
PACIFIC JOURNAL OF MATHEMATICS
Vol. 32, No. 1, 1970

SYMMETRY AND NONSYMMETRY IN THE GROUP
ALGEBRAS OF DISCRETE GROUPS

JOE W. JENKINS

A Banach *-algebra ^ , with identity e, is symmetric if
era* -f e is regular for each # in *%f. In this paper we gen-
eralize certain conditions on a discrete group G that are known
to be sufficient to ensure symmetry of /ι{G). Also we define
semi-symmetry and derive an inequality that must be satisfied
if Λ(G) is not semi-symmetric. Finally we show that if a
group contains a free subsemigroup on two or more generators
then /i(G) is not symmetric.

Let G be a discrete group. /[(G) the group algebra of G. /λ(G)
is a Banach *-algebra with involution defined pointwise by x*(g) =
x(g~ι) and with convolution as multiplication. The mapping g —• δg,
where δg(s) = 0 if s Φ g and δg(g) = 1, is a homomorphism of G into
/X(G). In general, we will not distinguish between g and δg. Note
that if x G /Jfi) then x can be written in the form x = Σ x(g)g.

geG

j%f(G) (or 3ίf) will denote the real linear subspace of hermitian
elements of <(G). ^/(G) will be the subspace of £%f(β) consisting
of all elements x such that

N(x) - {g I x(g) Φ 0}

is finite.
Let J^Γ denote the natural cone in <(G), i.e., J^~ is the cone

generated by all elements of the form xx* where x e <(G). Denote
by J^(έ%f) the continuous linear functionals defined on £%f, non-
negative on 3ίΓ Π 3ίf and one at the identity.

The right regular representation of <(G) over 4(G), x—>Rx, is
defined by: Rx(y) = yx, for each y e 4(G).

DEFINITION 1.1. 4(G) is semi-symmetric if α? e £ϊff(G) and sp (i?J ^
0 imply (x + e)~ι e /[(G).

LEMMA 1.2. If ^(G) is semi-symmetric then
( i ) sp (xx*) ^ 0 /or eαcΛ x in /Y(G) with N(x) finite, and
(ii) if x G ^/(G) ίfeβπ sp (a;) is real.

The proof of this lemma is essentially a duplication of the proof
of the corresponding results for an arbitrary symmetric Banach
^-algebra.
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Let P/(G) be the subset of 3tff(G) consisting of all elements with
nonnegative spectra. We observe that Xx e Pf(G) if λ > 0 and
x e P/(G), and that, since /[(G) is semi-simple,

pf{G) n -PAG) = {0}.

LEMMA 1.3. // /X(G) is semi-symmetric then Pf(G) is a cone.

Proof. We need only show that x + y G Pf(G) if x e Pf(G) and
y e Pf(G). Let x e P/(G) and 3/ e P/(G). Then sp (Rx) ^ 0 and sp(i2y) ^
0. Thus i^ and i?^ are positive definite operators on /2(G) and hence
also Rx + Ry = Rx+y. Therefore sp (Rx+y) ^ 0 and thus

(x + y + e)~ι e /,(G) .

If a > 0 then α r ^ and or1?/ are in Pf(G). Hence

(e + α-1^ + oc~ιy)~ι = a(ae + a? + i/)"1 e

Therefore — a $ sp (x + 2/) and, since sp (& + 7/) is real, sp (x + y) ̂  0.
If 4(G) is symmetric, then for each x e

(This result is implicit in the usual proof of Raikov's Theorem, see
[7]). If 4(G) is semi-symmetric an abbreviated version of this result
can be proven.

