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EXTENDING HOMEOMORPHISMS

JEROME L. PAUL

Theorem 1 of this paper establishes a necessary and suf-
ficient condition that a locally flat imbedding /: Bk —> Rn of a
/c-cell in euclidean %-space î w admits an extension to a homeo-
morphism F:Rn->Rn onto Rn such that F \ (Rn - Bk) is a
diffeomorphism which is the identity outside some compact set
in Rn. An analogous result for locally flat imbeddings of a
euclidean (n—l)-sphere into Rn is proved. A lemma which ge-
neralizes a theorem of Huebsch and Morse concerning Schoen-
flies extensions without interior differential singularities is
also established.

Let the points of euclidean %-space Rn be written x — (x\ , xn),
and provide R% with the usual euclidean norm \\x\\ ~ [Σix*)2]112. We
set Sr = {x eRn\\\ x || = r}, (and S = S,). If M is a topological (n-ΐ)-
sphere in Rn, we denote the bounded component of Rn — M by JM,
and the closure of JM in Rn by JM. We refer the reader to § 1 of
[2] for the definition of the terms admissible cone Kz, conical point,
axis of singular approach, and cone KZ(Σ), where Σ is a euclidean
(n — l)-sphere in R\

LEMMA 1. Let z be an arbitrary point of S and φ a sense-
preserving homeomorphism into Rn of an open neighborhood N of S
such that φ carries points inside S to points inside φ(S), and
φ\(N— S) is a Cm-diffeomorphism. There then exists a homeomor-
phism Φ of Rn onto Rn and a cone Kz (resp. Kz) with axis interiorly
normal (resp. exteriorly normal) to S at z, such that if X a N is a
sufficiently small open neighborhood of S,

Φ(x) - Ψ{x) [xeX- {KZ(S) U KΛ}\ ,

Φ I (Rn — S) is a Cm-diffeomorphism, and Φ is the identity out-
side some compact set in Rn.

REMARK. We note that a direct application of the proof of Theo-
rem 1.2 of [2] will yield the conclusions of Lemma 1 except for single
differential singularities in each component of Rn — S.

Proof of Lemma 1. The proof of Lemma 1 will be a variation
of the proof of Theorem 1.2 of [2]. We can assume that OeJφ(S).
Let δe(i, 1) be a constant so near 1 that SδaN. Using Theorem 1.1
of [2], there is a homeomorphism /: JS —> Rn into Rn such that
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f\(JS - JSδ) = φ\(JS - JSδ) ,

and /1 (JS — 0) is a Cm-diffeomorphism. We can also assume that
/(0) = 0. We now apply Lemma 5.3 of [2] to f\(JSΓ\ N), Sδ, and the
fixed point y — δzeSδ, and conclude that if p > 1 is a sufficiently
large constant, there exists a homeomorphism Θ of Rn onto Rn such
that θ(x) = /(a?) for xeYU JSδ, where Γ is a suitable neighborhood
of Sδ, Θ 1 (Rn — {0 U pz}) is a Cm-diffeomorphism, where the point pz is
a conical point of Θ with cone J5Γ,, of singular approach to pz whose
axis is interiorly normal to Sp at pz, and if a constant v e (0,1) is
sufficiently near 1, Θ reduces to the identity on Rn — {Bvp U Kpz(Sp)}.

Let ω be a radial C°°-diffeomorphism of Rn onto R% such that ω(x) =
x for || α? || ^ ε, and ω(x) — px for || x \\ ^ 1 — ε, where 0 < ε < \. We
then set Φ(x) = fω-ιΘ~ιω(x) for a?e«7"5. If ζ:Rn->Rn is the C--dif-
feomorphism Z(x) — px, we set Kz = ζ"^^,) and X = ζrι(JSp — B^).
We can assume that v is so near 1 that 1 — ε < v and δ < v, so that
ζ-ι(JSp - Bvp) = ω-ι(JSp - Bvp) and XczJS- JSδ. Then we see that
Φ I (X - K,(S)) = φ\(X~ KZ(S)) and Φ \ JS is a Cw-diffeomorphism
(which reduces to the identity on a neighborhood of 0). We have
therefore defined Φ \ JS with the desired properties. We then define
Φ on Rn — JS in an analogous manner to satisfy the conclusions of
Lemma 1 by regarding Rn, with the "point at infinity" added, as an
%-sphere, and using the geometry of inversion. This completes the
proof of Lemma 1.

REMARK. AS the proof of Lemma 1 shows, we also could state
corresponding "one-sided" lemmas in which the differentability is only
assumed either outside or inside of S. For example, if only φ \ (N—JS)
is a Cm-diffeomorphism, then Kz and Φ exist where Φ \ (Rn — JS) is a
Cw-diffeomorphism which is the identity outside some compact set in Rn.

