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REPRESENTATION OF L-GROUPS AND F-RINGS

JOHN DAUNS

Consider an /-algebra A with identity (i.e., a,b,ceA,
α Λ 6 — 0, c ^ 0 = > c α Λ 5 = α c Λ 6 = 0) over the rationale Q.
Let ^f be the maximal ^-ideals of A .

THEOREM I. If 1 ̂  a e A =* 1/α € A, then each AIM, Me
is a totally ordered division ring, and A can be embedded into
a real /-algebra.

THEOREM II. A fiber-bundle or sheaf-like structure

π: E = U {A/MI Me

is constructed. Assume Π -^ — {0}; ^^ has the hull-kernel
topology. All continuous cross sections σ: ̂ ^ -^ E (πoσ ~
identity) form a partial algebra Γ(^ί, E) containing an
isomorphic copy of A ~ A S Γ(^f, E). Let A* = {α e A | | α | <
πl, some integer w}. If

( i ) l^αeA*=>l/αeA*
then i = i g Γ ( ^ , £7), where A is order dense in Γ ( ^ ^ , E').
If in addition

(ii) A* is complete with respect to the absolute value
| α | , α e i ,

then A ^ A = Γ ( ^ ^ , £7).

The purely algebraic result I is established first and completely
independently of II. M. Henriksen and D. G. Johnson [9] proved that
a Φ-algebra A (a real archimedean /-algebra without nilpotents) is
isomorphic to a subalgebra of the partial algebra D(^) of all con-
tinuous functions /: ^/? —>R U {± °°} into the two point compactification
of the reals R, where / is finite on a dense open subset of ^//. This
representation suffers from the defect that it is not onto. In general,
^ is a compact Hausdorff space and D(^r) is not closed under
addition or multiplication. However, if ^ is extremally disconnected,
then D(κy£r) is an algebra, but even in this case, A need not be all
of D{^?f). Many different algebras can have the same maximal ideal
space ^ί€. Thus the correspondence A—>D(^f) is not one to one.
By associating with an /-ring A, the two invariants ^€" and E rather
than just ^ alone, the nonuniqueness of the representation A—>D(̂ /S)
is overcome. The underlying cause of the nonuniqueness of the latter
representation is that the set i?U{±c o} is too small. The space
iiU{±°°} must be replaced by the bigger space \J {A/M\ Me ,^f},
where in general each A/M contains R properly. An immediate ad-
vantage of this is that D(^/t), which in general is not closed under
addition, is replaced by Γ(^, E), which is a group. Neither of these
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two need be closed under multiplication. In general, the stalks A/M
are integral domains contained in the hyper-reals. A structure π: E—+^t
called a "field" will be constructed. Fields are generalizations of
sheaves, the main difference being that the stalks π~\M) of E need
no longer necessarily be discrete, as would be the case for sheaves.
The space <^Jt has the already familiar hull-kernel topology. The
topologies on E and ^ff are not objects arbitrarily constructed for
sake of convenience but rather are intrinsically associated with the
ring A. In fact, the topologies on E and ^/έ are the unique minimal
ones subject to the two requirements that π-.Έ-*^ as well as all
the maps a: ^/ί —>E of A be continuous. The whole theory of such
fields is treated in a very general framework in [6] and will not be
repeated here. The construction of these fields, though elementary, is
somewhat lengthy and involved. One of the major objectives of this
paper is to give a very concise, direct, yet completely rigorous con-
struction of the field by utilizing the available additional structure
whenever possible to shorten proofs that otherwise would be long if
everything was done in as great a generality as possible. By avoid-
ing reference to towers of previous theorems, but rather by outlining
the steps that would be necessary to develop the subject from its
beginnings and keeping topological considerations to a minimum, the
author hopes to make the representation A = A = Γ(^t, E) not only
more attractive, but perhaps also more widely used.

The representation A ~ A^Γ(^^, E) applies to a wider class of
rings than Φ-algebras. Indeed, A need not be commutative nor does
it have to be an algebra over the reals. Perhaps some parts of the
theory that at the present have been established only for subalgebras
of D(^€) ([9], [10], [16]) have analogues in the more general class of
/-rings, that could be proved by using the representation A = A g
Γ(^€, E). In fact, only very recently P. Nanzetta ([16]) has made
a study of the maximal Φ-subalgebras of D(^/f) and it would be in-
teresting to know how far his results generalize to subalgebras of

rue, E).
The representation methods used here are stated for an /-group

A where the subgroups ^ are not assumed to be normal in the hope
that this method can be applied to other ordered algebraic structures.
These and similar methods have only very recently been used sucess-
fully in [13], [14], [19], [5], and [6].

2* i^-rings closed under bounded inversion* A partially ordered
ring is said to be closed under bounded inversion if 0 < 1 < a implies
there exists or1. The main objective of this section is to show that
a semisimple /-ring that is closed under bounded inversion is a sub-
direct product of totally ordered division rings. Then §4 describes
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with as much accuracy as can be expected this subdirect product in-
side the full direct product.

NOTATION 2.1. In any /-group A, by an /-subgroup M will be
meant a convex subgroup M that also is a sublattice; M is prime will
mean that M is an /-subgroup such that for 0 < α, c e A with a A c e M
implies that either a e M or c e M. In this case the right coset space
A/M is totally ordered by M + a < M + c provided coset representatives
a and c can be chosen with a < c. If A is an /-ring, then M is an
/-ideal, if M is a ring ideal and an additive /-subgroup of A. Thus
a maximal /-ideal M of A may be properly contained in a proper ideal
J of Ay MaJczA, but then J is not an /-ideal. The word "prime"
here will always be used in the above sense of /-groups and never in
the purely ring theoretic sense. Although in an arbitrary /-ring
maximal /-ideals need not be prime, in /-rings they are always prime
(see [7]; pp. 146-149, Theorems 9, 6, and 4). A subset AL of a partially
ordered ring A is said to be closed under bounded inversion if 0 < 1 ^
ae A1 implies there exists a"1 e A.

The next proposition establishes I for the special case when A is
totally ordered. Throughout the logical symbol "v" will be used for
the phrase "for any."

PROPOSITION 2.2. Consider a totally ordered ring A closed under
bounded inversion. Define I and N to be the invertible and non-
invertible elements. Let S be the small elements S = {seA\vi,
0 < i e I, I s I < i). Then

( i ) N=S;
(ii) N is a maximal ideal and also an /-ideal;
(in) A/N is a totally ordered division ring.

Proof. ( i ) Clearly, A = N U /, with N Π I = 0 . Note that
0 < s e S (Ί / implies s < s. Thus S £ N. To show that S = N, it
only remains to show that A\S £ /. If 0 < a e A\S, then there is an
ie I with 0 < i ^ a. Hence

1 = i~ιi <; i~ι

a => Ix e A with xi~ιa = 1 ,

1 = U-1 <g ai"1 =>ly e A with ai~ιy — 1 .

Thus xi~γ — (xi^aiir^y) — i~ιy — or1.
(ii) First, N is a convex /-subgroup of A. For if x, y e N, then

2x, 2y e N. Thus for any iel, \2x\ < i and | 2y \ < i, and consequently

\x — y\^Ξ\x\Jr\y\<ί2(\x\\/\y\) = 2 max (| x |, | y |) < i .

If N were not an ideal, then for some 0 < ne N and some 0 < x e A
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either nx ί N or xn$ N. Assume xn g N, the case when nxgN is
similar and will be omitted. Then xn e I. Let us show that xel.
If x$I, then for any 0 < i e /, 2x < i. Since n < 1, we have xn <
2xn ^ i. Thus xne N, a contradiction. Hence a e/. Define 7/ = (xn)"1,
i.e., 7/am = xny = 1. Then %τ/$ = x~~1(xny)x = x"1^ — 1. Thus (yx)n =
W(2/E) = 1 gives a contradiction. Thus N is an ideal, A = N U /,
ΛΓ Π A+ < / n A+, and A/iV = IU {0} is a totally ordered division ring.

