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NON-ARCHIMEDEAN GELFAND THEORY

NEIL SHILKRET

It is shown that under certain conditions a specified sub-
algebra Xo of a non-Archimedean Banach algebra is iso-
metrically isomorphic to the space of all continuous functions
from a compact zero-dimensional Hausdorff space to the ground
field; this generalizes a recent result in which Xo is assumed
to coincide with the entire algebra.

It is well-known that a complex commutative I?*~algebra with
identity is isometrically isomorphic to the space of all continuous
functions on the compact Hausdorff space of its maximal ideals with
the Gelfand topology. Narici [7] has proved a similar representation
theorem for non-Archimedean algebras (see Corollary 6.2). In order
that the Gelfand topology be defined as for complex Banach algebras,
Narici assumed that the quotient field of the algebra modulo each of
its maximal ideals was isomorphic to the ground field. In the present
paper an extension of Narici's result is given in which no assumption
is made concerning these quotient fields. As preliminaries to this
result, a subalgebra of the given algebra, having several pleasant pro-
perties, will be introduced, and some natural generalizations of the
definition of the Gelfand topology will be considered.

In §1, X will denote a commutative algebra with identity e over
the field F; ^f will denote the set of maximal ideals of X; x(M),
where xeX and Me^f, will denote the coset of M to which x be-
longs; x(^f) will denote the set {x(M) \Me^f}; and & will denote
the Jacobson radical, Π ^sf. The field X/M, Me*^f, will be considered
as an extension field of F (which may or may not be proper) under
the identification a+-*ae(M) for each aeF. Then σ(x), the spectrum
of xeXy is equal to x{^£) Π F.

In §2 and §3, it will be assumed, moreover, that F is complete
with respect to a nontrivial rank one valuation, | |, and X is a non-
Archimedean commutative Banach algebra with identity e over F; i.e.,

(1) X is a non-Archimedean Banach space satisfying the ultra-
metric inequality || x + y || <: max (|| x ||, || y ||);

(2) | |α;y | | :g | |0 | | | | y | | ;
(3) II β|| = i-

1* The Gelfand subalgebra*

DEFINITION. The set

X0 = {χeX\x(M)eF for all
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will be called the Gelfand subalgebra of X.

Objects related to Xo will be subscripted with a zero; e.g.,
will denote the set of all maximal ideals of Xo.

Certainly Xo is a subalgebra containing the identity.
The set of maximal ideals M in X such that X/M = F will be

called ^?'\ the set of maximal ideals Mo in Xo such that XJMQ — F
will be called

THEOREM 1. ( a ) If xeXQ is invertible in X, then x~ι e Xo.
(b) The function Ψ: M —>ikf0 = MΠ Xo carries maximal ideals

of X into maximal ideals of Xo having the property Xo/Mo = ί7; ί/ms,
denoting Ψ(^t) by ^f0", we have ^fo

ff c ^ C c ^ ^ 0

(c ) If Me ^Jί, MQ — M Π Xo ^nd # e Xo, ίfcβn x(M) = x(M0).
(d) IfxeX0

σ(x) = σXQ(x) = α;(^^) - x(ΛΌ) Γ\ F =

(e ) ^ o c ^ c l o , iίe^ce ^ © f c l o , ami Xo is semisimple
if X is.

( f ) // σ(α>) = φ,x$ Xo.
( g ) 1/ X=) KZDF, where K is a field, then K Π Xo = F. Con-

sequently, if X is a field Xo = F.
(h) Xo — X if and only if X/M = F for all Me ^f(i.e., if and

only if

Proof. ( a ) χ-\M) = x{M)~ι.
(b) Apply the fundamental theorem of homomorphisms to the

mapping

XQ > X/M

x > x(M) .

( c) If x e Xo and aeF,

x(M) = a ^=> x — a e M

<==> (since x, aeXo) x — aeM0

<=> x(M0) = a .

(d) From (c) it follows that for x e Xo>

σ(x) = x(^f) = x(^!) c x(^T0') c x(^e0) Γ)F= σXQ(x) .

