COEFFICIENT MULTIPLIERS OF H^{p} AND B^{p} SPACES

P. L. Duren and A. L. Shields

This paper describes the coefficient multipliers of $H^{p}(0<p<1)$ into $\iota^{q}(p \leqq q \leqq \infty)$ and into $H^{q}(1 \leqq q \leqq \infty)$. These multipliers are found to coincide with those of the larger space B^{p} into $\ell^{q}(1 \leqq q \leqq \infty)$ and into $H^{q}(1 \leqq q \leqq \infty)$. The multipliers of H^{p} and B^{0} into $B^{q}(0<p<1,0<q<1)$ are also characterized.

A function f analytic in the unit disk is said to be of class $H^{p}(0<p<\infty)$ if

$$
M_{p}(r, f)=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}
$$

remains bounded as $r \rightarrow 1$. H^{∞} is the space of all bounded analytic functions. It was recently found ([2], [4]) that if $p<1$, various properties of H^{p} extend to the larger space B^{p} consisting of all analytic functions f such that

$$
\int_{0}^{1}(1-r)^{1 / p-2} M_{1}(r, f) d r<\infty
$$

Hardy and Littlewood [8] showed that $H^{p} \subset B^{p}$.
A complex sequence $\left\{\lambda_{n}\right\}$ is called a multiplier of a sequence space A into a sequence space B if $\left\{\lambda_{n} a_{n}\right\} \in B$ whenever $\left\{a_{n}\right\} \in A$. A space of analytic functions can be regarded as a sequence space by identifying each function with its sequence of Taylor coefficients. In [4] we identified the multipliers of H^{p} and $B^{p}(0<p<1)$ into ℓ^{1}. We have also shown ([2], Th. 5) that the sequence $\left\{n^{1 / q-1 / p}\right\}$ multiplies B^{p} into B^{q}. We now extend these results by describing the multipliers of $H^{p}(0<p<1)$ into $\ell^{q}(p \leqq q \leqq \infty)$, of B^{p} into $\ell^{q}(1 \leqq q \leqq \infty)$, and of both H^{p} and B^{p} into $B^{q}(0<q<1)$. We also extend a theorem of Hardy and Littlewood (whose proof was never published) by characterizing the multipliers of H^{p} and B^{p} into $H^{q}(0<p<1 \leqq q \leqq \infty)$. In almost every case considered, the multipliers of B^{p} into a given space are the same as those of H^{p}.
2. Multipliers into ℓ^{q}. We begin by describing the multipliers of H^{p} and B^{p} into ℓ^{∞}, the space of bounded complex sequences.

Theorem 1. For $0<p \leqq 1$, a sequence $\left\{\lambda_{n}\right\}$ is a multiplier of H^{p} into ι^{∞} if and only if

$$
\begin{equation*}
\lambda_{n}=O\left(n^{1-1 / p}\right) . \tag{1}
\end{equation*}
$$

For $p<1$, the condition (1) also characterizes the multipliers of B^{p} into ℓ^{∞}.

Proof. If $f(z)=\sum a_{n} z^{n}$ is in B^{p}, then by Theorem 4 of [2],

$$
\begin{equation*}
a_{n}=o\left(n^{1 / p-1}\right) . \tag{2}
\end{equation*}
$$

If $f \in H^{1}$, then $a_{n} \rightarrow 0$ by the Riemann-Lebesgue lemma. This proves the sufficiency of (1). Conversely, suppose $\left\{\lambda_{n}\right\}$ is a multiplier of H^{p} into ι^{∞}. Then the closed linear operator

$$
\Lambda: f \longrightarrow\left\{\lambda_{n} a_{n}\right\}
$$

maps H^{p} into ι^{∞}. Thus Λ is bounded, by the closed graph theorem (which applies since H^{p} is a complete metric space with translation invariant metric; see [1], Chapter 2). In other words,

$$
\begin{equation*}
\sup _{n}\left|\lambda_{n} a_{n}\right|=\|\Lambda(f)\| \leqq K\|f\| \tag{3}
\end{equation*}
$$

Now let

$$
g(z)=(1-z)^{-1-1 / p}=\sum b_{n} z^{n}
$$

where $b^{n} \sim B n^{1 / p}$; and choose $f(z)=g(r z)$ for fixed $r<1$. Then by (3)

$$
\left|\lambda_{n}\right| n^{1 / p} r^{n} \leqq C(1-r)^{-1} .
$$

The choice $r=1-1 / n$ now gives (1). Note that $\left\{\lambda_{n}\right\}$ multiplies H^{p} or B^{p} into ι^{∞} if and only if it multiplies into c_{0} (the sequences tending to zero).