The next theorem gives the main application of the last proposition.
It is not assumed that Π -^ = {0} in the next theorem.

THEOREM I 2.3. Consider an f-rίng A with an identity such that
1 < a e A implies I/a e A. Then for each maximal /-ideal M, A/M
is a totally ordered division ring.

Proof. Suppose 1 + M < α + Me A/M. Then (1 + M) V (α + M) =
lVa + M=a + M, and 1 < 1 V a implies 1/(1 V a) e A. Thus A/M
satisfies the hypotheses of 2.2 with N = {0}. Hence A/M is a totally
ordered division ring.

In general, there do not seem to be any easily describable neces-
sary and sufficient conditions for an /-ring A to be embeddable in an
/-ring containing the reals (see [11; p. 351]).

COROLLARY TO THEOREM I 2.4. Consider an f-ring A with leA
and ^ as its set of maximal /-ideals. If A is closed under bounded
inversion and if Π ̂  = {0}, then

( i ) A is a subdirect product of totally ordered division rings;
(ii) A can be embedded into a real f-algebra.

Proof, (i) By the previous theorem, A is a subdirect product
AξΞ:~[[{A/M\ Me^f} of totally ordered division rings A/M. (ii) By
a difficult result from [17], any totally ordered division ring A/M can
be embedded in a division ring containing the reals.

Having established I as quickly as possible, some additional facts
needed for the proof of II are next derived.

2.5. Let A be an /-group and ^€ any set of normal prime
subgroups M(M<\A, Mis convex, M is a sublattice of A, and 0 < α,
beA, aAbeM implies αeJIίor be M). The hull-kernel topology φ
on ^£ has a subbasis consisting of the sets P{a) ~ {Me ̂ t \ a £ M} =
P(a+) U P{pr), where a = a+ — or, α+, a" > 0, a+ A α~ = 0 and
P(a+) Π P(a~) = 0 . The group operation is written additively even
though A is not assumed to be abelian.

Let E be the disjoint union E = \J {A/M\Me^/ί} of the right
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coset spaces A/M. Each element aeA gives a map a: ^J? —>E, where
a{M) = M + a. For a,ce A and any subset K g ^ ^ , we say α ̂  c
on iΓ if M + α ̂  ikΓ + c for all Me iΓ. If M + α = M + c for all
Me K, write α | iΓ = c \ K. If A is a ring and c = 0 or 1, then simply
write a \ K — 0 or a \ K = 1.

Although in later applications the subsequent material is needed
only for the additive /-group of an /-ring, it will be developed here
more generally, because it is hoped that these results in conjunction
with the methods of § 4 will be applicable to other partially ordered
algebraic structures.

LEMMA 2.6. Let A be any /-group and ^/ί any set of normal
prime subgroups. For any xlf x2 e A define W± = {Me ^?f | M + xt <
M + £2}, W2 = {Me ^€ I M + x2 < M + xλ}.

( i ) Then W, = {M\ (x2 - x,)+ ί M}, W2 - {M\ (x2 - x,Y gJlί}e§.
(ii) For any MXΦ M2e ^ with M{ §L Mά for i Φ j, there exist

0 < Xi e A with x{ e Mi and x2 > xι mod Mu xt > x2 mod M2. Further-
more, Mi 6 W{.

(iii) // ̂ € has the property that for any MιΦ M2e ^€', M1 g M2,
then ^?€ is Hausdorff.

Proof. ( i ) Since M is prime, any a = a+ — a~ e A satisfies 0 =
a+ Λ or e M, and hence either α + e l o r α~ e M. Since M is normal
in A, we have M + a+ — a~ — a+ + l ί — α". Now it follows that
J l ί < i l ί + α « J l ί + α = : J l ί + α + « α + g J l ί . Hence

M+x2<M+xί<=>M<M+xί-x2^> (x, — x2)
+ £ M .

(ii) Since M{ is generated by its positive elements, it follows
that there is an xt e Mt\Mf with M{ + x3- = M{ + xf > M{ for i Φ j.

(iii) Let xt e Mi and Ŵ  be as above. Then Mi e W{ e φ. If Λf e
T̂ i Π T̂ 2> then M < M + ^ — x2 and M < M + ίc2 — ̂  which is not
possible.

LEMMA 2.7. Consider any /-group A and any set ^/ί of normal
prime subgroups satisfying the following conditions:

(a) vMi Φ M2e ^ , M, g Λf2.
(b) A\U^T ^ 0 .
(c) If la A is any proper, convex, /-subgroup generated by the

members of ^£, then there exists an Me^/fέ with I^M.
Then ( j f , §) is compact Hausdorff.

Proof. Let {Fλ} be any indexed family of closed subsets Fλ =
Fλ c ^ with Π Fx = 0 It has to be shown that then already a
finite intersection of these is empty, i.e., that Fλω Π Π Fλ{n) — 0
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for some choice of λ(l), . -., X(n). Let k(Fλ) = f] {M\ Me Fλ} =
{a e A I α | Fλ = 0}. Let / be the convex, /-subgroup generated by k(Fx).
(Note that in case A is an /-ring and ^€ consists of convex prime
/-ideals, that then the k(Fλ) and I in (c) would be convex /-ideals.)
Suppose I Φ A. Then by assumption (c), there exists an Me ^fί with
I g M. But then for any λ, k(Fλ) c J £ ilf. Thus MeFλ = Fλ for all
λ. But then Mef]Fλ = 0 is a contradiction. Thus I = A. Take
e e A\(J ^£. Then there are λ(l), , X(n) such that

e ^ aλω + + α ; ( n ) 0 < aλ{j) e k{Fλ{j)) .

I t is a s s e r t e d t h a t Fλω 0 -•> Π Fλ{n) = 0 . F o r if M e Fλω Π Π Ή ( n ) ,
then for all j , aUj) e k(Fλ{j)) = fl {M \ Me FUj)) £ M. Thus also eeMf

a contradiction. Hence Fλ{1) Π Π i^(») = 0 .

LEMMA 2.8. Let A and ^£ he as in the previous lemma. Suppose
0 < e e A\ U ̂ t. If K0J Kγ c ^ T are closed subsets with Ko Π K\ = 0 ,

isakeAinO<k^e such that k \ K0 = 0 δuί fc | ZΊ = e | ϋ^.

Proof. The proof proceeds in several steps.
( i ) We first show that if Ko = {ikf0}, JK̂  = {ΛfJ are singletons

that then there is an aeA with

Mo + a < Mo - e , Jlf L + β < Λft + α .

It follows that there are α0, m0 e Λf0 and at, mLe Mι for which

A = Mo + Mι => 2β = α0 + mi

A = M1 + Mo => — 2e = ax + m0 .

Setting a = α0 + α : and using that Mo, ilίi. <| A, we get

Mo + a = Mo + aL = Mo - 2e < Mo - e

Mλ + e < M; + 2β = Mi + α0 = M : + a .

(ii) Having shown that points can be separated in the above
strong sense, now take Ko = {Mo} and Kx = Kγ arbitrary. Then for
any ke Ku there is an a(k) e A with

Mo + a(k) < MQ - e , k + e < fc + α(fc) .

