{*}$ onto \mathscr{B}_{0}. Consider the isomorphism $h_{\mathfrak{n}}$, from $\mathscr{F}_{\mathfrak{m}}^{*}$ into \mathbb{C}, given by Theorem 1.4. $h_{\mathfrak{m}}=f \circ h$ since they agree on $g_{1}^{*}\left(\mathfrak{H}_{1}\right) \cup g_{2}^{*}\left(\mathfrak{H}_{2}\right) . h_{\mathfrak{m}}$ is not \mathfrak{m}-complete because $f\left(\mathscr{B}_{0}\right)$ is not \mathfrak{m}-regular in \mathfrak{C}. Thus $\left\{\left\{f \circ i_{1}\right.\right.$, $\left.\left.f \circ i_{2}\right\}, \mathfrak{c}\right\} \notin \boldsymbol{E}_{\mathfrak{m}}$. We give a simple for the case $\mathfrak{m} \geqq 2^{\aleph_{0}}$.

Example 1.8. Assume $\mathfrak{m} \geqq 2^{\wedge} 0$ and let T be a set of power \mathbb{K}_{0}. For each $t \in T$ let \mathfrak{N}_{t} be a Boolean algebra having exactly four elements. Let \mathscr{B} be the free Boolean m-algebra on \boldsymbol{K}_{0} m-generators, $\left(D_{t}: t \in T\right\}$. \mathscr{B} is not m-representable (see [2], p. 134). For each $t \in T$ choose d_{t} to be one of the atoms of \mathfrak{N}_{t}. Let i_{t} be the isomorphism from \mathfrak{U}_{t} into \mathscr{B} such that $i_{t}\left(d_{t}\right)=D_{t}$. Then $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \in \boldsymbol{P}_{\mathfrak{m}}$. By Lemma $1.2 \mathscr{F}_{\mathrm{m}}^{*}$ is atomic, the atoms being all sets of the form $\bigcap_{t \in T} g_{t}^{*}\left(a_{t}\right)$, where for each $t \in T a_{t}$ is an atom of \mathscr{U}_{t}. Denote the set of atoms of \mathscr{F}_{n}^{*} by $\left\{C_{r}: r \in R\right\}$, then $\overline{\bar{R}}=2^{\aleph_{0}}$. We consider the isomorphism $h_{\mathfrak{n}}$ from $\mathscr{F}_{\mathfrak{m}}^{*}$ into \mathscr{B}. For each $r \in R, h_{\mathfrak{m}}\left(c_{r}\right)$ is an atom of \mathscr{B}. To show this we define

$$
\mathfrak{X}=\left\{b \in \mathscr{B}: \text { for each } r \in R \text { either } b \cdot h_{\mathfrak{m}}\left(c_{r}\right)=0 \text { or } h_{\mathfrak{m}}\left(c_{r}\right) \leqq b\right\} .
$$

It is easily seen that \mathfrak{N} is an m-subalgebra of \mathscr{B} which includes $\left\{D_{t}: t \in T\right\}$. Hence $\mathfrak{X}=\mathscr{B}$. Finally, $h_{\mathfrak{m}}$ is not m-complete. For otherwise $\sum_{r \in R} \mathscr{m}_{\mathfrak{m}}\left(c_{r}\right)=1$, and \mathscr{B} would be atomic and hence isomorphic to an m-field of sets.
2. We now consider the problem of the existence of a smallest element of \boldsymbol{P}, relative to the quasi-ordering " \leqq ". A minimal element of \boldsymbol{P} always exists and can be constructed as follows. Let $\left\{\left\{f_{t}\right\}_{t \in T}, \mathfrak{(}\right\}$ be a Boolean product of $\left\{\mathfrak{N}_{t}\right\}_{t \in T}$ and let $\{h, \mathscr{B}\}$ be an m-completion of ©. Then $\left\{\left\{h \circ f_{t}\right\}_{t \in T}, \mathscr{B}\right\}$ is a minimal element of \boldsymbol{P}. We shall show that this product need not be a smallest element of \boldsymbol{P}. Hence \boldsymbol{P} need not have a smallest element.

Example 2.1. Let $m i$ be any infinite cardinal. Let $\overline{\bar{T}}=\boldsymbol{\aleph}_{0}$ and suppose that for each $t \in T \mathfrak{N}_{t}$ is a four element Boolean algebra. For each $t \in T$ choose a_{t} to be one of the atoms of \mathfrak{N}_{t}. \mathbb{C} is a free Boolean algebra of power $\boldsymbol{\aleph}_{0}$, one set of free generators being $\left\{f_{t}\left(a_{t}\right): t \in T\right\}$. \mathscr{B} has a countable dense subset, in particular \mathscr{B} satisfies the countable chain condition. Thus \mathscr{B} is complete. It follows that \mathscr{B} is isomorphic to the quotient algebra \mathscr{F} / Δ_{0} where \mathscr{F} is the σ-field
of Borel subsets of the unit interval $I=\{x: 0<x \leqq 1\}$ of real numbers and Δ_{0} is the ideal consisting of those Borel sets which are of the first category.

