
PACIFIC JOURNAL OF MATHEMATICS
Vol. 31, No. 3, 1969

ON (m - π) PRODUCTS OF BOOLEAN ALGEBRAS

R. H. LA GRANGE

This discussion begins with the problem of whether or not
all (m — n) products of an indexed set {2ϊt}ter of Boolean
algebras can be obtained as m-extensions of a particular
algebra J^~n. The construction of J^"n i s similar to the
construction of the Boolean product of {&t}teτ\ however the J^ft

are embedded in J^~n in such a way that their images are
n-independent. If there is a cardinal number n', satisfying
n < n/ ̂  m, then (m — n') products are not obtainable in this
manner. For the case n = m an example shows the answer to
be negative. It is explained how the class of m-extensions of
J^~ * is situated in the class of all (m — π) products of {^tt}t e T.
A set of m-representable Boolean algebras is given for which
the minimal (m — n) product is not m-representable and for
which there is no smallest (m — n) product.

These problems have been proposed by R. Sikorski (see [2]).
Concerning {%}teTf it is assumed throughout that each of these
algebras has at least four elements, m and n will always denote in-
finite cardinals with rt <̂  m. All definitions are taken from [2]. An
m-homomorphism is a homomorphism that is conditionally m-complete.
We denote the class of (m — rt) products of {%}teτ by Pn and the class
of (m — 0) products by P. Let {{ίt}teτ9 ^) a n d {{3t}teτ9 &} be elements
of P. We say that

provided there is an nt-homomorphism h from K onto £%? such that
hojt = it for te T. The relation " ^ " is a quasi-ordering of P. Two
(m — 0) products are isomorphic if each is <£ to the other.

The particular product, {{g*heτ, <^n*} of {SXJίeΓ mentioned above
is defined as follows. For each t e T let Xt be the Stone space of %
and let gt be an isomorphism from % onto the field ^ of all open
and closed subsets of Xt. Let X be the Cartesian product of the sets
Xt, and for each teT and each be%, set

( 1 ) 9ΐ(b) - [xeX:x(t)egt(b)} .

Let Gn be the set of all subsets a of X which satisfy the following
condition:

a = Π gfΦt) w h e r e bt e 21,, S S T a n d S ^ x t .

Finally, let ^ * be the field of subsets of X which is generated by
Gn.
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is a base for the π-topology on X. gf is a complete iso-
morphism from 2tt into ^ * . The set {gf{%)}, of subalgebras, is π-
independent.

A Boolean (m — n) product {{it}teτi &} * s s a i d to belong to En if
and only if there is an m-isomorphism h (from J^"* into ^ ) such that
{h, &} is an m-extension of ^ ^ * and for each teThog* = it.

For every m-extension {/&, ^ } of ^ *, {{h o flf*}teΓ, ̂ } e 2£π. Clearly
2?n S ^n a n ( i ^π is n ° t empty, m-extensions of j?^ * seem to provide
the most natural examples of Boolean (m — π) products.

1* LEMMA 1.1. Let {.^t}teτ be an xx-independent set of sub-
algebras of a Boolean algebra 21 and let S and S' be subsets of T
with S ^ n and S' ^ π. For each t let at and bt be nonzero elements
of &t. Then

( i ) Ufes at ^ Tlfes bt if and only if at £ bt for each t e S;

( ϋ ) Ufes <*>t = lίfes' bt implies that at = bt for teSΓi S', at = 1
for teS - S', and bt = lforteS'- S.

Proof, (i) Assume that for some t0 e S, ato ^β btQ. Define

ίat if t e S and t Φ t0 ,

l V ( ~ δ « 0 ) if ί =

Set c = Π«^5 c ^ a n ( i n o t e that c Φ 0, c ^ ΠS.s α ^ a n ^ c Π?e,s δ* = 0.
The converse is clear.

To prove (ii) we define

(αt if ί e S , , (6, if teS' ,

Now

Π ^ = 1 1 ^ = 1 1 ^ = Π
teS[jS' teS teS' tesjS'

and (ii) follows from (i).