Now define ί/(A;) - { M | M + 6 < M + a(k)} e Q and TΓ(Λ) = {M\ M +
α(&) < Jlί - e} e § . Then {£/(&) | A: e J5ΓJ is an open cover of the com-
pact set Kγ. Thus there are a finite number αy = a(kd), U3- = U(kj),
a n d T 7 y - W(kj) with K.SU, U U Un. Set TΓ= Π {Wj \j = 1, ,^}.
Define α = αx V V αΛ. Then
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vMe Uj, M + e < M + a,- => v i e K19 M + e < M + a

Vikf G TF, M + a3 < Λf - e => vJlίe W, M+a<M-e.

Note that since A/Jlί is totally ordered, all of these inequalities are
sharp. Thus a < — e on TF and in particular at Mo while on K19 e < α
holds.

(iii) Finally, let iΓ0 = Ko and i ^ = Kx be arbitrary closed sets.
For each Mo e Ko choose a neighborhood W = ϊΓ(JkΓ0) and α = α(ilf0) as
above in (ii). Since Ko £ (J {PΓ(ikί0) | Mo G ^0} there is a finite subcover

ί o S l ^ i U U ̂  a3 < -e on TΓy; αy > e on ifx; j = 1, - , m .

The element a = ax Λ Λ am satisfies the following

a,; < — e on Wj => a < —e on Ko ,

aό > e on Kx=^ a > e on Kx .

Note that 0 < e and set k = (α V 0) Λ β. Thus 0 ^ ifc ^ β and finally

MeK1=»M+ k - M+ e .

DEFINITION 2.9. Consider a partially ordered group A with an
indexed set ^f of subgroups topologized in some way by a topology
φ, and let 0 < β e A\ U ̂ ^ be a distinguished element. A subset AλS A
is said to contain positive bounded partitions of e on (^^, £>), provided
that for any finite £>-open cover ^€ = ^ U U Un1 there are
e19 , en e A, satisfying:

( i ) e = e, + + en;
(ii) eief\^e\Uifi = 1, •••, w;
(iii) 0 ^ e4 ^ e.

Since the following general fact will not only be used in the proof
of the next proposition, but also on several later occasions, it is worth-
while to isolate it out of context.

2.10. Suppose A is any /-group and Δ any set of prime subgroups
(not necessarily normal) such that f\{M\ Me Δ} = {0}. Then for

a > 0 <=> v i e Δ, M + a ^ M .

For if a > 0, then, clearly, M + a ^ M. If a > 0, but M + α ^ Λf
for all Λf G J, then or = -a V 0 > 0. Pick ikίG zί with ar g Λf. Since
α+ Λ α~ = 0, α+ G ikf. Thus M+a = M+a+-a~ = M-a-<M, a
contradiction.



636 JOHN DAUNS

PROPOSITION 2.11. Suppose A is an f-ring with identity and ̂ £
its set of maximal /-ideals in the hull-kernel topology. Define
A* — {a e A | | a | < nl for some integer n). Assume that

*1 < aeA*

Then there are positive bounded partitions of 1 on ^/ί.

Proof. If ^-/f ~ Uι U U Un is any ξ>-open cover, choose open
sets Wi whose closures W{ satisfy Wt c Wi c Ui such that still ^€ —
W, U U Wn. Apply Lemma 2.8 with Kγ = W, and Ko = ̂ \V{ to
obtain elements k{ satisfying

i = l, and k{ \ (^£\U%) = 0, i = 1, n .

Set k = k, + - - + &w G A*. Since M + 1 ̂  M + k for all Me ̂ // it
follows that Π - ^ + 1 ̂  Π ̂  + A: in A/f] -•# Thus there exists
an m e f l ^ f with 1 <, k + m. Since Π - ^ is an ί-ideal, | m | e f] ^/f;
take 0 < m — \ m \. Then

Let 0 < m = m Λ 1. Set α = fc + m. Then l ^ α e A*. Since A*
is closed under bounded inversion, A is an algebra over the rationale
and ( l / w ) m e f | X Define e< = (^ + (l/n)m)a~\ clearly conditions
(i)-(iii) of Definition 2.9 are satisfied.

3* The representation of an L-group as cross sections* In
order to obtain a faithful representation of an arbitrary /-group A
as a group of cross sections in a field, first a method of Banaschewski
([1]) is used to introduce a group topology on A. Then this topology
on A is used in the construction of the field. If the topology on A is
discrete, then the resulting field is an ordinary sheaf. Although
written additively, in this section the group A is not assumed to be
abelian.

3.1. A subset S of the positive elements A+\{0} of an /-group A
is called a set of topological units (cf., [1]) if for any ε, s' e S and xe A
there is a δ e S satisfying:

II. 2δ ̂  ε ,

III. δ ̂  x + ε - x .

Although in [1] the condition that

IV. inf {s I s e S} = 0
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is imposed, here this will not be assumed. The sets ( —ε, ε) =
{ae A\ — ε < a < ε}, εe S, form a basis for the open neighborhoods of
zero for a group topology on A which depends on the particular choice
of S. All the proofs in [1] are valid without IV. However, the result-
ing group topology is Hausdorff if and only if IV holds (see [1]). Any
basis for the set of all open neighborhoods of zero in A will be de-
noted by SB.

The subset A* g A consisting of all ae A such that there exists
some finite subset εlt •• ,εΛ of S and some integer n (all depending
on the element α) for which | a | < n(ει V V ek) is a convex normal
/-subgroup of A; the elements of this /-subgroup are called the
bounded elements of A (with respect to S).

3.2. Suppose ^ is any indexed set of prime subgroups of any
/-group A with Π ^/P — {0}. There always exists such a set for any
/-group A; for example, ^/S could be taken as the set of all regular
subgroups of A. As a consequence of the fact that each Me^f/ is
prime, the right coset space A/M of A modulo M is totally ordered.
For α, e, d e A, there is an order preserving transformation R(a) of A/M,
where (M + d)R(a) = M + (d + a) and R(a + c) = R(a)R(c). Thus
a—+R(a) is an /-homomorphism of A onto a transitive subgroup of
the /-group of all order preserving transformations. Thus A is /-
isomorphic to a subdirect sum of /-subgroups of order preserving per-
mutations of totally ordered sets. The groups in ^£ are not assumed
to be normal in A; and several isomorphic copies of the same subgroup
may appear several different times in ^/S, even if A contains only
one such subgroup. If E is the disjoint union E = (J {A/M\ Me ^^},
then there is a natural projection π: E—>^#, π(AjM) = {M}. Each
ae A gives a function α: t ^ # —>i?defined by α(ikf) = M + α e π-\M)(zE.
For any subset Ax gΞ A, A^ will denote A1 — {a \ a e AJ. Define E V E
as E V E = {(x, y)eE x E\ π(x) = τr(?/)}. For a? = ikf + α e A/M and
any subset UczA, the notation "x + [/" will mean x + C7 =
{ίcie(^) \ueU} = {M + (a + u)\ueU}. Each zero neighborhood Ϊ7e 2B
gives an entourage which will always be denoted as U' with a prime,
where U' ^ {(x, y)eE V E\y ex + U}. (I.e., (ikf + αx, M + α2) e 17'
with αx, α2G A, if and only if there exists a ueU such that M + α2 =
M + (αx + u). If some Me ^/f is normal in A, then {[/' Π [π~\M) x
π-^M)] I Z7 G 233} is a basis for the left invariant uniform structure on
A/M. The reader, who is mainly interested in applications to the
case when A is the additive group of a ring, will loose nothing by
assuming A to be abelian. All such U' as U ranges over 23 are a
filter basis for a so-called field uniform structure IX on E V E.
Although U is not a uniform structure on E in the usual sense of the
word, nevertheless it has many of the properties of a uniform struc-
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ture. For aeA and F G U , the usual notation associated with uniform
spaces will be used for V~ι = {(x, y) e E V E \ (x, y) e V) and for
V(d) = {xeE\(d(π(x))yx)e V}. Note that for E/eSB, the above be-
comes Uf(d) = {x e EI x e π(x) + a + [/}.