As a corollary we may show that the estimate (2) is best possible in a rather strong sense. For functions of class H^{p}, this estimate is due to Hardy and Littlewood [8]. Evgrafov [6] later showed that if $\left\{\delta_{n}\right\}$ tends monotonically to zero, then there is an $f \in H^{p}$ for which $a_{n} \neq O\left(\delta_{n} n^{1 / p-1}\right)$. A simpler proof was given in [5]. The result may be reformulated: if $\alpha_{n}=O\left(d_{n}\right)$ for all $f \in H^{p}$, then $d_{n} n^{1-1 / p}$ cannot tend monotonically to zero. We can now sharpen this statement as follows.

Corollary. If $\left\{d_{n}\right\}$ is any sequence of positive numbers such that $a_{n}=O\left(d_{n}\right)$ for every function $\sum a_{n} z^{n}$ in H^{p}, then there is an $\varepsilon>0$ such that

$$
d_{n} n^{1-1 / p} \geqq \varepsilon>0, \quad n=1,2, \cdots .
$$

Proof. If $\alpha_{n}=O\left(d_{n}\right)$ for every $f \in H^{p}$, then $\left\{1 / d_{n}\right\}$ multiplies H^{p} into ℓ^{∞}. Thus $1 / d_{n}=O\left(n^{1-1 / p}\right)$, as claimed.

We now turn to the multipliers of H^{p} and B^{p} into $\iota^{q}(q<\infty)$, the space of sequences $\left\{c_{n}\right\}$ with $\sum\left|c_{n}\right|^{q}<\infty$. The following theorem generalizes a previously known result [4] for ℓ^{1}.

Theorem 2. Suppose $0<p<1$.
(i) A complex sequence $\left\{\lambda_{n}\right\}$ is a multiplier of H^{p} into $\iota^{q}(p \leqq q<\infty)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{N} n^{q / p}\left|\lambda_{n}\right|^{q}=O\left(N^{q}\right) . \tag{4}
\end{equation*}
$$

(ii) If $1 \leqq q<\infty,\left\{\lambda_{n}\right\}$ is a multiplier of B^{p} into ι^{q} if and only if (4) holds.
(iii) If $q<p$, the condition (4) does not imply that $\left\{\lambda_{n}\right\}$ multiplies H^{p} into ι^{q}; nor does it imply that $\left\{\lambda_{n}\right\}$ multiplies B^{p} into ι^{q} if $q<1$.

Proof. (i) A summation by parts (see [4]) shows that (4) is equivalent to the condition

$$
\begin{equation*}
\sum_{n=N}^{\infty}\left|\lambda_{n}\right|^{q}=O\left(N^{q(1-1 / p)}\right) \tag{5}
\end{equation*}
$$

Assume without loss of generality that $\lambda_{n} \geqq 0$ and $\sum_{n=1}^{\infty} \lambda_{n}^{q}=1$. Let $s_{1}=0$ and

$$
s_{n}=1-\left\{\sum_{k=n}^{\infty} \lambda_{k}^{q}\right\}^{1 / \beta}, \quad n=2,3, \cdots,
$$

where $\beta=q(1 / p-1)$. Note that s_{n} increases to 1 as $n \rightarrow \infty$. By a theorem of Hardy and Littlewood ([8], p. 412), $f \in H^{p}(0<p<1)$ implies

$$
\begin{equation*}
\int_{0}^{1}(1-r)^{\beta-1} M_{1}^{q}(r, f) d r<\infty, \quad p \leqq q<\infty . \tag{6}
\end{equation*}
$$