However, (a) implies σ(x) = σXo(x).

( e) These statements are all easy.
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( f) If x e Xo, o(x) = x(^f), which cannot be empty.
(g) This follows from (f), since each xeK—F has empty

spectrum.
(h) and (i) are clear.
Parts (g) and (h) show the extreme cases Xo = F and XQ — X are

possible.

LEMMA 2.1. Let M be a maximal ideal of X, and let x be an
algebraic element of X having minimal polynomial m(t) = Π Pi(t)ki>
where the polynomials Pi(t) are irreducible over F. Then x(M)( e X/M)
is algebraic over F, and the irreducible polynomial over F which
x(M) satisfies is one of the p{. Conversely, for each of the irreducible
factors Pi of m, there is a maximal ideal Mi such that x{Mi)( e X/Mi)
satisfies p{.

Proof. Since m(x) = 0, m(x(M)) = Π Pi(x(M))kί = 0, for any maxi-
mal ideal M, and, indeed, one of the p{ is the irreducible polynomial
which x(M) satisfies.

Each of the elements Pi(x) is a divisor of zero, so that each of
these elements is a nonunit of X and is contained in some maximal
ideal Mt. Therefore Pi(x(Mi)) = 0.

From this one readily obtains

THEOREM 2. An algebraic element x e X is in XQ if and only if
its minimal polynomial factors into a product of linear polynomials.

COROLLARY 2.1. If F is algebraically closed, XQ contains all alge-
braic elements of X.

COROLLARY 2.2. (a) Xo and (Xo)o have the same algebraic ele-
ments.

(b) If X is algebraic (i.e., all elements of X are algebraic),
(Xo)o — XQ

( c) If X is finite dimensional, (Xo)o = Xo.

Corollary 2.2 suggests the question is (Xo)o = Xo for every algebra
X? An answer to this question has not been found.

EXAMPLE. Let X be a commutative Banach algebra with identity
over the real numbers, R. Then Xo is complete by the completeness
of R (and the fact {xn} being Cauchy implies {(xn(M)} is Cauchy for
each Me^f). Thus, for each Moe ^f0, XQ/M0 is a commutative
Banach algebra which is a field. Hence by the Mazur-Gelfand theorem,
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Xo/Mo is isomorphic to either the real numbers or the complex num-
bers, C But according to the above, XQ/M0 = C is impossible. There-
fore XojMQ = R for each Mo e ^f0 or, equivalently, (Xo)o = XQ.

2. Spaces of maximal ideals*

DEFINITION.

functions
The weakest topology on ^

x: ^f' > F

M >x(M)

?' for which each of

(xe

the

X)

is continuous will be called the Gelfand topology. This definition may
be applied to the algebra Xo to obtain a Gelfand topology on

If XQ = X, then ^fQ' = ^£' = ^ T and the above definitions re-
duce to the usual definition of the Gelfand topology.

These topological spaces will be regarded as uniform spaces with
the uniformity which has a base consisting of sets of the form

U = {(M, M') I I xάM) - xAM') | < e, i - 1, , n) .

As usual, the set U[M] will be written as V(M;xl9 •• ,a?w;ε).
Naturally all statements concerning ^ ' have analogues concern-

ing

THEOREM 3. Λ€' is complete in the Gelfand topology.

Proof. Let {Ma} be a Cauchy net in ^ ' . We show that M —
{x e XI x(Ma) —> 0} is a maximal ideal in Λ ' and that Ma —• Λί.

A modification of the usual proof shows that the spectral radius,
rσ(x) = supα e σ U ) \a\ satisfies

Thus if x G M and y e X, | i/(Λfα)α?(Λfβ) | ^ || y \\ \ x(Ma) \ -> 0, from which
it readily follows that M is an ideal. The mapping

F

a • ae + M

is an isomorphism, because aeeM implies a = limα ae(Ma) = 0. But,
since {Ma} is a Cauchy net, the Ma are eventually close of order U =
{(M, M') I I x{M) — x(M') I < ε}. Therefore, for each x there is an
aeF such that
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x(Ma) • a ,

(x - ae)(Ma) > 0 ,

x + M = ae + M;

which implies the isomorphism a —> ae + M is onto. Hence Λf e ̂ ί " .
For a point a e l , let α = limx(Ma). Then lim (x — αβ)(Mβ) = 0,

x - aeeM and α(Λf) = αβ(Λf) = a = lim x(Mα). Thus Mα e F(Λf; a?; e)
for α sufficiently large. Hence Ma —> Λf, since neighborhoods of this
type constitute a subbase.

