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A REPRESENTATION THEOREM FOR CERTAIN
CONNECTED RINGS

SILVIO AURORA

It is shown that if A is a semisimple, connected, locally
connected Q-ring with unit element such that every maximal
ideal disconnects A, then A is continuously isomorphic to a
dense subring of the ring of all continuous real-valued func-
tions on a suitable compact Ήausdorff space.

Many authors have obtained representations for semisimple Banach
algebras as algebras of continuous functions. The object of this
note is to present a somewhat similar result which, however, does
not assume the presence of real or other kinds of scalars.

Specifically, it is established in Theorem 2 that if A is a semi-
simple, connected, locally connected Q-ring with unit element such
that every maximal ideal has a disconnected complement in A, then
A is continuously isomorphic to a dense subring of the ring ^(Φ; 3Ϊ)
of all continuous real-valued functions on a suitable compact Haus-
dorff space Φ.

The basic tool employed is Theorem 1, which asserts that if A is
a connected, locally connected ring with unit element such that the
removal of the zero element disconnects A, then A is algebraically
and topologically isomorphic to the field R of real numbers.

The remarks contained in this note arose as tangential observations
in connection with a somewhat different problem which was investi-
gated with the financial support of the Research Council of Rutgers
University; the author wishes to express his appreciation to the Re-
search Council for that assistance.

2* Topological rings which are disconnected by the removal
of a point* An important step in proving the representation theorem
is the characterization of those locally connected rings which are dis-
connected by the removal of a point.

THEOREM 1. Let A be a topological ring with unit element.
In order for A to be algebraically and topologically isomorphic to
the field 9ΐ of real numbers it is necessary and sufficient that A be
connected and locally connected, but that the set A* of nonzero ele-
ments of A be disconnected.

Proof. The necessity is obvious.
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For the sufficiency, we first note that the additive group of A is
algebraically and topologically isomorphic to the additive group of
real numbers. (See for instance [l Chap. 5, p. 28, Exercise 4], where
a proof of the fact is outlined.) In particular, A is locally compact.

If c is a nonzero element of A then the mapping x —* ex is a con-
tinuous endomorphism of the additive group of A; thus, the image of
A under this mapping is a connected subgroup of that group and
therefore coincides with A since the image contains the nonzero
element cl = c. Then 1 = cd for some d in A, and c is right invert-
ible. It follows that A is a division ring.

Pontrjagin's characterization of connected, locally compact division
rings (see for instance [3; Chap. 6, p. 160, Corollary 2 of Theorem 1])
implies that A is algebraically and topologically isomorphic to the field
3ΐ of real numbers, the field of complex numbers, or the division ring
of real quaternions. The fact that A* is disconnected eliminates the
last two alternatives, and the theorem follows.

In order to obtain the representation theorem we shall employ a
succession of simple lemmas. The first two of these lemmas follow.
The proofs are routine.

LEMMA 1. If A is a connected ring with unit element then
every left ideal and every right ideal of A is connected.

LEMMA 2. Let A be a connected, locally connected ring with
unit element, and let I be a closed ideal which disconnects A. Then
All is algebraically and topologically isomorphic to 9ΐ.

3* The representation theorem* If Φ is a compact Hausdorff
space then the symbol r^(Φ\ 9ϊ) will denote the ring of all continuous
real-valued functions on Φ, with the topology of uniform convergence
on Φ as the topology of the ring. It is recalled that a topological
ring with unit element is a Q-ring provided that the set of invertible
elements is open; in a Q-ring with unit element, maximal ideals exist
and are closed sets.

THEOREM 2. Let A be a semisimple, connected, locally connected
Q-ring with unit element such that every maximal ideal disconnects
A. Then there exists a compact Hausdorff space Φ such that there
is a continous isomorphism σ of A onto a dense subring of ctf(Φ\ 3ΐ).

The proof is outlined by listing the lemmas which are employed
to construct it.
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LEMMA 3. There is a subfield P of A such that P contains 1
and P is algebraically isomorphic to the field of rational numbers.

Proof. If n is a natural number then no maximal ideal M can
contain n since otherwise AIM, which is isomorphic to 9ΐ by Lemma
2, would have finite characteristic. Thus, every natural number n is
an invertible element of A. If P is the set of all elements of A of
the form mn~\ with m an integer and n a natural number, then P
clearly is the required field.

DEFINITION. A subset C of a ring A is said to be symmetric
provided that whenever x is in C then — a; is in C.

LEMMA 4. If r is a positive rational number then there is a
connected symmetric neighborhood W of zero in A such that
φ(W)d\ — r, r[ for every continuous nonzero homomorphism φ of A
into 3ΐ.

Proof. Since — r is invertible there is a neighborhood U of — r
which contains only invertible elements. Thus, U is disjoint from
every maximal ideal M, and r + U is therefore disjoint from r + M
for every maximal ideal M.

There is a connected neighborhood V of zero contained in the
symmetric neighborhood (r + U) Π (— (r + U)) of zero, so that W =
VU (—V) is a connected symmetric neighborhood of zero which is
contained in (r + U) Π ( — (r + U)) and therefore in r + U. It follows
that W is disjoint from r + M for every maximal ideal M.