LEMMA 1.2. Let {.^t}teτ be an n-ίndependent set of subalgebras

of a Boolean algebra 21. Let G be the set of all meets Yifes at such that

S g T, § ^ n, and for each te S at is a nonzero element of .ζ%t. As-

sume further that G generates 91. Then G is dense in 21.

Proof. First note that for g, gf eG either g-gr = 0 or else g>g' eG.
Thus every nonzero element of 2ί is a finite join of elements of the
form g-Y[f<k ( — gd with g, g{eG and k finite. (This notation is intended
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to include the special cases g and — g.) Now suppose g-Hf<k( — gi) =£ 0,
so that g ̂  Σ;<fc #*. We write a common form g = Ylfes^n and for
each i < k g{ = ΐlfeS a%,t where S g T , S ^ n , and for each teS at and
aiΛ are nonzero elements of &t. Since & is finite every Boolean algebra
is (ft — π)-distributive (see [2], p. 62). We have

Π at $ Σ Π αίf* = IL Σ «*,*<*>
ί e 5 i<k teS ψeSk i<k

(Here Sk denotes the set of all functions from k = {0, 1, , k — 1}
into S.) Choose φ e Sk such that Y[tes α« $ Σί</c α*,̂ *)- We have, for
each s e {0(i): i < ft}, as ̂  Σ^(ΐ)=. αi,^(ί) Define

at if ί e S - {ίδ(i):i < k)

a r - Σ ^ m if te{φ(ί):i< k) .
φ(i)=t

Finally let b=ΐlfeSbt. Clearly b Φ 0, beG and 6 ^ g. For each

ί G {φ(i): ί < ft}, 6ί ΣίS(i)=ί ai,Φd) = °̂  s o t h a t δ Σί<& αί,^(i) = ° I* follows
that δ Σ i<jfc 9i = 0, hence 6 ̂  ^ Πi<* (-&).

COROLLARY 1.3. 1/ S > n, α^d /o?̂  eαcfe teS,at Φl, then
Ilfes at = 0.

THEOREM 1.4. Let {{it}teT, &} e P n . Γfeβ̂ -β is o^e and only one
isomorphism hn from * ^ * into & which satisfies the following
completeness condition:

( c ) K(ΐί 9*(a>t)) = Π it(a>t) whenever S g T , S^n ,
teS teS

at e 5lί and at Φ 0 .

Proo/. Let G be the set of all meets UfeS it(at) such that SQ T,
S ^ π, each α̂  e % and α4 ̂  0. Let §1 be the subalgebra of & which
is generated by G. For ΐ[feSh(^t)^G it is clear that ΐ[feSit(at) =
ΐlfes ίί(«ί). By Lemma 1.2 G is dense in SI. Also Gn is dense in ^ * .
For α G Gn write α = Πte* ^(α,) = Π^S ^(^ί)- Define h(a) = H$sit(at).
It is easily seen, using Lemma 1.1, that

( i ) h is a one to one function from Gπ onto G;
(ii) for a,beGn, a <Ξ 6 if and only if Λ,(α) ̂  h(b).

It follows (see [2], p. 37) that h can be extended to an isomorphism
hn from _ ^ * onto St. hn is uniquely determined by condition (c) be-
cause Gn generates ^*.

COROLLARY 1.5. The product {{it}teτ, &'}e En if and only if hn

is m-complete.
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Proof. Let {{iJίeΓ, &} e En. There is an m-isomorphism / from
* into & such that for each te T,fog* = it. /satisfies condition

(c) so / = hn.

COROLLARY 1.6. Assume f > tt and that in ^ n' > n. Then
Pn, Π 2?n is empty.

Proof. Let {{ij ί e r, &} e Pn . Consider the isomorphism hn from

* into &. Choose S g Γ , S = n+, and for each te S choose at e 21*

with at Φ 0, at Φ 1. By Corollary 1.3

if g*(at) = 0 .