An immediate consequence of Theorem 3 is that ^ f is compact
if and only if it is totally bounded. In connection with the compact-
ness of ^€', note that a modification of the proof for complex Banach
algebras shows that if F is locally compact, ^ff is compact.

THEOREM 4. The Gelfand topology on ̂ /ί' is Q-dimensίonal, totally
disconnected and Hausdorff.

Proof. It follows from the ultrametric inequality which the valu-
ation satisfies that the collection of sets of the form V(M; xt, , χn; ε)
forms a base consisting of sets which are simultaneously open and
closed. Hence ^///' is 0-dimensional.

Once it is shown that ^/έ* is Hausdorff, it will follow that ^ '
is totally disconnected. For if A is a component of a 0-dimensional
Hausdorff space, and it is assumed there are two distinct points x,
y e Af then an open and closed neighborhood of x not containing y
contradicts the connectedness of A. But ^ ' is Hausdorff because
the family {x} separates points.

We state below three results that are simple extensions of results
due to Beckenstein [2]:

The topology on ^fr induced by the hull-kernel topology on
is weaker than the Gelfand topology on ^f'.

The family {x}, x e X, is regular with respect to the Gelfand
topology (i.e., it separates point and closed sets of the Gelfand topology)
if and only if the hull-kernel topology and the Gelfand topology
coincide.

If ^€f is compact in the Gelfand topology, {x}f xe X, is regular
if and only if ^af' is Hausdorff in the hull-kernel topology.

One might topologize ^Jt with the functions {x}, x e Xo; however,
Λ€ topologized in this fashion need not enjoy the same properties
that ^ C does. For example, ^£ may receive the trivial topology
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(this happens if and only if Xo = & 0 F).

3* Representation theorems* For a closed subspace A of a
normed linear space Y, the symbol || || on Y/A will denote the in-
fimum norm || y + A |[ = infαe^ || y + a ||. Then the identification of
α GJF with ae(M)e(X/M, \\ \\)3 Me^t, is an isometry as well as an
isomorphism.

We define the rings V= {xeX\ \\x\\ <£ 1} and

W= {xeX\ \\x(M)\\ ^ 1 for all J l ί e ^ } .

Certainly 7 c W.
For Γ a compact topological space we denote by F(T) the Banach

algebra of all continuous F-valued functions on T with pointwise oper-
ations and 11/11 = max ί6Γ \f(t) |.

Note that Xo is a closed subalgebra since F is complete.
In this section ^f0' (which coincides with ^^f if Xo = X) will be

assumed to have the Gelfand topology.

LEMMA 5.1. If (Xo)o = Xo, VQ = Wo and ^/£J is compact, then
ra(x) — \\x\\ for each xeX.

Proof. Since (X0)Q = XQ, WQ = {xeXQ\rσ(x) ^ 1}. Suppose xeX0

is such that

rσ(x) < ||α?|| .

Since | x(^fo

f) \ is a continuous image of a compact set, there exists
a 6 x(^to) such that | a \ = sup | x(^tQ') | = rβ(α). Then

l = rσ(x/a) < \\x/a\\ ,

which implies x/a e Wo and a?/α ί Fo, contradicting the hypothesis.

THEOREM 5. // (Xo)o = Xo> Vo = TF0 α?ιd ^ # 0 ' is compact, then
XQ is isometrically isomorphic to

Proof. Consider

h: Xo

x ^ x .