3.3. The set of all U'(a) with ί/eSB and α e i is a subbasis for
the open sets for a topology N(A) on i?. If each M e ^ is normal
in A, and if U = {ae A\ — ε < a < ε} with ε e S, then Z7'(α) =
{xeE || — $ + a(π(x)) \ <π(x) + ε}; and U'(d) may be intuitively described
as a "tube of width ε around the section d(^f) c 2£." Thus, according
to this definition, a typical basic neighborhood of a point xeί? is a
set of the form U[(d) Π Π U'n(an) with J7L, , Ϊ7Λ e 2δ and α1? ,
αn G A, provided that this set contains x. Two simplifications should be
noted. First, all the U3 may be taken as the same element. Second,
all the a5 may be taken to satisfy x = π(x) + aά. There are uά e U3-
with π(x) + a3 + u3- = x. Choose We%S with u3- + W S U3 and set
Cj = a3 + Uj. Then

z e W'(c3) =>ze π(z) + c3 + W S ^(«) + % + ^ S I/ίίαy)

ή W'(c3) s ή '̂(δ,) .

It is clear that the topology N(A) is not Hausdorff if the condition IV
that inf S = 0 fails.

3.4. Define T(π) to be the biggest topology on ^// making π
continuous, i.e., T(π) = {V fi ^ T | π-^F) e N(A)}. There is a smallest
topology T(A) on t . ^ , the so-called weak-star topology, making all the
maps of A continuous. A subbasis for T(A) may be obtained by taking
the inverse images under all elements of A of a subbasis of N(A) as
follows:

/\ (g(M), h(M)) e U')

?\M+ heM+ g + U}; g^heA UeZS .

Thus if all the groups of ^f are normal in A, then the above typical
subbasic open set takes a simpler form which depends only on the
single group element —g + h, i.e.,

h-ι[U'{g)} = {Me Λ\ -g + h e M + U) .

The next two lemmas establish the relationships between the
various topologies. Whatever topology is finally to be put on ^ T , it
will have to be a topology such that the projection π: E-+ ^€ as well
as all the maps of A are continuous. It should be stressed that the
above definitions of N(A), T(π), and T(A) apply to any topological
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group. In order to make these definitions, the topology of A need not
be derived from a set of topological units.

LEMMA 3.5. In the notation of 3.1-3.4, T(π) £ T(A).

Proof. If VeT(π), then π-ι(V)eN(A). But for each aeA,
a: (^f, T(A)) ~> (E, N(A)) is continuous. Thus ar\π~\ V)) e T(A). But
τroα = identity, so V = a-ι(π~ι{V)), and thus T(π) £ T(A).

The next lemma is crucial for an understanding of fields. Its
proof involves the use of the group structure on the set of maps A;
the reader may wish to illustrate the geometric significance of the
proof by a diagram.

LEMMA 3.6. The map π: (E, N(A)) —> (^/f, T(A)) is continuous.
Since T(π) was the biggest topology on ^€ making π continuous,
T(A) £ T(π) and hence by 3.5, T(A) = T(π).

Proof. Take a typical subbasic open set for T(A) of the form
V = {b e B I (g(b), h(b)) e U'} = {b \ b + h e b + g + U) w i t h g,heA a n d
Ue9B>. It suffices to show that π~ι(V) e N(A). Take any zeπ~\V).
Then a set WeN(A) has to be found such that z e W £ π~\V). First,
set c — π(z). By the definition of V, there is a ueU such that
c-}-/2, = c + ((7 + /^). Secondly, since translation by group elements is
a transitive action on the stalks, there exists an element te A such
that z = c + (g + £) = (<7 + £)(<?). (Note that (/(c) + t(c) is meaning-
less.) Thirdly, pick Pe 2δ such that ί + P - P - ί + u g ? 7 . Fourthly,
set TF = P'(g + ί ) ί l P ' ( ί - δ + ί). Since both of the sections g + t
and ίi — ύ + t pass through £, the element ze W. Next it is shown
that W £ 7Γ-1(F). To prove this, pick any j/ e IF. It has to be shown
that π(y) e V, or equivalently, that π(y) + g + s = π(^) + fe for some
seU. But it follows from the definition of P' that

y e P'(g + t) => 3 ^ e P, TΓ^/) + (^ + t + Ax) = y

y e P'(h -u + t)=>lh2eP, π(y) + (h - u + t + h2) = y .

Thus π(y) + g + s = π(y) + h with s = t + hl — h2 — t + ueU.

3.7. If ikί is a convex /-subgroup of any /-group A, then the
right coset space A/M is a distributive lattice under

(M + a,) V (M + α2) = Λf 4- αx V α2, (Af + αj Λ (M + α2) = M + αx Λ α2,

where αlt α2 e A. Thus each stalk of E is a distributive lattice; it
also inherits a topology as a subset of E. The following functions
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are continuous:

-+E:M->M Me,

EvE->E:(x,y)-^xVy, (x, y) — x A y (x,y)eEvE.

E — E\M + c-+M + (c + a) c e A, a e A is fixed.

If all groups of ^f are normal, E V E —> E, (x, y) —> x — y

(x, y)eEvE.

The proofs are omitted. In general, if a map such as the group
operation, join, or meet is continuous in the topological group A, then
the induced analogous map of E V E ~->E will also be continuous.

DEFINITION 3.8. A continuous function σ: ( ^ , T{A)) —> (E, N{A))
such that 7Γ o α is the identity on ^€ will be called a section. Under
the obvious pointwise operations these form a distributive lattice that
will be denoted by Γ(^f, E). If dom σ is the domain of any function
σ whatever and if U is any set, then the restriction of σ to dom σf]U
will be denoted by σ\U. The notation σ \ U = 0 will mean that
σ(M) = Me AIM for each Medom^Π ί7. (If A is a ring with an
identity I G A , then σ | U = 1 means that σ(M) = M + 1 e A/M for
Me dom σ Π U.)

As a consequence of the assumption that Π ^ = {0}, the map
A-+ΆξΞ:Γ(^t,E) is an order preserving isomorphism. A section
τ e Γ(^, E) such that | τ | < α for some α e i * (see 3.1) will be called
bounded. The sublattice of all bounded sections will be denoted by
Γ(^t9E)*.

The field uniform structure 11 induces in the obvious way an
ordinary uniform structure on Γ(^€', E) making it into a uniform
space, i.e., each WeU gives an entourage WaΓ{^f,E) x
where W = {(σ, τ) \ (σ(b)τ(b)) e W] for all be,

Conclusion (iv) of the next lemma later will be used to show that
in certain cases A = Γ{^€', E).

LEMMA 3.9. If each group of ^f is normal in Γ(^f', E), then:
( i ) Γ(^f, E) is an /-group, A £ Γ(^fί, E) is a subgroup.
(ii) Γ(^,E) is a topological group.
(iii) Γ(^f,E)* is a convex normal /-subgroup of Γ(^,E).
(iv) A - ^ A g Γ(^, E) is a homeomorphism. In particular, if

A is complete, then A is closed in Γ(^€, E).