However 0 Φ ΐlfeSίt(a>t) = Π ^ hnogf(at) so that /&u is not m-complete.
There is an interesting contrast between En and Pn,, (under the

hypotheses of Corollary 1.6). Let {{ίt}teτ, &} and {{jt}teτ, S} be
elements of Pn with {{ij t e r, ^ } ^ {{iJ ίeΓ, ©}. It is known (see [2],
p. 179) that if { f t } ί e Γ ,^}GP n , , then {b'J ί β Γ, <£}ePn,. On the other
hand if {{jt}teT, £} e JFn then we have {{ίJίeΓ,

COROLLARY 1.7. Assume f > n αmZ m > n. ΓΛβw JŜ  u Pn+ ^ -Pn

Proo/. Let S g Γ with >§ = π + . Choose, for each teS,dte%
with dt Φ 0,dtΦ 1. Let d = Γ\tes9*(dt). Let ^ " be the field of
subsets of X which is generated by ^ * U {d}. Note that gf is a
complete isomorphism from 2^ into ^ Γ Let {/, (£} be any m-extension
of JK It is easily seen that {{/°<7?}ίer, S} e Pn.

Consider the isomorphism hn from ^ " * into K. hn<>g* = fog* for

e v e r y ί e T . By Corollary 1.3 Π ^ l ^ ( ^ ) = 0. However Π ts hnog*(dt) =

f(d) Φ 0. Thus hn is not m-complete and {{f°g?}teτ, ©} $ En.

In order to show that {{f° gΐ}teτ, (£} g P+n it suffices to show that
~Π.tesf°gΐ(-dt) = 0. In particular suppose 6 = Π ^ ^ f ( - d ί ) Φ 0.
Since δ ώ = 0 the definition of J?" enables us to write b = U<esδi
gf(-dt) with ftiG^*. Choose toeS such that 0 Φ b^g^{-dt) £ b.
By Lemma 1.2 there is a nonzero element a = f\tes' QΪ(at) of Gn such
that α g bι'gf^ — dt)o Now S' ^ n and S = n+ and it follows that a%b.
Thus ΐ[-£s9ΐ( — dt) = 0 and since / is m-complete, Πfes/°^*( —^*) = 0.

We now consider the case π = in. It is known that Em Φ Pm if
m = ŷ o (see [2], p. 190, Example D). In this example T is the two
element set {1,2}, 2^ and 2I2 axe σ-complete Boolean algebras which
satisfy the σ-chain condition. The Boolean cr-product {{ilf i2}, ^} is
such that the subalgebra . ^ of & which is generated by ^(SIJ U ̂ (SQ
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is not a σ-regular subalgebra of &. Let {/, (£} be any m-extension
of .^. It follows, using the σ-chain condition on 3^ and SI2, that
{{/°ii,/°i2},e}ePm. Since T is finite {{gΐ,gί},^*} is the Boolean
product of {ϊti, 3I2}. Let h be the homomorphism from j^f into έ%
such that hog? = iL and h o#* = i2. Then Λ, is an isomorphism from
J^w* onto . ^ . Consider the isomorphism hm, from ^ ^ * into (£, given
by Theorem 1.4. hm = f*h since they agree on ^f(SIO U #2*(3I2). hm is
not m-complete b e c a u s e / ( ^ ) is not m-regular in (£. Thus {{f°ί19

f°ί2}, &} £ Em. We give a simple for the case m ̂  2*°.

EXAMPLE 1.8. Assume m ̂  2*0 and let ϊ 7 be a set of power y$0.
For each £ e T let 31* be a Boolean algebra having exactly four elements.
Let έ@ be the free Boolean m-algebra on ^ 0 m-generators, (Dt: te T}.
& is not m-representable (see [2], p. 134). For each teT choose
dt to be one of the atoms of 31*. Let ίt be the isomorphism from
31, into & such that ίt(dt) = Dt. Then {{it}teτ, &} e Pm. By Lemma
1.2 J ^ t * is atomic, the atoms being all sets of the form Γlteτ9t(a>t)>
where for each t e T at is an atom of 31*. Denote the set of atoms
of J ^ t * by {Cr:reR}, then R = 2*°. We consider the isomorphism
hm from J ^ t * into £%?. For each r eR, hm(cr) is an atom of έ%. To
show this we define

31 = {b e &: for each reR either b-hm(cr) = 0 or hm(cr)^h} .