This is clearly a homomorphism. But

|| x || - max|x(ikf)| - rσ(a) = \\x\\ ,

so that Xo is isometrically isomorphic to h(XQ). But /̂ (Xo) separates
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points, contains constants and, by virtue of the map h, is complete.
The theorem now follows from a result of Kaplansky [5] (see also
Cantor [3] and Chernoίf et al. [4]):// B is a subalgebra of F(T),
where T is a compact, totally disconnected topological space, and B
separates points and contains constants, then B is dense in F(T).

LEMMA 6.1. If V — W and ^/^ is compact, then rσ(x) — \\x\\
for each x e Xo.

Proof. As in Lemma 5.1, rσ(x) < \\x\\ would lead to x/a e W Π Xo =
{xeX0\ rσ(x) ^ 1} and φ ? F n ! 0 .

THEOREM 6. If V = W and ^-/SJ is compact, then Xo is iso-
metrically isomorphic to F{^fd).

Proof. Choose h as above.

COROLLARY 6.1. If V — W and ̂ /^ is compact, then (Xo)o = Xo.

Proof By Theorems 4 and 6 we may assume X = F(T), where
T is a O-dimensional compact Hausdorff space. The corollary is a con-
sequence of the following (Narici [7], Ths. 2 and 3): The maximal
ideals of F(T) are the sets of the form Mt = {/ e F(T) \ f(t) = 0}, and
F(T)/Mt is isomorphic to F.

COROLLARY 6.2. (Narici) Suppose that X/M = F for every maxi-
mal ideal M, that V — W, and that ^/έ is compact in the Gelfand
topology. Then X is isometrically isomorphic to F(^€) under the
mapping x~*x.

Note that V = W implies Vo - Wo. For certainly F o - 7Π Xo;
if x e WO, then

sup^ e^ || x(M) II - sup*6^4< || x(M) \\ ^ sup* e^0 II χ(M) W^1*

which implies xeW. Hence WQ c W Π Xo = V Π XQ = Vo.
Let X be a commutative Banach algebra without identity (over a

complete nontrivially valued field), and suppose that X is the adjunc-
tion of identity to X: X is the orthogonal sum of F and X (see Monna
and Springer [6]), and multiplication in X is defined by (a + x)(β + y) ~
aβ + ay + βx + xy. Let V = {x e X\ (| x \\ ^ 1}. Then V = o + V,
where o is the ring of integers of F. ^£ will denote the set of all re-
gular maximal ideals of X, and x(M) will denote x + M, where f e X
For each Me^€, X/M contains the field Fe$, where e$ is the identity
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of XIM. F e g i s i s o m o r p h i c t o F u n d e r a<-+ a e $ , b u t | | a e g \ \ = \ a \ \\eg\\,
so that this is not an isometry unless \\eg\\ — 1. Let ̂ € " denote the
set of regular maximal ideals of X whose quotient fields are (algebra)
isomorphic to F. The mapping M—>M f] X is a 1-to-l correspondence
between ^ — {X} and ̂  which preserves quotient fields (and hence
is also a 1-to-l correspondence between ^£' — {X} and £

DEFINITION. Xo = {xe X\x(M) e Fe~ for all

W= {xeX\ \\x(M)\\ ^ \\eg\\ for all

Clearly F + Xo c X is the adjunction of identity to Xo.

LEMMA. (a) Xo = F φ Xo.
( b ) ikf —>MD Xo is a 1-ίo-l correspondence between ^f0' — {Xo}

and ^Q\
( c) J/ X/M = F for each M e Jt, then W = o + W.

Proof. (a) Since X/X = F,a + xeX0 if and only if (a + x)
(M)eF for all Me^Z - {X}. Now suppose ikf e ^ ^ - {X}, M =
ikίfl -X" and % e l is an identity modulo M (i.e., ^(M) = eg). Then

e M}, which implies

((1 - u)u)(M) = e$ - eg = 0 and 1 - u e i l ί .

Therefore, if βeF,

x(M) = iδ « = * O Ξ ^ - β Ξ ^ - ^ (M)

<==> (since #, /5u 6 X)a? Ξ βu (M)

Thus by the 1-to-l correspondence between ^ — {X} and
a + xeXQ if and only if x e Xo.