LEMMA 1.4. // /V(G) is semi-symmetric and x e J%ff(G) then

Proof. Let xe£έf}(G) be given. Denote by ^//(x) a maximal
commutative *-subalgebra of ^(G) containing x, and by Δ(^f/(x)) the
Gelfand representations of ^f/(x). It is well known that if ye^f(x)
then

Since /γ(G) is semi-symmetric, Pf(G) is a cone. Hence, if we set

^//f{χ) = ̂ (x) n G

then Pf(G) induces an order on ̂ /?f{x). Furthermore, if for δ e A
we set δf = δ{^{x)1 then δf is positive with respect to this order. By
the Monotone Extension Theorem, δf has a positive extension to

if

(y + Λrf(x)) Π Pf(G) Φ 0
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is equivalent with

(y + ^/Sf(x))n ~Pf(G)Φ 0

for each ye
Assume ze (y + ^/ί}(x)) Π Pf(g). Then there is a z'e ^#}(x) such

that 7/ + z' e Pf(G). Hence

sp (y + zf) c [0, a]

for some α > 0. Let z" — zf — αe, then 2" G ^y^ (a ) and

sp (y + 2") = sp (y + 2' - ae) = sp (2/ + s') — α c [ —α, 0] .

Thus

(2/ + ^ ( α ) ) n -P/(G) ^ 0 .

A similar argument establishes the converse.
Let Sf be an extension of δf given by the preceding argument.

If y e <&ff{G) then y - v(y)e e -Pf(G). Hence ^(2/ - y(2/)e) ^ 0. But

Sf(y - v{y)e) = ^(2/)

Thus δf(y) ^ v(2/). Similarly, δf(y) ^ -v(2/). Therefore

v(2/) ^ II y II

for each 2/ e ^g/(G). Since r^ff{G) is dense < ^ 3/ has a continuous
extension, /„ to ^5^ Since the closure of Pf(G) contains the natural
cone ^ Λ e ^ ί ^ ) .

Now, if x G J^/(G) and α G sp (x) then there exist an ^//(x) and
0 G JC ^(x)) such that δ(x) = a. But then /,(x) = δ(x) = α. Hence

It is natural to ask how symmetry of /λ(G) and semi-symmetry
of /ί(G) are related. The following theorems provide a partial answer.

THEOREM 1.5. Assume that sL(G) is semi-symmetric and that
whenever lim% xn = x for (a J c ^ f G ) , limw v(xOT) = v(αθ; ίfee^ /i(G) is

Proof: Let a; G 4(G) be given and select {$„} c r2έff{G) such that
limri £TO$ί = a;̂ *. Then, limw v(xn£*) — i;(£ca?*). Hence, if e > 0 is given,
there is a A: such that

v(xkxt) > v(xx*) — e/2

and
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\\xkxϊ - xx* II < ε/2 .

But, by Lemma 1.4, there is an f0 e ^l(£lf) such that

Since each / e J^(J3T) has 11/11 = 1,

f{xkxt - xx*) = f(xkxi) - f(xx*) < ε/2 .

Thus

Mm*) > Mx&i) ~ e/2 = v(xkxΐ) - ε/2 > v(xx*) - ε .

Hence

sup f(xx*) = v(xx*)

for each xe/[(g), and hence <((?) is symmetric.
If /y(G) is symmetric then, by Raikov's theorem, (c.f. [8]), the

spectral radius of each element of the form xx* is equal || Txx*\\ for
some *-representation x —* Tx. However, this *-representation need
not be the right regular representation over 4(G). If we assume G
is amenable, then this latter representation weakly contains all other
*-representations, ([6]), and hence the spectral radius of xx* is given
by | | iϋ x x * | | . Using these facts we can prove

THEOREM 1.6. // 4(G) is symmetric and if G is amenable then
SL(G) is semi-symmetric.

Proof. Suppose that xe <£%?f(G), — l e s p ( ^ ) and sp (Rx) is non-
negative. Let y = x — v{Rx)e then

-l-v(Rx)esv(y)

and

sp (Ry) = sp (Rx - v(Rx)e) c [-v(Rx)f 0] .