It is easily seen that 3ί is an m-subalgebra of & which includes
{Dt\ t e T). Hence 31 = ,̂ f. Finally, hm is not m-complete. For other-
wise ^fξRhm(cr) = 1, and & would be atomic and hence isomorphic
to an m-field of sets.

2* We now consider the problem of the existence of a smallest
element of P, relative to the quasi-ordering " < ^ ' \ A minimal element
of P always exists and can be constructed as follows. Let {{ft}teτ, &}
be a Boolean product of {3IJίe:r and let {h, ̂ } be an m-completion of
(L Then {{hoft}teτ, ^} is a minimal element of P. We shall show
that this product need not be a smallest element of P. Hence P need
not have a smallest element.

EXAMPLE 2.1. Let m be any infinite cardinal. Let f = ^
suppose that for each te T%t is a four element Boolean algebra. For
each teT choose at to be one of the atoms of 31*. (£ is a free Boolean
algebra of power ^ 0 , one set of free generators being {ft(at):te T}.
& has a countable dense subset, in particular & satisfies the
countable chain condition. Thus & is complete. It follows that &
is isomorphic to the quotient algebra ^~'/Λo where ^ is the tf-field
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of Borel subsets of the unit interval I — {x: 0 < x ^ 1} of real numbers
and Δo is the ideal consisting of those Borel sets which are of the
first category.

To show that {{fe°/ί}t6Γ,«^} is not a smallest element of P we
construct another (m-0) product as follows. Let G be the set of all
halfopen intervals of the form {x: 0 < x ^ r} such that r is rational
and 0 < r ^ 1. j ^ ~ is σ-generated by G. The subalgebra «J%~ of J^
which is generated by G is denumerable and atomless. Hence ά^ is
isomorphic to (£ (see [1], p. 54). Let g be an isomorphism from (£
onto J^ζ. Let Δx be the ideal of ^ consisting of those Borel sets
having Lebesgue measure 0. We note that ^ Γ\ Δι = {0}. Finally for
each te T let ht be the isomorphism from % into <βr/Δι defined by
ht{at) = [g°ft(a>t)]Δi. It is easily seen that {{ht}teτ, ^/ΔJ e P.

Now assume {{hoft}teτ, ^) <: {{ht}teτ, ^/Δlm Then there is an
m-homomorphism p from J^VΛ onto ^/ΔQ. Since J^\Δγ satisfies the
countable chain condition the kernel of p is a principal ideal. ^"VΛ
is isomorphic to a principal ideal of j^~\Δγ. However J^\ΔX is homogeneous
(see [2], p. 105). Thus ^~'/Δo is isomorphic to ^/Δ19 which is a
contradiction.

Next we consider the problem of the existence of a smallest
element of Pn. Let {g,^} be an m-completion of <-^*. Then
{{gog*}teT, &} is a minimal element of P n . Also it is known (see
[2], p. 183) that if all the 2lt are m-representable then there is an
(m-n) product {{it}ί6Γ, S} for which (£ is m-representable. We give an
example of {^Lt}teT f° r which & is not m-representable and {{g ° gf*}f e j i, &)
is not a smallest element of Pn.

EXAMPLE 2.2. Assume that m ̂  2(n+). Let T = n+ and for each
t e T let % be a four element Boolean algebra. We show that & is
not π+-distributive. Choose, for each te T, at to be one of the atoms
of %t. Then

Ή.feτ{g°gt(o>t) H — g°gΐ(a>t)) = 1

However for each function Ύ]eHτ (here H — { + 1, —1}) we have

n

teT
Π η(t) gΐ(at) =

This follows from Corollary 1.3. Thus UfeτV(t)'9°9Ϊ(at) = 0. This
proves & is not π+-distributive and hence not m-representable.

To show that {{g°gf}teτ, &} is not a smallest element of Pn,
let {{ijίer, (£} be any (m-n) product of {%}teτ such that (£ is m-
representable. ^ is not an m-homomorphic image of (£. Thus the
inequality
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does not hold.
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