EXTENDING HOMEOMORPHISMS

JEROME L. PAUL

Theorem 1 of this paper establishes a necessary and sufficient condition that a locally flat imbedding $f\colon B^k\to R^n$ of a k-cell in euclidean n-space R^n admits an extension to a homeomorphism $F\colon R^n\to R^n$ onto R^n such that $F\mid (R^n-B^k)$ is a diffeomorphism which is the identity outside some compact set in R^n . An analogous result for locally flat imbeddings of a euclidean (n-1)-sphere into R^n is proved. A lemma which generalizes a theorem of Huebsch and Morse concerning Schoenflies extensions without interior differential singularities is also established.

Let the points of euclidean n-space R^n be written $x=(x^1,\dots,x^n)$, and provide R^n with the usual euclidean norm $||x||=[\Sigma(x^i)^2]^{1/2}$. We set $S_r=\{x\in R^n\mid ||x||=r\}$, (and $S=S_1$). If M is a topological (n-1)-sphere in R^n , we denote the bounded component of R^n-M by JM, and the closure of JM in R^n by JM. We refer the reader to § 1 of [2] for the definition of the terms admissible cone K_z , conical point, axis of singular approach, and cone $K_z(\Sigma)$, where Σ is a euclidean (n-1)-sphere in R^n .

LEMMA 1. Let z be an arbitrary point of S and φ a sense-preserving homeomorphism into R^n of an open neighborhood N of S such that φ carries points inside S to points inside $\varphi(S)$, and $\varphi(N-S)$ is a C^m -diffeomorphism. There then exists a homeomorphism Φ of R^n onto R^n and a cone K_z (resp. \check{K}_z) with axis interiorly normal (resp. exteriorly normal) to S at z, such that if $X \subset N$ is a sufficiently small open neighborhood of S,

$$\Phi(x) = \varphi(x) \qquad [x \in X - \{K_z(S) \cup \check{K}_z\}],$$

 $\Phi \mid (R^n - S)$ is a C^m -diffeomorphism, and Φ is the identity outside some compact set in R^n .

REMARK. We note that a direct application of the proof of Theorem 1.2 of [2] will yield the conclusions of Lemma 1 except for single differential singularities in each component of $R^n - S$.

Proof of Lemma 1. The proof of Lemma 1 will be a variation of the proof of Theorem 1.2 of [2]. We can assume that $0 \in \mathring{J}_{\varphi}(S)$. Let $\delta \in (\frac{1}{2}, 1)$ be a constant so near 1 that $S_{\delta} \subset N$. Using Theorem 1.1 of [2], there is a homeomorphism $f: JS \to \mathbb{R}^n$ into \mathbb{R}^n such that

$$f \mid (JS - \mathring{J}S_{\hat{i}}) = \varphi \mid (JS - \mathring{J}S_{\hat{i}}),$$

and $f \mid (\mathring{J}S - 0)$ is a C^m -diffeomorphism. We can also assume that f(0) = 0. We now apply Lemma 5.3 of [2] to $f \mid (\mathring{J}S \cap N)$, S_{δ} , and the fixed point $y = \delta z \in S_{\delta}$, and conclude that if $\rho > 1$ is a sufficiently large constant, there exists a homeomorphism θ of R^n onto R^n such that $\theta(x) = f(x)$ for $x \in Y \cup JS_{\delta}$, where Y is a suitable neighborhood of S_{δ} , $\theta \mid (R^n - \{0 \cup \rho z\})$ is a C^m -diffeomorphism, where the point ρz is a conical point of θ with cone $K_{\rho z}$ of singular approach to ρz whose axis is interiorly normal to S_{ρ} at ρz , and if a constant $\nu \in (0, 1)$ is sufficiently near $1, \theta$ reduces to the identity on $R^n - \{B_{\nu \rho} \cup K_{\rho z}(S_{\rho})\}$.

Let ω be a radial C^{∞} -diffeomorphism of R^n onto R^n such that $\omega(x)=x$ for $||x|| \leq \varepsilon$, and $\omega(x) = \rho x$ for $||x|| \geq 1-\varepsilon$, where $0 < \varepsilon < \frac{1}{2}$. We then set $\Phi(x) = f\omega^{-1}\Theta^{-1}\omega(x)$ for $x \in JS$. If $\zeta \colon R^n \to R^n$ is the C^{∞} -diffeomorphism $\zeta(x) = \rho x$, we set $K_z = \zeta^{-1}(K_{\rho z})$ and $\hat{X} = \zeta^{-1}(JS_{\rho} - B_{\nu \rho})$. We can assume that ν is so near 1 that $1-\varepsilon < \nu$ and $\delta < \nu$, so that $\zeta^{-1}(JS_{\rho} - B_{\nu \rho}) = \omega^{-1}(JS_{\rho} - B_{\nu \rho})$ and $\hat{X} \subset JS - JS_{\delta}$. Then we see that $\Phi \mid (\hat{X} - K_z(S)) = \varphi \mid (\hat{X} - K_z(S))$ and $\Phi \mid \hat{J}S$ is a C^m -diffeomorphism (which reduces to the identity on a neighborhood of 0). We have therefore defined $\Phi \mid JS$ with the desired properties. We then define Φ on $R^n - \mathring{J}S$ in an analogous manner to satisfy the conclusions of Lemma 1 by regarding R^n , with the "point at infinity" added, as an n-sphere, and using the geometry of inversion. This completes the proof of Lemma 1.