Proof. Conclusions (i) and (iii) are trivial. Conclusion (ii) is not
later used; its proof is omitted (see [6]). If A were an arbitrary
topological group, then, in general, the map A - > A S Γ(^€, E) would
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be a continuous algebraic isomorphism whose inverse might not be
continuous. However, in the present situation, if U = {ae A| |a |<s} e SB
with seS, then fl {M + U\Me ^t} = {e e A \ \ M + c \ <M + s} = U.
A typical neighborhood of an element ceΓ(^f,E)p[Ά is U'(c) =
{σ e Γ(^f, E) I (c(M), σ(M)) e U', vikf e ^T}. It suffices to show that
under the correspondence A <-> A, the neighborhood c + U of c in A
corresponds to £/'(c) Π A in Γ(^t,E). Since Λf<|A, it follows that

U'(c) r\Ά = {ά\aeA, M + aeM + c + U, vMe ^T}

= {ά\a£A,M-c + aeM+ U, vMe ^€)

= {d\~ c + aeΓ[{M+ U\Me^f}} = c + U.

The results obtained thus far in this section are summarized in
the next proposition.

PROPOSITION 3.10. If A is an /-group and ^f any indexed
family of normal prime subgroups of A with f] ^f = {0}, then define
E and π by

π: E = U {Λ/M\ Me ^€) — ̂ T , π~\M) = A/M for Me

For aeA, define a: ^^ —>E by d(M) = M + a and set A = {d\ae A}.
If S is any set of topological units for A, then the sets
{x e AI — ε < x < ε}, ε e S, define a subbasis for the neighborhoods of
the identity for a group topology on A. The bounded elements A*
(see 2.1) form a normal, convex /-subgroup of A. Let T(A), N(A) be
topologies on ^ί, E defined by the following subbasic sets:

(a) {be^f \b + heb + g + (-s, e)} g, h e A , ε e S

( b ) {xeE\ xeπ(x) + a + ( —s, ε)} ae A, εe S .

Let Γ(^/ί,E) be the lattice of all continuous sections ^f -+E and
Γ(^f", E)* the sublattice of bounded sections {see 3.9). Then:

( i ) ( a ) T(A) is the biggest topology on ̂ fί making π: (E, N(Ά))—*
^£ continuous-, and

(b) T(A) is the smallest topology on ^// making all the
maps A continuous.

(ii) T(A) is the unique smallest topology on ^£ which satisfies
the following two conditions:

( a ) π: (E, N(A)) —* ̂  is continuous;
(b) All a: ^f —>(E, N(A)), aeA, are continuous.

(iii) A* and A are isomorphically embedded as l-subgroups in
A* s A* S Γ(^r, E) and A^AQ Γ(^T, E).

The intrinsic nature of the topologies N(A) and T(A) should be
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stressed again. The reader can only conclude from the previous pro-
position that if it is agreed upon beforehand that E is to be endowed
with the natural topology N(A), that then T(A) is both uniquely deter-
mined and has several intrinsic characterizations. However, this is
only a half of the story. In fact, the topology of the base space „-#
uniquely determines the topology on the stalks E. Thus in particular,
N(A) is uniquely determined by T(A). Also in a certain very precise
sense N(A) is minimal just as T(A) is. Since these facts will not be
needed for later purposes, and since the present framework of /-groups
is a setting much too specialized for exhibiting facts that are true in
more general circumstances, the reader is again referred to [6] for a
complete account.

The next example illustrates that in commutative nonarchimedean
/-rings there are more desirable choices of topological units than the
choice {rl | 0 < r e Q} that is used here throughout.

EXAMPLE 3.11. Choose three distinct totally ordered fields
RaFaK, R—the reals, Fa field having a strictly decreasing positive
sequence of elements {c{n} | n = 1, 2, •} converging to zero, while K
is an ^-field. Then K has a similar subset {k(X) ( λ e A} converging to
zero indexed by a totally ordered set A which can no longer be counta-
ble. Take a locally compact, totally disconnected space X, a fixed base
point p e X, and some neighborhood filter N(p) of p. Viewing if as a
discrete space, the ring A of all continuous functions f:X—»K with
f(p) 6 F is a nonarchimedean real /-algebra. Consider triples iV, λ, n
consisting of an NeN(p), an index λe/i and a positive integer n.
For each such a triple, choose a function feA such that f(p) — c(n);
such that when restricted to X\N, f satisfies f\(X\N) = fe(λ); and
lastly such that k(λ) ^ f(x) ^ c(n) for all xe X. In case the neigh-
borhood basis of p can be totally ordered by inclusion, these functions
can be so chosen that whenever / corresponds to N,X, n and / ' to
N', V, n' with N' £ N, λ g V, and n ^ n\ then f'(x) g f(x) for all
xeX. If the cardinality of A exceeds that of N(p), it is not possible
to choose a co-final linearly ordered subset of S. Next suppose that
the neighborhood filter N(p) of p cannot be linearly ordered, e.g., X
can be an uncountable product of discrete two point sets and p the
point all of whose coordinates are zero. In this case, irrespective of
the cardinality of A, S does not have a cofinal linearly ordered subset.

For certain classes of groups, if π\E-+^# is constructed as
above, then the representation A ~ A ^ Γ(^£, E) is always an
isomorphism, i.e., A = Γ(^/t,E). In these cases it is not enough to
start with a group A in the class and then show that it gives rise to
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a field π: E —> ^y£ of a certain kind. In order to characterize member-
ship in this class by a necessary and sufficient condition, conversely,
it is necessary to start with a sheaf-like structure π\Έ-+^£ of a
certain specific kind and then prove that i % ^ , E) is a group belong-
ing to the class.

DEFINITION 3.12. Consider a continuous surjective map π: E—»^,
with ^£ compact Hausdorff, and each π~\M) a lattice ordered vector
space over the rationale Q with a weak order unit l(ikf). (Later, in
addition, each π~\M) will be a ring with 1(M) as the identity.) Assume
that subtraction, join, and meet are continuous as maps

(1) EV E->E:(x,y)-+x -y

(x, y)-+xVy

{x, y) -> x A y {x,y)eEv E .

Suppose that through each point x e E there passes through a local
section, i.e., a continuous map τx: dom τx —+E, where the domain of
τx, domτ,, is an open neighborhood of π(x), with πoτx the identity.
Assume that the topological spaces E, ̂ £ and the family of local
sections {τx \ x e E) have the further property that as V ranges over
the neighborhoods of π(x), the following is a neighborhood basis of
each xeE:

(2) {z e EI π(z) e V Γ) dom rx, | τx(π(z)) - z \ < rl(π(z))} 0 < r e Q .

Then π will be called a field of vector lattices over Q with the weak
order unit uniform structure (over a compact Hausdorff space).

REMARKS. (1) Although as the above definition now stands, it
depends upon {τx\xeE}, nevertheless, it can be shown without too
much difficulty that it is independent of the choice of local sections.
More generally, if a single point xeE has a neighborhood basis of the
form (2), then τx may be replaced in (2) by any other continuous local
section passing through x and the result will still be a neighborhood
basis of x (see [6; p. 4, Lemma 1.9]).

(2) The topology on E depends on the stalkwise choice
{1(M) I Me^/f} of weak order units.

4* Rings of sections over the maximal ideal space* Previous
results are now combined to yield a representation of an /-ring A as a
ring A contained in the group Γ(^^f, E) of cross sections in a field.

4.1. Consider any /-group A and any set ̂ £ of prime subgroups.
Suppose e is an element in 0 < eeA\U ^/S. If 0 < α e 4 , Me ^f,
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define d(M) — mί{n\j \ n, j integers; M + ja < M + ne). For a = a+ — a~,
set a(M) = a+(M) - a~(M). Then A = {α | ae A} is a group of con-
tinuous functions α: (^t9 φ) —• # U {± °°} into the two point compacti-
fication of the reals. If A is archimedean and f\^t = {0}, then each
a is finite valued on a hull-kernel dense open subset of ^ . For
otherwise, if 0 < α , c e A , P(c) = {Λf | c ί Λf}, and a \ P(c) = oo, then
ikf + w(e Λ c ) ^ I + α for all Λί e ^ ^ and all integers n > 0. Then
o ^ n(e Ac) <^ a and β Λ c = 0. But for MeP(e), e A c g M is a
contradiction.