Thus if $f(z)=\sum a_{n} z^{n}$ is in H^{p} and $\left\{\lambda_{n}\right\}$ satisfies (4) with $p \leqq q<\infty$, it follows that

$$
\begin{aligned}
\infty & >\sum_{n=1}^{\infty} \int_{s_{n}}^{s_{n+1}}(1-r)^{\beta-1} M_{1}^{q}(r, f) d r \\
& \geqq \sum_{n=1}^{\infty}\left|a_{n}\right|^{q} \int_{s_{n}}^{s_{n+1}}(1-r)^{\beta-1} r^{n q} d r \\
& \geqq \sum_{n=1}^{\infty}\left|a_{n}\right|^{q}\left(s_{n}\right)^{n q} \int_{s_{n}}^{s_{n+1}}(1-r)^{\beta-1} d r \\
& =\frac{1}{\beta} \sum_{n=1}^{\infty}\left|a_{n}\right|^{q}\left(s_{n}\right)^{n q}\left\{\left(1-s_{n}\right)^{\beta}-\left(1-s_{n+1}\right)^{\beta}\right\} \\
& =\frac{1}{\beta} \sum_{n=1}^{\infty}\left|a_{n}\right|^{q}\left(s_{n}\right)^{n q} \lambda_{n}^{q},
\end{aligned}
$$

by the definition of s_{n}. But by (5),

$$
\left\{\sum_{k=n}^{\infty} \lambda_{k}^{q}\right\}^{1 / \beta} \leqq \frac{C}{n}
$$

which shows, by the definition of s_{n}, that

$$
\left(s_{n}\right)^{n q} \geqq(1-C / n)^{n q} \longrightarrow e^{-C q}>0 .
$$

Since these factors $\left(s_{n}\right)^{n q}$ are eventually bounded away from zero, the preceding estimates show that $\sum\left|a_{n}\right|^{q} \lambda_{n}^{q}<\infty$. In other words, $\left\{\lambda_{n}\right\}$ is a multiplier of H^{p} into ι^{q} if it satisfies the condition (4).
(ii) The above proof shows that $\left\{\lambda_{n}\right\}$ multiplies B^{p} into ℓ^{1} under the condition (4) with $q=1$. (This was also shown in [4].) The more general statement (ii) now follows by showing that if $\left\{\lambda_{n}\right\}$ satisfies (4), then the sequence $\left\{\mu_{n}\right\}$ defined by

$$
\mu_{n}=\left|\lambda_{n}\right|^{q} n^{(1 / p-1)(q-1)}
$$

satisfies (4) with $q=1$. Hence $\left\{\mu_{n}\right\}$ is a multiplier of B^{p} into ℓ^{1}, and in view of (2), $\left\{\lambda_{n}\right\}$ is a multiplier of B^{p} into ℓ^{q}. Alternatively, it can be observed that $f \in B^{p}$ implies (6) for $1 \leqq q<\infty$, so that the foregoing proof applies directly. Indeed, if $f \in B^{p}$, then (as shown in [2], proof of Theorem 3)

$$
M_{1}(r, f)=O\left((1-r)^{1-1 / p}\right) ;
$$

hence, if $1 \leqq q<\infty$,

$$
\int_{0}^{1}(1-r)^{q(1 / p-1)-1} M_{1}^{q}(r, f) d r \leqq C \int_{0}^{1}(1-r)^{1 / p-2} M_{1}(r, f) d r<\infty
$$

(iii) That (4) does not imply $\left\{\lambda_{n}\right\}$ multiplies H^{p} into $\ell^{q}(q<p)$ or B^{p} into $\ell^{q}(q<1)$, follows from the fact [4] that the series

$$
\sum_{n=1}^{\infty} n^{q(1-1 / p)-1}\left|a_{n}\right|^{q}
$$

may diverge if $f \in H^{p}$ and $q<p$, or if $f \in B^{p}$ and $q<1$.
To show the necessity of (4), we again appeal to the closed graph theorem. If $\left\{\lambda_{n}\right\}$ multiplies H^{p} into $\ell^{q}(0<p<\infty, 0<q<\infty)$, then

$$
\Lambda: f \longrightarrow\left\{\lambda_{n} a_{n}\right\}
$$

is a bounded operator:

$$
\left\{\sum_{n=0}^{\infty}\left|\lambda_{n} a_{n}\right|^{q}\right\}^{1 / q} \leqq C\|f\|, \quad f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in H^{p}
$$