Let ^ be a continuous nonzero homomorphism of A into 3ΐ. Then
the kernel of φ must be a maximal ideal M because the image of φ
is necessarily the entire field 3ΐ. Now r + M is disjoint from TΓ, so
that r does not belong to φ(W). We conclude that φ(W)a\ — r, r[
since <p(W) is a connected symmetric set of real numbers and does
not contain r.

This proves the lemma.

LEMMA 5. The relative topology of P in A is the ordinary
topology of the field of rational numbers.

The proof involves a routine application of Lemma 4.

LEMMA 6. Let U be a neighborhood of zero in A, and let f be
a continuous nonconstant mapping of U into 3ΐ such that

f(Xl+ ... + xn) = f(Xι) + + f(xn)
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whenever x19 , xn, xι + + xn belong to U, and f(xy) = f(x)f{y)
whenever x, y, xy belong to U. Then there exists exactly one continu-
ous nonzero homomorphism φ of A into 3ΐ such that the restriction
of φ to U is precisely f.

Proof. If x is in A then there is a natural number m such that
x/r is in U whenever r is a natural number with r ^ m. We define
φ(x) = mf(x/m). Then φ is well-defined, and the remaining details of
the proof are routine.

LEMMA 7. Let W be a connected symmetric neighborhood of
zero in A such that φ(W) c ] —1, 1[ for every continuous nonzero
homomorphism φ of A into 3ΐ. Let Φ be the space of all continuous
nonzero homomorphisms of A into 3ΐ, with the topology for Φ obtained
by identifying Φ (in the obvious way) with a subset of the topological
product of the family {Ix\xe W), where each space Ix is the closed
interval [ —1, 1]. Then Φ is a compact Hausdorff space.

We note that Lemma 6 implies that Φ can also be identified with
the set of all continuous nonconstant mappings / of W into 3ϊ which
have the properties that f(xt + - + xn) = f{xx) + + f(xn) when-
ever x19 , xn, x, + + xn belong to IF, and f(xy) = f(x)f(y) when-
ever xy y, xy belong to W. It may be noted that the topology for Φ
has as a subbase the family of all sets

{φo; x; S} = {φ \ φ 6 Φ, | φ(χ) - φo(χ) | < ε} ,

where φ0 e Φ, x e A, and ε is a positive real number. Furthermore, if
x is an arbitrary element of A then there is a natural number m such
that x/m e W; thus, every set {φo; x: e} can also be written in the form
{φQ; x/m; ε/m}, so that there is a subbase for the topology of Φ which
consists of all sets of the form {φQ; y; S}, with φoeΦ,ye W, and d a
positive real number. The proof of Lemma 7 then becomes routine.

LEMMA 8. // x is an element of A then the function x defined
on Φ by the rule x(φ) = φ(x), for all φ in Φ, is a continuous real-
valued function on Φ.

The proof is routine.

LEMMA 9. Let σ be the mapping of A into ^(Φ; 3ΐ) defined by
the rule σ(x) — x for all x in A. Then σ is a continuous isomorphism
of A into ctf(Φ) 3ΐ).
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An application of Lemma 4 establishes the continuity of σ, while
the fact that σ is an isomorphism is proved in a routine manner.

LEMMA 10. σ(A) is dense in ύ (Φ; 3ΐ).

Proof. The closure of σ(A) is a uniformly closed subring of
cέf(Φ\ 3ΐ) which contains all constant real-valued functions on Φ since
it contains all constant rational-valued functions on Φ. It is also clear
that the closure of σ(A) separates points of Φ, and the Stone-
Weierstrass Approximation Theorem (see for instance [2; p. 56, Th. 3])
implies that the closure of σ(A) coincides with rtf(Φ', 3ΐ).

This sequence of lemmas establishes the theorem.
An example demonstrates that the conclusion of Theorem 2 can

not be sharpened. If A is the set of all real-valued functions which
are defined and have a continuous derivative on [0, 1], with the obvi-
ous operations in A, and with the norm for A defined by

N(x) = sup {| x(t) I [ 0 rg t ^ 1} + sup {| x'(t) | | 0 ^ t ^ 1}

for each x in A, then A is a commutative Banach algebra which
clearly satisfies the hypothesis of Theorem 2. However, the topology
for A is strictly finer than the topology for ^ ( Φ ; 3ΐ) in this example.
For instance, if xn(t) = (2πn)~ι sin 2πnt for 0 ^ t ^ 1 whenever n is
a natural number, then the sequence {xn} converges uniformly to zero
(that is, {xn} converges to 0 in ό\Φ\ 3ΐ)), but {xn} does not converge
to zero in A since N(xn) = (2πn)~1 + 1 for every natural number n.
Thus, σ is not a homeomorphism of A with σ(A).

The same example also shows that σ(A) need not coincide with
(^(Φ; 3ΐ) even though σ(A) is a dense connected subring of the latter.
For instance, the element z of c<f(Φ\ 9ΐ), where z(t) = \ t — (1/2) | when-
ever 0 <£ t <̂  1, is obviously not the image of an element of A.
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