Although proved in greater generality, the next lemma will only
be needed for the additive group of an /-ring.

LEMMA 4.2. Suppose A is an /-group and M <\ A is a prime
subgroup. If Q < r e A, g e A are elements such that \M + g\ < M + r,
then there exist m19m2eM for which —r<m1 + g + τn2<r.

Proof. Since either g+ or g~ e M, assume g~ e M. Then

(g+ - r) V 0 + r = g+ V r ^ g+ ,

and hence

r > -((g+ - r) V 0) + g+ = (r - g+) A 0 + #+ = r A g+ ^ 0 .

Let mL = (r — #+) Λ 0, m2 = gf". Then the above becomes r > m^_ +
g + m2^0. Now M<M+r-g+ and Λf= Λf+ mx = (M+ r - ^+) Λ M
show that mx e M.

Some basic facts about /-rings that will be used later are summa-
rized below.

4.3. Since squares are positive in any totally ordered ring, they
are also positive in any /-ring. If an /-ring has an identity, then it
is necessarily positive and a weak order unit. If A is any /-ring for
which the identity element is a strong order unit, then every additive
convex /-subgroup of A is also necessarily an /-ideal. An archimedean
/-ring with or without identity is commutative. The intersection of
all the maximal /-ideals of an /-ring A may be nonzero, yet there may
be no nilpotents in A. For example, this happens in the ring of
polynomials over the reals with the inverse lexiographic order.

The set N(A) of all nilpotent elements of an /-ring is an /-ideal
and N(A) £ f) ^/έ, where ^ T is the set of all maximal /-ideals ([12;
p. 175-176, Th. 4.8]). The ring A contains a zero divisor if and only
if it contains a nilpotent element ([7; p. 147, Th. 6] or alternatively
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[12; p. 175, Th. 4.8]). Thus if fl - ^ = {0}, then A contains no divisors
of zero. In this case each A/M, Me^t, is a totally ordered integral
domain. Thus any o-simple /-ring with an identity is a totally ordered
integral domain. By [7; p. 132, Th. 9], A/M contains no nontrivial
one sided ideals.

4.4. From now on it is assumed that A is an /-ring with identity
that is also an algebra over the rationals Q. It is shown in [11; p.
347] that every /-ring can be embedded in a lattice ordered algebra
over the rationals. It is assumed that the maximal /-ideals ^€ satisfy
{\^// = {0}. The set S of topological units of 3.1 will now be taken
as S = {rl I 0 < r e Q}. For 0 < r e Q, let B(r) be defined as B(r) =
{a e A I I a | < rl}. Then the B(τ) are a basis for the neighborhoods of
zero for a group topology on A. This topology may be non-Hausdorff.
Ring multiplication in A in general is not even continuous if one of
the two variables is held fixed. A subbasis for T(A) is given by all
the sets of the form {Me ^£ \ g e M + B(r)} as g and r range over A
and Q+\{0}.

LEMMA 4.5. Assume that A is a rational f-algebra with an
identity. Then § = T(A).

Proof. Clearly, {M | g e M + B(r)} £ {M | | M + g | < M + rl}. Since
M — rl< M + g < M + rl, by the previous lemma there is an m e M
such that —rl<m + g<rl. It follows that

{M\geM+ B(r)} = {M | | M + g \ < M + rl} .

Hence T(A) £ £>. Since § is a compact Hausdorff topology, in order
to show that T(A) — φ, it suffices to show that T(A) is Hausdorff. For
a r b i t r a r y M, Φ M2 e ^t9 w r i t e 1 = x , + x 2 , x{ e M{. T h e n {M\\M+ xζ\<
M + (1/2)1} are disjoint T(A)-neighborhoods of M1 and M2.

REMARKS 4.6. In the above situation, alternatively, T(A) can be
characterized as the weak A = {a \ a e A} topology on ^ by the following
two observations.

(1) {M|| g(M) | < r) £ {M \ \ M + g | < M + rl} £ {Λf | | g(M) | ^ r}
(2) The following sets are a subbasis for Γ(A):

{Λf I I g(M) \<r) 0 <geA,0<reQ .

Partitions of identity are needed for the representation of certain
/-rings as precisely all sections in a field. However, to show the
existence of partitions of identity requires that A* be closed under
bounded inversion. The next definition describes a property of the
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algebra—i.e., uniform closure—that will guarantee that A* is closed
under bounded inversion.

DEFINITION 4.7. With the sets B(r) = {a e A \\ a | < rl}, 0 < r e Q ,
as neighborhoods of zero, the Q-algebra A becomes a topological group
under addition. In particular, A is a uniform space. In keeping with
the terminology already standard for Φ-algebras, a subset Aι of A is
uniformly closed if it is complete in this uniform structure. If
Γ(^tf, E) are the sections in the field π as constructed in 3.10 from
A and ̂ €, then A is uniformly dense in Γ(^£, E) if A is dense in
the uniform space Γ(^/^,E)f or equivalently, if for any σ eΓ(^f, E)
and 0 < r G Q, there is an α e i with | σ — a | < rl.

Various conditions equivalent to uniform closure for Φ-algebras
are given in [9] and [16]. Note that an algebra may be closed under
bounded inversion without being uniformly closed, e.g., piecewise
rational functions on R+.

The next proposition establishes the major objective of this paper.

PROPOSITION 4.8. With A and ̂ // as in 4.4, let π\E-+^& he
the field associated with A by Proposition 3.10, and Γ(^fy E) the /-
group of all continuous sections in this field. Assume that A* is
closed under bounded inversion. Then A is uniformly dense in

Proof. Let σ eΓ(^/f, E) and 0<reQ be arbi trary. For each

^ , there is an aeA with σ(M) = d(M). The set

U = {b e ̂ £ I I σ(6) - d(b) \ < rϊ(b)}

is open because it is U = o"1[B{r)r{d)\ in the notation of 3.7. By com-
pactness, ^>f can be covered by a finite number n of such sets, i.e.,
^ — Uι U U Un. Let the corresponding elements a be aiy , an;
i.e., I dj(b) — σ(b) | < rl(b) for all beUj. At this point two crucial
pieces of information have to be utilized. First, since by Lemma 4.5
φ = T(A), the Uj are also hull-kernel open. Second, by Proposition
2.11. associated with this covering there is at least one positive partition
of identity:

0 ^ β, ̂  1, es I (^//\Uά) = 0, 1 = β, + + ew j = l,. .,n.

The element aeA whose existence has to be established is a = aιeι +
• + anen. At each b e ̂ £ it satisfies

- a(b) I ̂  Σ I σ(b) - dό{b) \ eό{b) < rϊ(b) .
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Thus I σ — a \ < r l , and A is uniformly dense in Γ(^f, E).

DEFINITION 4.9. The ring of all continuous real valued functions
on any space ^t is denoted by C(^). Suppose that ^// is any set
of ideals of A with f}^f = {0}, and that φ is any topology on ^f.
If for any aeA, any geC(^t), there is an element gaeA such that
M + ga = M + g(M)a for each Me ̂ €, then A is a C(^)-module.

The conclusion of the previous proposition is particularly significant
if A is uniformly closed. Such an assumption requires that A is a
C(^^)-module and hence in particular a real algebra.

COROLLARY 4.10. / / in addition A is uniformly closed in 4.8,
then

A = Γ(^f, E) and A* = C(^f)ΐ = Γ(^T, E)* .