Choosing $f(z)=g(r z)$ as in the proof of Theorem 1, we now find

$$
\left\{\sum_{n=1}^{\infty} n^{q / p}\left|\lambda_{n}\right|^{q} r^{n q}\right\}^{1 / q} \leqq C(1-r)^{-1}
$$

and (4) follows after terminating this series at $n=N$ and setting $r=1-1 / N$. Note that the argument shows (4) is necessary even if $p^{\prime} \geqq 1$ or $q<p$.

Corollary 1. If $\left\{n_{k}\right\}$ is a lacunary sequence of positive integers $\left(n_{k+1} / n_{k} \geqq Q>1\right)$, and if $f(z)=\sum a_{n} z^{n}$ is in $H^{p}(0<p<1)$, then

$$
\sum_{k=1}^{\infty} n_{k}^{q(1-1 / p)}\left|a_{n_{k}}\right|^{q}<\infty, \quad p \leqq q<\infty
$$

COROLLARY 2. If $f(z)=\sum a_{n} z^{n}$ is in $H^{p}(0<p<1)$, then $\sum n^{p-2}\left|a_{n}\right|^{p}<\infty$.

The first corollary extends a theorem of Paley [13] that $f \in H^{1}$ implies $\left\{\alpha_{n_{k}}\right\} \in \ell^{2}$. The second is a theorem of Hardy and Littlewood [7]. It is interesting to ask whether the converse to Corollary 1 (with $q=p$) is valid. That is, if $\left\{c_{k}\right\}$ is a given sequence for which

$$
\sum_{k=1}^{\infty} n_{k}^{p-1}\left|c_{k}\right|^{p}<\infty
$$

then is there a function $f(z)=\sum a_{n} z^{n}$ in H^{p} with $a_{n_{k}}=c_{k}$? We do not know the answer.

Hardy and Littlewood [9] also proved that $\left\{\lambda_{n}\right\}$ multiplies H^{1} into H^{2} (alias ℓ^{2}) if (and only if)

$$
\sum_{n=1}^{N} n^{2}\left|\lambda_{n}\right|^{2}=O\left(N^{2}\right)
$$

From this it is easy to conclude that (4) characterizes the multipliers of H^{1} into $\ell^{q}, 2 \leqq q<\infty$. Indeed, let $\left\{\lambda_{n}\right\}$ satisfy (4) and let $\mu_{n}=$ $\left|\lambda_{n}\right|^{q / 2}$. Then, by the Hardy-Littlewood theorem, $\left\{\mu_{n}\right\}$ multiplies H^{1} into ℓ^{2} (see [3], p. 253). Hence $\left\{\lambda_{n}\right\}$ multiplies H^{1} into ℓ^{q}. (See also Hedlund [12].)

On the other hand, the condition (4) is not sufficient if $p=1$ and $q<2$. This may be seen by choosing a lacunary series

$$
f(z)=\sum_{k=1}^{\infty} c_{k} z^{n_{k}}, \quad n_{k+1} / n_{k} \geqq Q>1
$$

with $\sum\left|c_{k}\right|^{2}<\infty$ but $\sum\left|c_{k}\right|^{q}=\infty$ for all $q<2$. The sequence $\left\{\lambda_{n}\right\}$ with $\lambda_{n}=1$ if $n=n_{k}$ and $\lambda_{n}=0$ otherwise then satisfies (4) but does not multiply H^{1} into $\iota^{q}, q<2$.
3. Multipliers into B^{q}. The following theorem may be regarded
as a generalization of our previous result ([2], Th. 5) that if $f \in B^{p}$, then its fractional integral of order $(1 / p-1 / q)$ is in B^{q}. (A fractional integral of negative order is understood to be a fractional derivative.)