( b ) follows from (a).
( c ) The assumption X = Xo implies X = Xo, so that \\(a + x)(M) ||,

, may be written | (a + x)(M) |. Therefore

a + xeW <=> I (a + x)(M) \ = \a + x(M) | ^ 1 for all

<==> α e o and x(M) eo for all Me^fέ — {X}

^ = ^ α G o and a (M) e oe$ for all iίf e ^

<==> α: + ajeo + TF .

COROLLARY 6.3. If Xo — X, V = ΐ ^ and .^€^ is compact, then X
is isometrίcally isomorphic to the subalgebra of functions in
which vanish at X.
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Proof. If X = Xo, then W=o+W'=o+Ϋ=Vanά X = Xo,
so Corollary 6.2 may be used.

COROLLARY 5.1. If (XQ)Q = Xo, Fo — WQ and ^/^ is compact, then
Xo is isometrically isomorphic to the subalgebra of functions in

Q) which vanish at XQ.

Recall that if the ground field is locally compact, ^ in Corollary
6.3 and ^tj in Corollary 5.1 are compact.

4* Miscellaneous*

THEOREM 7. Let Y be a commutative normed algebra with iden-
tity e over the valued field F, and let X be a finite dimensional al-
gebra over Y with Y-basis {uu , un} and structure constants defined
by UiUj = ^Σjkc

h

iάuk. 1f X has an identity, we assume that it coincides
with the identity of Y and that uγ — e. Then, viewing X as a
normed linear space with the norm || Σ a{u{ \\ = max || α< ||, αf e F, the
following are equivalent:

( a ) X is a normed algebra over F.
( b) || UiUj || ^ || Ui || I] uά \\ for all i and j .
( c) c% e Vγ for all i, j and k, where Vγ = {y e Y\ \\y\\^ 1}.

Proof. The equivalence of (b) and (c) follows from the equalities
II Ui II II U3II — II e II II e II — 1 (which follows from the representations ut —
eui9 Uj = eud) and || u{u^ || = || Σ * chuk II = max fc || c\ά \\.

Certainly (a) implies (b), so that to complete the proof it suffices
to show (c) implies (a). It is easy to verify that, independent of the
nature of the c\ά, X is an algebra over F and a normed vector space
In fact X is isomorphic as a normed space to an orthogonal direct
sum of n copies of Y (which shows that X is complete if Y is). If
e is the identity of X, our assumption uγ — e guarantees that \\e\\ — 1.
Therefore, to show (c) implies (a), it only remains to show \\xy\\ ^

Let x = Σ^i^i a n d let y = Σ 6*̂ *- Then

^ max (max || a-bfi^ \\)
k ί,j

<Ξ m a x 11 a{ \ \ \\bΛ\ \\c\Λ\

^\\χ\\\\y\\.

COROLLARY 7.1. Let Y be as above, and let X = Y[z], where z



550 NEIL SHILKRET

satisfies a monic polynomial, say of degree n, with coefficients in
Vγ (i.e., z is integral over Vγ). Then

( a ) X is a normed algebra with || ΣJ1"1 Vί^ II = max || y{ ||;
(b) || z || = 1, i.e., a unit vector has been adjoined to Y;
( c ) | |J5Γ|| = \\Y\\;and
( d ) X is a commutative Banach algebra with identity if Y is.

Proof. Choosing u{ — z\ i — 0, , n — 1, a simple induction argu-
ment shows that \\zk\\ <̂  1 for all k, so that

H ^ i l l = 1 1 ^ 1 1 ^ 1 = 11^|| | |%||.

This establishes (a); (b) and (c) are obvious; and (d) was established
in the proof of the main theorem.

Using Corollary 7.1 it is easy to construct a variety of Banach
algebras X in which F g l o g l . For example, let F be a p-adic
number field not containing i = V^Λ (see Bachman [1]), let X =
F(i)[x] = i^[ί][x], where x has minimal polynomial (t — If, and norm
jP[i][x] in two stages according to Corollary 7.1.
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