Proof. Since A is complete and dense in Γ(^f, E), it follows
from Lemma 3.9 (iv) that A = Γ(^T, E). The map α->α:A*->
A* £ C{^£) is an /-isomorphism. Now A* is a complete real algebra
closed under the lattice operations. By the Stone-Weierstrass theorem,
A* = C(^T). It is asserted that M + a = M + α(M)l. If J -
{ae A I α(M) = 0}, then M Q J. Conversely, since if is a maximal s-
ideal, since J is an /-ideal, and since 1 g /, it follows that J — M.
Thus A* = C ϊ

COROLLARY 4.11. Under the hypotheses of 4.8, the following are
equivalent:

( i ) A* is archimedean;
(ii) A is Hausdorff;
(iii) E is Hausdorff.

Proof. (i)<=>(ii): The condition that αe{0} is equivalent to
I a I < r l f or all 0 < r e Q.

( i )<=>(iii): For x,y eE, if π(x) Φ π(y), then x and y lie in disjoint
neighborhoods. If, however, π{x) = π(y) — Me^, it can easily be
seen that x and y lie in disjoint neighborhoods if and only if | x — y | >
M + r l for some 0 < r e Q. But the latter is equivalent to (A* + M)/M
or equivalently, A* being archimedean.

REMARK 4.12. Suppose A is a rational /-algebra with Π ̂  = {0};
L will denote the /-ideal of A* that is the kernel of the /-homomorphism
a-+a: A* -+ A*.

( i ) Then L = {ae A* | n\a\ < 1 for all integers n}; ac — cae L

for any a, ce A*;
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(ii) If A is archimedean, then L = {0};
(iii) A/L ~ A* is a point separating dense subring of C(^^).

The main objective of this paper has been accomplished. Finally,
the foregoing results are now summarized in a theorem and its
converse.

THEOREM II 4.13. Consider an f-algebra A with identity 1 over
the rationals Q, with ^/f as its space of maximal /-ideals; and A* =
{ae A\\a\ < rl for some reQ} its subalgebra of bounded elements.
Construct the associated field (3.10) and the representations of A, A*
as rings of sections contained in the /-groups of all sections as
follows:

π: E = U {AIM\ Me ^//} -> ̂ f, ττι{M) = A/M Me ^

a: ^ -»E, a(M) = a + Me A/M aeA

Γ(^t, E) — {σ I σ: ^£ —> E continuous, π o a — identity]

Γ(^T, E)* = {(7G Γ(^sf, E)\\σ\<r\ some 0 < r e Q}

A = A = {a\aeA}^ Γ(^*f, E), A* ^ A* = {a | a e A*} S Γ(ΛT, E)* .

Assume that

(A) n - ^ = {0};
(B) Uaei*

( i ) 7r: E —> ^/^ is a

(a) over ίΛe compact Hausdorff space ^/f in its hull-
kernel topology;

(b ) the topology of E has the subbasis

{x e EI I d(π(x)) - x \ < π(x) + r l } , α G i , 0 < r e Q .

(ii) Each π~ι(M), Me ^€, is a totally ordered integral domain.
(iii) A is uniformly dense in Γ(^€, E), i.e., for any σ e Γ(^f, E)

0 < r eQ, there is an aeA with \ σ — a \ < r l .

If in addition to (A) the condition (C) that A is uniformly closed
holds, then:

(iv) (B) holds; E is Hausdorff; A* ^ A* = C^£)ϊ = Γ ( ^ , -£/)*;
4 iδ α C{^/έt)-module and in particular, an /-algebra over the reals.

(v) A = Γ(^f,E).

COROLLARY TO THEOREM II 4.14. With the same notation as in the
previous theorem, assume condition (A) and the more restrictive
condition (B'):

(A) n ^ = {oι,
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(BO UαeA=>l/αeA.
Then the conclusions (i), (ii), and (iii) of the previous theorem hold,
except that (ii) can now be improved as in (ii'):

(ii') Each π~ι(M), Me ̂ €, is a totally ordered division ring.
(Furthermore, if (A), (B'), and (C) hold, then all the conclusions

(i)-(v) of the previous theorem as well as (ii') hold.)

Perhaps it is not immediately clear just what should be meant by
the converse of the previous theorem. In the theorem, the algebraic
properties of the ring A determined the properties of the field derived
from A, namely 4.13 (i) (a), (b), and (ii) or 4.14 (ii'). In the converse,
the starting point must be any field π: E—>^/f whatever subject only
to the restriction that it is to have these three properties. Now it
has to be proved that Γ(^f, E), or an appropriate ring A £ Γ(^//, E)
satisfies the algebraic conditions of the general class of rings under
consideration.

The next corollary will be used to prove the converse of the main
representation theorem and in particular will give a method for con-
structing all /-rings of the kind considered here. The reader should
be warned that in the next corollary Γ(^//, E) need not be a ring, as
will be shown in Example 5.1. Since the proof of the next corollary
is elementary and not very interesting, some of the details are only
indicated.

CONVERSE OF THEOREM II 4.15. Suppose π .E-*^*? is any field
of vector lattices over Q with the weak order uniform structure (3.12)
satisfying 4.13 (i) (a), (b) and (ii). Assume that A C Γ(^/S, E) is a ring
having the following properties:

( a ) E = \J{X(^)\xeA).
( b ) A is an /-algebra over Q with 1 e A.
(c ) A separates the points of ̂ /S.
( d ) Λ* = {λ G A11 λ I < r 1, some 0 < r e Q} is closed under bounded

inversion.
For Me^/f, if O(M) is the zero of π~\M), define A~1(O(M)) =

{XeA\ λ(Λf) - O(M)} and ̂ €(A) = {A-\O(M)) \ Me ^€). Then:
( i ) A is an f-algebra satisfying the same hypotheses as A in

the Theorem II 4.13.
(ii) The maximal /-ideal space of A in the hull-kernel topology

is ^tT(Λ) = Λf.
(iii) A is uniformly dense in Γ(^/f,E).
(iv) The field constructed from A and ̂ £(Λ) (see 3.10) is iso-

morphic to π.
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Proof. ( i ) Clearly, f\{A~\O{M))\Me ^/^} = {0}. Thus 4.13(A)
holds. Consequently, A being a subdirect sum of totally ordered /-
algebras, is itself an /-algebra. Lastly, 4.13(B) follows from (d).

(ii) Conclusion (ii) will follow from two general facts that are
useful also in other circumstances. Firstly, for any σ e Γ(^/f, E), the
set {6 e ^ I σ(b) - 1(6) > r(6)l (6), for some 0 < r(b) e Q) is open.
Secondly, for any subset Id A, define K(I) = {b e ^f | σ(b) = 0(6) for
all σel}. Suppose I is any convex ^-ideal with K(I) = 0 . Since
each π"1(6) is o-simple, use of the first fact, followed by a simple
covering argument, and finally a lattice operation produces an element
in / that exceeds 1; thus I = A. Hence ^f(A) = {A~ι(0(M)) \ Me Λ\.
Now ^//(Λ) has a compact Hausdorff topology £> as the maximal /-
ideal space of the /-ring A. Since £ is contained in the original
topology, they both are the same.

(iii)—(iv) Conclusion (iii) follows from 2.11. The proof of (iv) is
omitted since it is a straightforward consequence of fundamental de-
finitions.

Specialization of Theorem II to a Φ-algebra A and use of 4.1 and
4.11, gives the usual representation of A as a subalgebra of Ό(^)
as well as some additional information. One advantage of this re-
presentation is that the elements of A need no longer take the values
± oo on ^//.

COROLLARY 2 TO THEOREM 4.17. In the notation of Theorem II,
if A is a Φ-algebra with ^ as its space of maximal s-ideals, and if

(B) A* is closed under bounded inversion,
then:

( i ) Each A/M, M e ,y/έ, is an integral domain contained in the
hyper-real numbers.