Theorem 3. Suppose $0<p<1$ and $0<q<1$. Let ν be the positive integer such that $(\nu+1)^{-1} \leqq p<\nu^{-1}$. Then $\left\{\lambda_{n}\right\}$ is a multiplier of H^{p} or B^{p} into B^{q} if and only if $g(z)=\sum_{n=0}^{\infty} \lambda_{n} z^{n}$ has the property

$$
\begin{equation*}
M_{1}\left(r, g^{(\nu)}\right)=O\left((1-r)^{1 / p-1 / q-\nu}\right) . \tag{7}
\end{equation*}
$$

Proof. Let $\left\{\lambda_{n}\right\}$ satisfy (7), let $f(z)=\sum a_{n} z^{n}$ be in B^{p}, and let $h(z)=\sum \lambda_{n} a_{n} z^{n}$. Then

$$
h(\rho z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\rho e^{i t}\right) g\left(z e^{-i t}\right) d t, \quad 0<\rho<1
$$

Differentiation with respect to z gives

$$
\begin{equation*}
\rho^{\nu} h^{(\nu)}(\rho z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\rho e^{i t}\right) g^{(\nu)}\left(z e^{-i t}\right) e^{-i \nu t} d t \tag{8}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\rho^{\nu} M_{1}\left(r \rho, h^{(\nu)}\right) & \leqq M_{1}\left(r, g^{(\nu)}\right) M_{1}(\rho, f) \\
& \leqq C(1-r)^{1 / p-1 / q-\nu} M_{1}(\rho, f),
\end{aligned}
$$

where $r=|z|$. Taking $r=\rho$, we now see that $f \in B^{p}$ implies $h^{(\nu)} \in B^{s}$, $1 / s=1 / q+\nu$. Thus $h \in B^{q}$, by Theorem 5 of [2].

Conversely, let $\left\{\lambda_{n}\right\}$ multiply H^{p} into B^{q}. Then by the closed graph theorem,

$$
\Lambda: \sum a_{n} z^{n} \longrightarrow \sum \lambda_{n} a_{n} z^{n}
$$

is a bounded operator from H^{p} to B^{q}. If $(\nu+1)^{-1} \leqq p<\nu^{-1}$, let

$$
f(z)=\nu!z^{\nu}(1-z)^{-\nu-1}=\sum_{n=\nu}^{\infty} a_{n} z^{n}
$$

where $a_{n}=n!/(n-\nu)!$, and observe that

$$
\begin{equation*}
h(z)=\sum_{n=\nu}^{\infty} \lambda_{n} a_{n} z^{n}=z^{\nu} g^{(\nu)}(z) \tag{9}
\end{equation*}
$$

Let $f_{r}(z)=f(r z)$ and $h_{r}(z)=h(r z)$. Since Λ is bounded, there is a constant C independent of r such that

$$
\left\|h_{r}\right\|_{B^{q}}=\left\|\Lambda\left(f_{r}\right)\right\| \leqq C\left\|f_{r}\right\|_{H^{p}}
$$

In other words,

$$
\begin{aligned}
\int_{0}^{1}(1-t)^{1 / q-2} M_{1}(t r, h) d t & \leqq C M_{p}(r, f) \\
& =O\left((1-r)^{1 / p-\nu-1}\right) .
\end{aligned}
$$

It follows that

$$
M_{1}\left(r^{2}, h\right) \int_{r}^{1}(1-t)^{1 / q-2} d t=O\left((1-r)^{1 / p-\nu-1}\right),
$$

or

$$
M_{1}\left(r^{2}, h\right)=O\left((1-r)^{1 / p-1 / q-\nu}\right) .
$$

But in view of (9), this proves (7).

Corollary. The sequence $\left\{\lambda_{n}\right\}$ multiplies B^{p} into B^{p} if and only $i f$

$$
\begin{equation*}
M_{1}\left(r, g^{\prime}\right)=O\left(\frac{1}{1-r}\right) \tag{10}
\end{equation*}
$$

Proof. If $p=q$, the condition (10) is equivalent to (7). (see [8], p. 435.) This corollary is essentially the same as a result of Zygmund ([14], Th. 1), who found the multipliers of the Lipschitz space Λ_{α} or λ_{α} into itself. Because of the duality between these spaces and B^{p} (see [2], §§ 3, 4), the multipliers from Λ_{α} to Λ_{α} and from λ_{α} to λ_{α} $(0<\alpha<1)$ are the same as those from B^{p} to B^{p}. Similar remarks apply to the spaces Λ_{*} and λ_{*}, also considered in [14].
4. Multipliers into H^{q}. By combining Theorem 3 with the simple fact that $f^{\prime} \in B^{1 / 2}$ implies $f \in H^{1}$, it is possible to obtain a sufficient condition for $\left\{\lambda_{n}\right\}$ to multiply H^{p} into $H^{q}, 0<p<1 \leqq q \leqq \infty$. However, this method leads to a sharp result only in the case $q=1$. The following theorem provides the complete answer.