We now fix the integer n, and for any integer k <^n, we regard
Rk c Rn as consisting of those points x = (x\ , xn) with xk+1 = =
xn — 0. We denote the unit Λ-cell in Rk c Rn by Bk. For convenience,
we assume in what follows that "diffeomorphism" means "C°°-difFeomor-
phism."

THEOREM 1. Let f:Bk—>Rn be a homeomorphism into Rn such
that each point xeBk has an open neighborhood Vx in R% and a
sense-preserving homeomorphism fx: Vx-^Rn into Rn satisfying

fx\(Vxf]Bk)=f\(Vxf]Bk)

and fx I (Vx — Bk) is a diffeomorphism. Then there exists a homeo-
morphism F of Rn onto Rn such that
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( i ) F\Bk = f,
(ii) F\ (Rn — Bk) is a diffeomorphism,
(iii) F is the identity outside some compact set in Rn.

Proof. An examination and easy modification of the proof of
Proposition C in [1] shows that there exists an open neighborhood N
of Bk in Rn and a sense-preserving homeomorphism φ:N-+Rn into
Rn such that φ \ Bk = / and φ \ (N - Bk) is a diffeomorphism. Let
«ΛŜ  c N be a smooth convex w-cell in jβΛ, where y is a smooth
(^ — l)-sphere in Rn such that JBfc c S^, and let 2 be an arbitrary-
point in Bk. Using the remark following Lemma 1, there exists an
open neighborhood Y of 6^ in Rn, a cone Kz with axis exteriorly normal
to S^ at z, and a homeomorphism Φ of l?w onto itself such that
φ(x) = £>(#) for # e ( F — Ke), and Φ | (Rn — JS^) is a diffeomorphism
which is the identity outside some compact subset of Rn. We then
define F: Rn -> Rn by

F(x) = φ{x) [x e (Y - Kz) U

= Φ(x) [xeY[j {Rn -

It is clear that F satisfies the conclusions of Theorem 1.

LEMMA 2. Let f: Rn~ι —> Rn, n :> 4 6β <m imbedding of Rn~ι as
a closed subset of Rn. Suppose for each x e Rn~ι there is a neighbor-
hood Vx of x in Rn and a homeomorphism fx: Vx —> Rn into Rn such that
fx\(Vxf\ R^1) = f\ (Vx n R71-1), and fx\(Vx- Rn~ι) is a diffeomorphism.
Then there is a homeomorphism F of Rn onto Rn such that F | Rn~ι =
/ and F \ (Rn — Rn~ι) is a diffeomorphism.

PROOF. AS in the proof of Lemma 2, (cf. Proposition Cι of [1]),
there is an open neighborhood U of Rn~ι in Rn and a homeomorphism
Φ:U—Rn into Rn such that Φ\Rn-ι=f and Φ\(U-RΛ"1) is a
diffeomorphism. Let ^3

1

%~1, ^2

n~~1 be diffeomorphs (under good C1-
approximations to the inclusion) of Rn~ι as closed subsets of Rn such
that &?~ι and ^V1"1 are contained in opposite components of Rn — Rn~\
and if V denotes the component of Rn — {&?~ι U ̂ 2

%~1} which con-
tains Rn~\ then V = Vl) ^1

n~1 U &2

n~ιa U. Let V, (resp. F2) denote
that component of Rn — &?-1 (resp. i ^ — &z~ι) which does not
contain &™~ι (resp. ^ 1

% ~ 1 ) . Applying the corollary to Theorem 1
of [3], there are diffeomorphisms Θly Θ2 of Rn onto Rn such
that θi I ^ ί

% ~ 1 = Φ I &i%~γ, i = 1, 2. Since any orientation-preserving
diffeomorphism of i?^"1 on itself is diffeotopic to the identity, we may
assume that θ | 04 — Φ |0f, where 0̂  is an open neighborhood of ^ ϊ l ~ 1

in Ew - Rn~\ i = 1, 2. Then F : Rn-+Rn defined by
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F(x) = θt(x) [xe0zl)V2],

F{x) = Φ(x) [x e 0, U 02 U V]

satisfies the conclusions of Lemma 2.
Using one point compactification and stereographic projection,

Theorem 2 below is obtained readily from Lemmas 2 and 1.

THEOREM 2. Let f: S —> Rn be a homeomorphism into Rn, n ^ 4,
and let p be an arbitrary point in S. Suppose each point xeS — p
has an open neighborhood Vx in Rn and a sensepreservίng homeo-
morphism fx: Vx-+Rn into Rn such that fx | (Vx n S) = / | (Vx Π S),
f\(Vx — S) is a diffeomorphism, and fx carries points inside S to
points inside f(S). Then there is a homeomorphism F of Rn onto
itself such that F\S — /, and F\ (Rn — S) is a diffeomorphism which
is the identity outside some compact subset in Rn.
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