Therefore

v(yy*) = v(v2) ^ (i

and

v{Ryy*) - v(Rl) £

But

v{Ryy*) = \\Ryy*\\ .

and, since G is amenable,
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for any *-representation z —• Tz. Therefore

v(vv*) = [l +

for any *-representation z—*Tz. This contradicts Raikov's criteria
for symmetry. Hence, if sp (Rx) is nonnegative, then — l£sp(ίc).

REMARK. The dual hypothesus at Theorem 1.6, namely, that
sγ{G) was symmetric and that G was amenable, was necessary.
Although all known pertinent results tend to indicate that symmetry
of s[(G) implies amenability of G, we do not know this to be true.

2* A sufficient condition for semi-symmetry* If if is a sub-
group of G then there is a cannonical embedding of /SJEL) into
4(G). We will not distinguish between an element of 4(H) and its
image in ^(G). Since for each xe/l(H), sp (̂2n(α?) = sp (̂σ)(a?) (cf. [3]),
we are assured that this laxity will cause no confusion when making
spectral considerations.

Let m(G) be the space of bounded functions defined on G. The
mapping 0—>0% where

θ\x) = Σ θ(g)x(g)
geG

for xe4(G), is an isometric isomorphism of m(G) onto
For 4 c G , let <A)> be the group generated by A.

LEMMA 2.1. Let xes^G). Then x has no left inverse if, and
only if, there is a θ e m(^N(x)y) such that \\ θ \\ = 1 = θ(e) and the
null space of θv contains the left ideal generated by x.

Proof. Assume x has no left inverse in <((?). The preceding
remarks imply that x has no left inverse in 4(ζN(x)y).

Let L be the left ideal in si((N(x)y) generated by x. Now, if
ye^(<N(x)» and || 0 | | < 1, then

(e + y)-1 = e + Σ(-l)" l/*

is in /1(ζN(x)y). Hence, if \\e — z\\ < 1, set y = — e + z, and then
z-1 = (e + y)-1 is in <(<#(«)>). Thus

Ln{ye ^«JSΓ(ίc)» | || β — 2/1| < 1} = 0 ,

and the distance of L from e is at least one. Hence the desired θυ

exist.
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The converse is obvious.
Let x e <^ff(G) such that x + e is singular and sp (Rx) is non-

negative. Let A = N(x) U {e}, H = <A> and s(w) = c(A%), the cardi-
nality of AΛ Enumerate the elements of H in the following manner:

and

for n = 1, 2, .
Since x + e is singular, and cc + e is hermitian, a? + e has neither

a right nor a left inverse. Hence there is a 0 e m{H) such that
0(e) = 1 = \\θ\\ and the null space of θv contains L> the left ideal
generated by x + β. For #v to vanish on all L, it is necessary and
sufficient that, in particular, θv(g{x) = 0 for each g{ e H.

Let 0̂  = θ(gi) for ΐ = 1, 2, , and for each positive integer n,
define θ(n + 1) in 4(H) by

l)(gt)=
0i, if 1 < i < s(n + 1)

0, if ^ > s(n + 1)

Then

| | Rx+Mn + 1)) ||2
2 ^

But sp (JBX) ^ 0, hence

(

Therefore

2.2 | | β

for n = 1, 2, .
Now, if flr< e A" then

Thus

1)), θ(n + 1))

+ 1)), «(w + 1)) ^ 0 .

+ e)) c AM = A"+1 .

[θ(n

( )

Σ
3 = 1

= 0
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If giβH- An+2 then

N(g(x + e)) c H ~ An+ί .

Hence again

Rx+Mn + l))Gfc) = 0 .

Therefore

|| R,+.(θ(n + 1)) llί = . Σ I R,+Mn + l))(flr,)

But for gj e An+2 ~ An,

N{gά(x + e)) c An+3 - A*-1 .