Theorem 4. Suppose $0<p<1 \leqq q \leqq \infty$, and let $(\nu+1)^{-1} \leqq p<\nu^{-1}$, $\nu=1,2, \cdots$. Then $\left\{\lambda_{n}\right\}$ is a multiplier of H^{p} or B^{p} into H^{q} if and only if $g(z)=\sum_{n=0}^{\infty} \lambda_{n} z^{n}$ has the property

$$
\begin{equation*}
M_{q}\left(r, g^{(\nu+1)}\right)=O\left((1-r)^{1 / p-\nu-2}\right) . \tag{11}
\end{equation*}
$$

Hardy and Littlewood ([9], [10]) stated in different terminology that (11) implies $\left\{\lambda_{n}\right\}$ is a multiplier of H^{p} into $H^{q}(0<p<1 \leqq q<\infty)$, but they never published the proof. Our proof will make use of the following lemma.

Lemma. Let f be analytic in the unit disk, and suppose

$$
\int_{0}^{1}(1-r)^{\alpha} M_{q}\left(r, f^{\prime}\right) d r<\infty
$$

where $\alpha>0$ and $1 \leqq q \leqq \infty$. Then

$$
\int_{0}^{1}(1-r)^{\alpha-1} M_{q}(r, f) d r<\infty .
$$

Proof of Lemma. Without loss of generality, assume $f(0)=0$, so that

$$
f\left(r e^{i \theta}\right)=\int_{0}^{r} f^{\prime}\left(s e^{i \theta}\right) e^{i \theta} d s
$$

The continuous form of Minkowski's inequality now gives

$$
\begin{equation*}
M_{q}(r, f) \leqq \int_{0}^{r} M_{q}\left(s, f^{\prime}\right) d s \tag{12}
\end{equation*}
$$

Hence an interchange of the order of integration shows that

$$
\int_{0}^{1}(1-r)^{\alpha-1} M_{q}(r, f) d r \leqq \frac{1}{\alpha} \int_{0}^{1}(1-s)^{\alpha} M_{q}\left(s, f^{\prime}\right) d s
$$

which proves the lemma.
Proof of Theorem 4. Suppose first that $\left\{\lambda_{n}\right\}$ satisfies (11). Given $f(z)=\sum a_{n} z^{n}$ in B^{p}, we are to show that $h(z)=\sum \lambda_{n} a_{n} z^{n}$ belongs to H^{q}. By (8), with ν replaced by $(\nu+1)$, we have

$$
\rho^{\nu+1}\left|h^{(\nu+1)}(\rho z)\right| \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(\rho e^{i t}\right)\right|\left|g^{(\nu+1)}\left(z e^{-i t}\right)\right| d t .
$$

Since $q \geqq 1$, it follows from Jensen's inequality ([11], § 6.14) that

$$
\begin{aligned}
\rho^{\nu+1} M_{q}\left(r \rho, h^{(\nu+1)}\right) & \leqq M_{1}(\rho, f) M_{q}\left(r, g^{(\nu+1)}\right) \\
& \leqq C(1-r)^{1 / p-\nu-2} M_{1}(\rho, f),
\end{aligned}
$$

where $r=|z|$ and (11) has been used. Now set $r=\rho$ and use the hypothesis $f \in B^{p}$ to conclude that

$$
\int_{0}^{1}(1-r)^{\nu} M_{q}\left(r, h^{(\nu+1)}\right) d r<\infty .
$$

But by successive applications of the lemma, this implies

$$
\int_{0}^{1} M_{q}\left(r, h^{\prime}\right) d r<\infty .
$$

Thus, in view of the inequality (12), it follows that $h \in H^{q}$, which was to be shown.