To show that $\left\{\left\{h \circ f_{t}\right\}_{t \in T}, \mathscr{B}\right\}$ is not a smallest element of \boldsymbol{P} we construct another ($\mathfrak{m}-0$) product as follows. Let G be the set of all halfopen intervals of the form $\{x: 0<x \leqq r\}$ such that r is rational and $0<r \leqq 1$. \mathscr{F} is σ-generated by G. The subalgebra \mathscr{F}_{0} of \mathscr{F} which is generated by G is denumerable and atomless. Hence \mathscr{F}_{0} is isomorphic to \mathbb{C} (see [1], p. 54). Let g be an isomorphism from $\mathfrak{5}$ onto \mathscr{F}_{0}. Let Δ_{1} be the ideal of \mathscr{F} consisting of those Borel sets having Lebesgue measure 0 . We note that $\mathscr{F}_{0} \cap \Delta_{1}=\{0\}$. Finally for each $t \in T$ let h_{t} be the isomorphism from \mathfrak{N}_{t} into \mathscr{T} / Δ_{1} defined by $h_{t}\left(a_{t}\right)=\left[g \circ f_{t}\left(a_{t}\right)\right] \Delta_{1}$. It is easily seen that $\left\{\left\{h_{t}\right\}_{t \in T}, \mathscr{F} / \Delta_{1}\right\} \in \boldsymbol{P}$.

Now assume $\left\{\left\{h \circ f_{t}\right\}_{t \in T}, \mathscr{B}\right\} \leqq\left\{\left\{h_{t}\right\}_{t \in T}, \mathscr{F} / \Delta_{1}\right.$. Then there is an \mathfrak{m}-homomorphism p from \mathscr{F} / Δ_{1} onto \mathscr{F} / Δ_{0}. Since \mathscr{F} / Δ_{1} satisfies the countable chain condition the kernel of p is a principal ideal. \mathscr{F} / Δ_{0} is isomorphic to a principal ideal of \mathscr{F} / Δ_{1}. However \mathscr{F} / Δ_{1} is homogeneous (see [2], p. 105). Thus \mathscr{F} / Δ_{0} is isomorphic to \mathscr{F} / Δ_{1}, which is a contradiction.

Next we consider the problem of the existence of a smallest element of $\boldsymbol{P}_{\mathrm{n}}$. Let $\{g, \mathscr{B}\}$ be an m-completion of $\mathscr{F}_{\mathrm{n}}{ }^{*}$. Then $\left\{\left\{g \circ g_{t}^{*}\right\}_{t \in T}, \mathscr{B}\right\}$ is a minimal element of $\boldsymbol{P}_{\mathrm{n}}$. Also it is known (see [2], p. 183) that if all the $\mathfrak{\Omega}_{t}$ are m-representable then there is an ($\mathfrak{m - n)}$ product $\left\{\left\{i_{t}\right\}_{t \in T}\right.$, © \} for which \mathfrak{C} is \mathfrak{m}-representable. We give an example of $\left\{\mathfrak{H}_{t}\right\}_{t \in T}$ for which \mathscr{B} is not m-representable and $\left\{\left\{g \circ g_{t}^{*}\right\}_{t \in T}, \mathscr{B}\right\}$ is not a smallest element of $\boldsymbol{P}_{\mathrm{n}}$.

Example 2.2. Assume that $m \geqq 2^{(\mathfrak{n}+)}$. Let $T^{\overline{=}}=\mathfrak{n}^{+}$and for each $t \in T$ let \mathfrak{U}_{t} be a four element Boolean algebra. We show that \mathscr{B} is not \mathfrak{n}^{+}-distributive. Choose, for each $t \in T, a_{t}$ to be one of the atoms of $\mathfrak{A l}_{t}$. Then

$$
\Pi_{t \in T}^{\mathscr{F}}\left(g \circ g_{t}^{*}\left(a_{t}\right)+-g \circ g_{t}^{*}\left(a_{t}\right)\right)=1 .
$$

However for each function $\eta \in H^{T}$ (here $H=\{+1,-1\}$) we have

$$
\prod_{t \in T}^{5} \eta(t) \cdot g_{t}^{*}\left(\alpha_{t}\right)=0
$$

This follows from Corollary 1.3. Thus $\prod_{t \in T}^{\mathscr{E}} \eta(t) \cdot g \circ g_{t}^{*}\left(a_{t}\right)=0$. This proves \mathscr{B} is not \mathfrak{n}^{+}-distributive and hence not \mathfrak{m}-representable.

To show that $\left\{\left\{g \circ g_{t}^{*}\right\}_{t \in T}, \mathscr{B}\right\}$ is not a smallest element of $\boldsymbol{P}_{\mathrm{n}}$, let $\left\{\left\{i_{t}\right\}_{t \in T}\right.$, $\left.\mathfrak{C}\right\}$ be any ($\mathfrak{m - n)}$ product of $\left\{\mathfrak{R}_{t}\right\}_{t \in T}$ such that \mathfrak{C} is mrepresentable. \mathscr{B} is not an m-homomorphic image of \mathbb{C}. Thus the inequality

$$
\left\{\left\{g \circ g_{t}^{*}\right\}_{t \in T}, \mathscr{B}\right\} \leqq\left\{\left\{i_{t}\right\}_{t \in T}, \mathfrak{C}\right\}
$$

does not hold.

References

1. P. H. Dwinger, Introduction to Boolean algebras, Wurzburg, 1961.
2. R. Sikorski, Boolean algebras, Second Edition, Springer Verlag, 1964.

Received July 19, 1968.
University of Wyoming