Hence

s,2

+ e)(9i)~
i = «(n—D+i

Σ I flry(
( 1)+1

where dH = 0 if g5(x + e)(^) = 0 and one otherwise. Note that for
fixed j , dμ Φ 0 for at most c(A) i's. Therefore

We also have

Combining these results by 2.2. we have

(2.3) c(A)\\x + e\\l _ [ Σ ^ J ^ Ί 2 ^ ' Σ Ί ^ I2

for each n = 2, 3,
We compile the above argument in

THEOREM 2.4. // 4(G) is not semi-symmetric then for some
x 6 βέff(G) there is a θ = (04) e m«N(x)»

θi) satisfies 2.3.
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3. Condition SS. For a given G let S^(G) denote the family
of finite symmetric subsets of G containing the identity. Adel 'son-
VeP skiϊ and Sreider, [1], considered the following condition on a
group G:

(A - S) for each A e

c(An) = o(dn) for any d > 1 .

They proved that if G satisfies (A — S) then G is amenable. Hulanicki,
[5], later showed that if a group satisfies (A — S) then xx* + e is
regular for each x in /X(G) with finite support.

We now define a condition which is weaker than (A — S):
(SS) for each A e

lim infΛ c(An+1 ~ An)1/n ^ 1 .

It is not difficult to show that if G satisfies (A — S) then G satisfies
(SS) and that if G satisfies (SS), G is amenable. We also have

THEOREM 3.1. // G satisfies SS then /±(G) is semi-symmetric.

Proof. If /[(G) is not semi-symmetric then by Theorem 2.4
there is a θ = (04) e m«A», where A = N(x) U {β}, such that || θ \\ =
1 = 0(β) and

c ( A ) | | a ; + e | | i Σ I θ, |2 ^ Σ I <?y I2 ̂  Σ l ^ l 2

f o r e a c h n = 2, 3, . L e t α ' = c(A) \\x + e \\l, a = (a' + l ) / α r , a n d

8 1 2 )

b= Σ l^- l 2 -

Then, since β(e) = 1 and β e A, 6 > 0. We have

β ( 4 ) 8(2) 8(4)

Σ I θs |
2 = Σ I Θ, I2 + Σ

l l j { 2

and if

then

' Σ Γ I θj i2 = S Σ I θi I2 Λ-^JΘ, |2 ^ ( α ) - * + (l/a')[(a)^b] ^

Therefore
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s(2n+2)

Σ |
for % = 2, 3,

Since || 0 || = 1; | 0y | ^ 1 for each j . Hence

|2

j-=s(2n)+L

Consequently

c(A2n^ ~ A2n) ^

for n = 2, 3, . If B = A2 then £ e ^ ( G ) and lim inf. CtB +1 - J?%) > 1.
This contradiction implies 4(G) is semi-symmetric

4* Condition (C)* Hulanicki [5] proves that /[(G) is symmetric
for any group G satisfying:

(C) there is a k such that for any finite set A(zG

sup c{AtyAt2 Aίn) <Ξ kmfA(m, n) ,

where the least upper bound on the left is taken over all sequences
(t19 t2, , ίn)

 e ^ % where at most m of the ί/s are different from the
identity, and the function fA(m, n) satisfies the condition fA(m, n) —
o(cn) for any c > 1, uniformly with respect to m ^ tι. We will obtain
the same result for any group G satisfying the condition

(C) there is a & such that for each A

liminfw sup [c(AsιAs2 Asn)\ln < k .
(Si)eGn

LEMMA 4.1. // G satisfies (C) then G also satisfies (SS).

Proof. If G satisfies (C) then for each A e Sf(G)

lim inf n c(An)ιJn < k .

If for some Be£^(G),

lim inf n c(BnYln ^ δ > 1 ,

then choose a positive integer p so that δp ^ k. Then

\iminΐnc((Bp)nyln = [lim inf Λ c(Bpn)ιlpn]p = dp ^ k .

Thus, for each Ae.S7(G),

lim inf n c(An)1/n ^ 1 .

Now,
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c(An ~ An~ι) ̂  c(An)

for each n ^ 2. Hence

lim inf n c(An ~ An-ψn ^ 1

for each 4ey(G).