(ii) A n C(^f)ϊ is dense in C(^f).

(iii) E is Hausdorff, the residue classes of the constant functions
determine a subset ^/ί x RaE that (by ii)) has the product topology.

(iv) Each a e A takes values in ^// x R on a dense open subset

of ^//.

(v) A is uniformly dense in A = A^Γ(^f, E).

If (B) is replaced by the more stringent condition that

(B') A is closed under bounded inversion,

then (i) becomes

(V) A/M for Me ^// are either the real or hyper-real numbers.

If
(C) A is uniformly closed,
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then A is closed under bounded inversion and
(v) A

5* Examples* A few examples and counterexamples will be
given. A field τc\E—*^ί€ is trivial or a product field if for some
ring F which is a topological group, E = ^f x F and π({M, /)) = M
for (Λf, /) G ̂  x F with the product topology on E. In conclusion,
methods are described for constructing /-rings A whose associated
fields π are nontrivial.

The next example gives an /-ring A satisfying the hypotheses of
the last Theorem II 4.13 so that A is uniformly dense in Γ(^f, E)
but where neither the completion of A nor Γ(^€,E) are rings.

EXAMPLE 5.1. Consider the algebra A of all continuous functions
/ : R+ —> R ordered point-wise which are eventually rational, i.e., there
is a y depending on / such that for all x > y, f(x) = ρ(x)/q(x) where
p, q are polynomials and where q has no roots in (y, oo). Then the
space of maximal /-ideals of A is the one point compactification
^ = R+ (j {co}y where f(ω) = p/q and a) is the ideal of all / with
pfq = 0. It follows from [9; p. 84, 3.6] that it is impossible to embed
A as a subalgebra of a uniformly closed Φ-algebra having the same
maximal /-ideal space as A.

In order to find the completion A of A as an additive topological
group in the absolute value, consider a Cauchy sequence {an} e A.
There is a unique polynomial p such that for all sufficiently large
n, an — p tends to zero at oo. Thus {an — p] converges to a continuous
bounded function / that tends to zero at oo. If C0(R+) denotes the
ring of all such functions /, then {an} is identified with (/, p) and
A = CQ(R+) x R[x]. If also {&*}<-> (g, q)eΆ, then it does not follow
that {anbn} <-• (fg, pq) because {anbn — pq) need not be Cauchy. Thus
the natural definition of multiplication fails.

The field obtained from A may be written as

π\E = R+ x i? U R(x) -* R+ U {ω} =

π-\M) - R f or M Φ ω.

The topology on π~\^^\{ω}) is simply the product topology of R+ x R.
A typical point of π~\ώ) = R(x) is of the form e — s/p + c + q, where
ceR, where s,p, qe R[x] are polynomials whose degrees satisfy dp > 3s,
dq^l with g(0) = 0, and where one or both of the terms s/p, q may
be missing. A typical neighborhood of e is obtained by taking any
ae A that eventually equals c + q, a rational number 0 < r eQ, an
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interval (N, °°) for some N, and forming

B(rY(a)Π7ϊr1[(Nfoo)\j{ω}] .

The above basic neighborhood of e contains the residue classes modulo
ω of all elements of A which are eventually of the form s/p + c + q,
where ceR; where either s/p is missing or s, peR[x] with dp > 3s,
and with | c — c \ < r. Let h e R[x] be arbitrary and let σ, τ e Γ(^f, E)
be the maps

σ(y) = 1/(2/ + 1) + h(y), τ(y) = y2 yeR+

σ(ω) = h , τ(ω) = x2 e R(x) .

The function τσ: ^y/ί—> E is not continuous at a). In order to see
this, take any aeA with d(ω) = x2heR(x). There is an Λτsuch that
δ(y) = y2h f ° r a l l y > N. It follows from

{τσ)(y) - y2/(y + 1) + y2h(y) y e R+ ,

(τσ)(ω) — τ(ω)σ(ω) = x2h = d(ω) ,

that for all y > N, we have (τσ)(y) — d(y) = y2/(y + 1). Thus for any
choice of r, we have for all sufficiently large y that (τσ)(y) g B(r)'(a);
or, equivalently, that | (τσ)(y) - a(y) \ > r l . Thus τσ g Γ(^, E). Hence
the latter is an additive group but not a ring. It is well known that
the completion of a topological ring is always a topological ring.
Although in the above example, additively A is a topological group,
multiplication in A is not continuous even in each variable separately.

EXAMPLE 5.2. Consider the lexiographically ordered field F = R[[t]]
of real power series in t having only a finite number of terms with
positive exponents. Define ^ = {0} U {1/n \n = l,2, •} and C(^C F)
as the ring of all continuous maps of ^t into the discrete space F.
The subring A c (^C F) consisting of all maps /: ^f —> F with
/(0) G R[[t2]] is an /-ring satisfying all the hypotheses (A), (B), (C) of
Theorem II i.e., A is complete and closed under bounded inversion.
The maximal ^-ideal space of A is ^f and A/M = F for each Me ^£.
Thus E = ^ x î 7 with π((M, z)) = ikf, but i? does not have the product
topology. Also note that E is not Hausdorff.

EXAMPLE 5.3. Next a general method is described for constructing
/-rings A whose associated fields π\E-^^£ have stalks which are
not all isomorphic to the same ring. Then the effect that usually
can be produced by this method is illustrated by a simple example.

(a) The usual choice {rl | 0 < r e Q} of topological units (in the
procedure of 3.1) makes any totally ordered division ring D into an
additive topological group, which is Hausdorff if and only if D is
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archimedean. If X is any compact Hausdorff space, then the ^-group
M(X, D) of all continuous maps X—»D will rarely be a topological
ring. Suppose G is a given set of homeomorphisms a: X—> X and θ
is some map of G into the semigroup o — End D of all order preserving
endomorphisms of D. For any 7 e o — End D and fe M{X, D) a function
7/e M(X, D) is defined by (yf)(x) = 7(f(x)) for xeX. Suppose B s M(X,
D) is any /-subalgebra such that θ(a)fe B for all a e G whenever fe B.
(If X is totally disconnected, then a natural choice for B is the algebra
of all continuous maps of X into D with the discrete topology o n ΰ . )
Now define A = {fe B | /(cφ)) = (θ(a)f)(x) for all & e X, α e G}. If ^t
is the orbit space of X and p: X—> ^ C is the natural projection defined
at xeX by p(#) — {α(α;)|αeG}, then assume p is open. Then it is
known that ^ is a compact Hausdorff space. In this case ^ is
the maximal /-ideal space of A. For Me ^ff A/M is a subring of D.
The set D(a) of all elements left fixed by θ(a) for α e G is a division
subring of D. If # e X is a fixed point of a, i.e., α(x) = x, then
f(x)eD(a), in particular if a(x) = x for all aeG, then A/p(x) S

(b) Now the above situation is specialized. Take X = {0} U {1/
± 1, ± 2, •••} in the usual topology; set D = Λ[[ί]], the power series
field (see 5.2); G = {α}, where α: and θ are defined by a(ϋ) = 0, α(l/^) =
-1/w, ^(α)(ί) = ί2. Note that α2 = 1 while θ{a)2 Φ 1. Take J5 as all con-
tinuous maps /: X—> D with D discrete. As above, A = {feB\ f(a(x)) =
(θ(a)f)(x) for all a; e X}. The condition (θ(a)f)(0) = /(0) forces /(0) e R,
the fixed field of θ(a). If ikf(l/w), ikf(O) are defined as the /-ideals of
functions vanishing at 1/n, 0, then ^ T = {M(0)} U {M(l/n) \n = l,2, •}
and A/M(l/n) = D while A/M(0) = R.
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