Conversely, suppose $\left\{\lambda_{n}\right\}$ is a multiplier of H^{p} into H^{q} for arbitrary $q(0<q \leqq \infty)$. Then by the closed graph theorem,

$$
\Lambda: \sum a_{n} z^{n} \longrightarrow \sum \lambda_{n} a_{n} z^{n}
$$

is a bounded operator from H^{p} to H^{q}. An argument similar to that used in the proof of Theorem 3 now leads to the estimate (11).

Corollary. If $0<p<1 \leqq q \leqq \infty$ and $f \in B^{p}$, then its fractional integral $f_{\alpha} \in H^{q}$, where $\alpha=1 / p-1 / q$. This is false if $q<1$.

This corollary can also be proved directly. Indeed, since ([2], Th. 5) the fractional integral of order $(1 / p-1 / s)$ of a B^{p} function is in B^{s} $(0<s<1)$, and since ([8], p. 415) the fractional integral of order ($1-1 / q$) of an H^{1} function is in $H^{q}(1 \leqq q \leqq \infty)$, it suffices to show that $f^{\prime} \in B^{1 / 2}$ implies $f \in H^{1}$. But this is easy; it follows from (12) with $q=1$. That the corollary is false for $q<1$ is a consequence of the fact ([2], Th. 5) that the fractional derivative of order ($1 / p-1 / q$) of every B^{q} function is in B^{p}.

The converse is also false. That is, if $f \in H^{q}$, its fractional derivative of order ($1 / p-1 / q$) need not be in $B^{p}(0<p<1 \leqq q \leqq \infty)$. As before, this reduces to showing that $f \in H^{1}$ does not imply $f^{\prime} \in B^{1 / 2}$. To see this, let $f(z)=\sum c_{k} z^{n_{k}}$, where $\left\{n_{k}\right\}$ is lacunary, $\left\{c_{k}\right\} \in \ell^{2}$, and $\left\{c_{k}\right\} \notin \iota^{1}$. Then $f \in H^{2} \subset H^{1}$, but $f^{\prime} \notin B^{1 / 2}$, since it was shown in [4] (Th. 3, Corollary 2) that

$$
\sum_{k=1}^{\infty} n_{k c}^{1-1 / p}\left|a_{n_{k}}\right|<\infty
$$

whenever $\sum a_{n} z^{n} \in B^{p}$ and $\left\{n_{k}\right\}$ is a lacunary sequence.

References

1. N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
2. P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on H^{p} spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), 32-60.
3. P. L. Duren, H. S. Shapiro, and A. L. Shields, Singular measures and domains not of Smirnov type, Duke Math. J. 33 (1966), 247-254.
4. P. L. Duren and A. L. Shields, Properties of $H^{p}(0<p<1)$ and its containing Banach space, Trans. Amer. Math. Soc. 141 (1969), 255-262.
5. P. L. Duren and G. D. Taylor, Mean growth and coefficients of H^{p} functions, Illinois J. Math. (to appear).
6. M. A. Evgrafov, Behavior of power series for functions of class H_{δ} on the boundary of the circle of convergence, Izv. Akad. Nauk SSSR Ser. Mat. 16 (1952), 481-492 (Russian).
7. G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, Math. Ann. 97 (1926), 159-209.
8. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, II, Math, Z. 34 (1932), 403-439.
9. G. H. Hardy and J. E. Littlewood, Notes on the theory of series (XX): Generalizations of a theorem of Paley, Quart. J. Math. 8 (1937), 161-171.
10. G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. 12 (1941), 221-256.
11. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press. Second Edition, 1952.
12. J. H. Hedlund, Multipliers of H^{p} spaces, J. Math. Mech. 18 (1969), 1067-1074.
13. R. E. A. C. Paley, On the lacunary coefficients of power series, Ann. of Math. 34 (1933), 615-616.
14. A. Zygmund, On the preservation of classes of functions, J. Math. Mech. 8 (1959), 889-895.

Received December 23, 1968. Supported in part by the National Science Foundation under Contract GP-7234.

University of Michigan