LEMMA 4.2. Assume G satisfies (C) with constant k. Let x
and y be elements of /X(G) such that N(x) is finite. Then

v{xy)<k\\y\\\\Rx\\ .

Proof.

II (xy)*II = II (x Σ v ( s ) s ) n | | = || Σ y(s,) yisjxs, -- χ s n \
seG slf ,sneGVII V

II

An application

I I * *

For any ze/[(C

Therefore

sV' ',sneG

sup | xsλ

of Schwarz

--- xsn\\ ̂

r)

\RZ\\ = sup

1 y(sn)

••• χsu\\

inequality

ι\\RAy)\Ui

I 1 1

gives

*».))'" || a

i\\RΛe)\

xsn\\

ι) 1 »(8.) 1

/Oĵ  ίt/o^ 2

|2 = l l ^ l l 2

Also,

Nixs, xsn) c iVίίTSi) N(xsn) = N(x)sλ N(x)sn

Therefore, if we set A = JSΓ(α) U {β} U N(x)~\

Finally

Consequently

and hence

Σ = \\v

sup
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v(xy) = lim infΛ | | (xy)n \\lln rg || y \\ \\ Rx\\ lim infn sup c(Asλ . AsJl2n

We are now ready to prove.

THEOREM 4.3. // G satisfies (C) then /[(G) is symmetric.

Proof. If /γ{G) is not symmetric, then by Raikov's Theorem
(c.f. [8], p. 307) there is a yy* e 4(G) such that

r = sup f(yy*) < v{yy*) .

We may assume that;

inf f(yy*) = s > 0:

if not we consider the element yy* + ae for some a > 0.
Let x = ̂ /7/* and choose u and v so that 0 < u < s and r < v < v{x).

Then

0 < u < f(x) < v < v{x)

for each / e ^ % ( ^ r ) .
Let k be the constant of (C), £ > 1 and p be a positive integer

such that v(x)p > ktvv. Pick A e S^(G) so that, if z is x restricted
to A then

( i ) 0<f(z)<v, for each fejTo(β^) and
(ii) Hs-^ll < £.

To see that (i) is possible merely note that by taking A sufficiently
large, \\z — x\\ is less than both v — r and u. Then, since each
fejy^(J%f) is of norm one, the condition is satisfied.

For (ii) we first observe that by Lemma 1.4 and 4.1

sp (z) c {f(z) \feS^(^)} c (0, v) .

Thus z is regular, and for fixed p, z~pxp converges to the identity as
A increases.

We now apply Lemma 4.2.

v(xp) = v[zp(z~pxp)] <Lk\\ z~pxv || || R z P \\ .

B u t

\\R*\\ ^\\RA\V

and

Therefore
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v(xp) = v(x)p ^ ktvp .

But p was chosen so that

v(xp) > ktvp .

This contradiction implies that /X(G) is symmetric.

5* Nonsymmetric group algebras* In [3], Frey asked if there
are amenable groups with nonamenable subsemigroups. He proved
that if such groups exist they must contain a free nonabelian sub-
semigroup on two generators. Hochster [4], has recently presented
an example of such a group. In [7], a similar example is presented,
and it is shown that the algebra of this group is nonsymmetric.
The following theorem shows that all such groups have nonsymmetric
algebras. The proof employs the well known fact that in a symmetric
Banach *-algebra the hermitian elements have real spectra (c.f. [8]).

THEOREM 5.1. Let G be a group generated by a and b such
that S, the semigroup generated by a and b is free. Then, /x(β) is
nonsymmetric.

Proof. We will show that δi e sp (x), where

x = aa + βb + λαδ + λδ-'cr1 + βb~ι + aa~ι ,

if δi = aβ/X and | λ | >̂ max {3 | a |, 3 | β |}. To accomplish this we will
construct a nonzero θ e m(G) such that θv vanishes on the left ideal
generated by y = x — δie.

Let So = S U {e} and S, = aS0 U {e} U b-'Sό1. Define θ(g) = 0 if
g ί S,. Let A = N(y) and S' = So U b-'So U So" U aS^1. Direct com-
putations yield:

Ag n S, Φ 0 <=> g e S' .

Enumerate the elements of S1 as follows: s1 = e and for n =
1, 2, , s2n = asn; s2n+1 = bsn; tn = δ " ^ : s_x = s, and for n = 1, 2, - ,

^^ t> S

One can easily verify that the homogeneous equations θv(ys{) —
0, - 3 £ i ^ 2, i ^ 0, and #%£,•) = 0, - 2 ^ i ^ 2, i Φ 0, have a non-
trivial simultaneous solution.

For n a positive integer,

N(ytn) = {s2n, s4n, atn, a~ιtn, b~ιa-ιtn1 b~ιtn1 tn) .

If atn = ab~ιs2n e aSQ then b~ιs2n e So which is impossible. Similarly, if
atn e δ " 1 ^ 1 then δ"1 = a~ιs~ι for some se S. Since S is free in G,
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this also is impossible. Certainly atn Φ e. Thus atn ί S^ Similar
arguments show that

{a-ιtn, b-ιa~ιtn1 a~ιa-ιtn1 tn) n S, = 0 .

We also have

N(ysn) = {s2n1 s2n+ί, s4n+2, sn, ar'Sn, b~ιsn, b~ιa-ιsn) .

For n ^ 3,

N(ysn) n S1 = N(ysn) f] (aS0 U {e}) .

If n is odd then

N(ysn) Π S.cz {s2n, sin+2, b-'Sn}

while for n even

N(ysn) Π ^ c {s2%, s4%+2, α-1^^, b~ιa~ιsn1 sn} .

Note that not both arιsn and δ"1α"1sn are elements of Sx. Also,
α - χ = sm G Si implies m < n and fe-'a"1^^ = sm e ^ implies m < n.

Assume now that w ^ 3 is given, and that θ(sk) has been defined
for 1 <; k < An such that | θ(sk) \ £ 1 and

θv(ytm) = 0 - θv(ysm)

for m < n. Now

# ϋ 0/U = βθ{s2n) + Xθ(s4n)

and

^v(?/sJ = aθ(s2n) + λ^(s4π+2) + aθ(arι8%) + βθφ-%)

Let

and

-1/X[aθ(s2n) + aθ(arιsn) + βθ(b~ιsn)

We consider the two possibilities:

( i ) If b~ιa~1sn e S, then b~ιarιsn e aS0 U {β} and hence

{α-1^, 6-^} n Sx = 0 .

Also, there is an n > m >̂ 1 such that sΛ = s2m Since θv(ytk) = 0
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for 1 < k < n a n d s ince θv(ytk) = βθ(s2k) + Xθ(s4k) = 0 if, a n d only i t ,

θ(s4k) = (-β/X)β(s2k); θ(s2n) = θ(s4m) = (~β/X)θ(s2m). Thus

i - aβ/X)θ(s2m)

(ii) If δ"1α-1sΛ g S, then

#(s4.+2) = (-1/X)[aθ(s2n) + ά^cr 1 *.) + ^ ( f t - ^ J + δiθ(sn)]

and at most three terms within the parenthesis on the right are
nonzero.

In either case | θ(s4n+2) | <̂  1. Certainly | θ(s4n) \ ̂  1. Thus, by
induction, we can define θ(s2n) such that | θ(s2n) \ ̂  1 and such that

θv{ytn) = 0 = θv(ysn)

for n = 1, 2, . . . .

Similarly, we can define 0(s_(2n+i)) so that | ^(s_(2n+1)) | ^ 1 and

^(1/ί- ) = 0 = θv{ys_n)

for ^ = 1, 2, .

REMARK. If G is an amenable group with a nonamenable sub-
semigroup then G has a subgroup H that satisfies the hypothesis of
Theorem 5.1. Hence 4(H) is nonsymmetric, and since for each

/X{G) is also nonsymmetric.
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