REMARK. As the proof of Lemma 1 shows, we also could state corresponding "one-sided" lemmas in which the differentability is only assumed either outside or inside of S. For example, if only $\varphi \mid (N-JS)$ is a C^m -diffeomorphism, then K_z and Φ exist where $\Phi \mid (R^n - JS)$ is a C^m -diffeomorphism which is the identity outside some compact set in R^n .

We now fix the integer n, and for any integer $k \leq n$, we regard $R^k \subset R^n$ as consisting of those points $x = (x^1, \dots, x^n)$ with $x^{k+1} = \dots = x^n = 0$. We denote the unit k-cell in $R^k \subset R^n$ by R^k . For convenience, we assume in what follows that "diffeomorphism" means " C^{∞} -diffeomorphism."

THEOREM 1. Let $f: B^k \to R^n$ be a homeomorphism into R^n such that each point $x \in B^k$ has an open neighborhood V_x in R^n and a sense-preserving homeomorphism $f_x: V_x \to R^n$ into R^n satisfying

$$f_x \mid (V_x \cap B^k) = f \mid (V_x \cap B^k)$$

and $f_x | (V_x - B^k)$ is a diffeomorphism. Then there exists a homeomorphism F of R^n onto R^n such that

- (i) $F \mid B^k = f$,
- (ii) $F \mid (R^n B^k)$ is a diffeomorphism,
- (iii) F is the identity outside some compact set in R^n .

Proof. An examination and easy modification of the proof of Proposition C in [1] shows that there exists an open neighborhood N of B^k in R^n and a sense-preserving homeomorphism $\varphi \colon N \to R^n$ into R^n such that $\varphi \mid B^k = f$ and $\varphi \mid (N - B^k)$ is a diffeomorphism. Let $J\mathscr{S} \subset N$ be a smooth convex n-cell in R^n , where \mathscr{S} is a smooth (n-1)-sphere in R^n such that $B^k \subset \mathscr{S}$, and let z be an arbitrary point in B^k . Using the remark following Lemma 1, there exists an open neighborhood Y of \mathscr{S} in R^n , a cone K_z with axis exteriorly normal to \mathscr{S} at z, and a homeomorphism Φ of R^n onto itself such that $\Phi(x) = \varphi(x)$ for $x \in (Y - K_z)$, and $\Phi \mid (R^n - J\mathscr{S})$ is a diffeomorphism which is the identity outside some compact subset of R^n . We then define $F \colon R^n \to R^n$ by

$$F(x) = \varphi(x)$$
 $[x \in (Y - K_z) \cup J\mathscr{S}]$
 $F(x) = \Phi(x)$ $[x \in Y \cup (R^n - J\mathscr{S})]$.

It is clear that F satisfies the conclusions of Theorem 1.

LEMMA 2. Let $f: R^{n-1} \to R^n$, $n \geq 4$ be an imbedding of R^{n-1} as a closed subset of R^n . Suppose for each $x \in R^{n-1}$ there is a neighborhood V_x of x in R^n and a homeomorphism $f_x: V_x \to R^n$ into R^n such that $f_x \mid (V_x \cap R^{n-1}) = f \mid (V_x \cap R^{n-1})$, and $f_x \mid (V_x - R^{n-1})$ is a diffeomorphism. Then there is a homeomorphism F of R^n onto R^n such that $F \mid R^{n-1} = f$ and $F \mid (R^n - R^{n-1})$ is a diffeomorphism.

PROOF. As in the proof of Lemma 2, (cf. Proposition C_1 of [1]), there is an open neighborhood U of R^{n-1} in R^n and a homeomorphism $\Phi\colon U\to R^n$ into R^n such that $\Phi\mid R^{n-1}=f$ and $\Phi\mid (U-R^{n-1})$ is a diffeomorphism. Let \mathscr{B}_1^{n-1} , \mathscr{B}_2^{n-1} be diffeomorphs (under good C^1 -approximations to the inclusion) of R^{n-1} as closed subsets of R^n such that \mathscr{B}_1^{n-1} and \mathscr{B}_2^{n-1} are contained in opposite components of R^n-R^{n-1} , and if V denotes the component of $R^n-\{\mathscr{B}_1^{n-1}\cup\mathscr{B}_2^{n-1}\}$ which contains R^{n-1} , then $V=V\cup\mathscr{B}_1^{n-1}\cup\mathscr{B}_2^{n-1}\subset U$. Let V_1 (resp. V_2) denote that component of $R^n-\mathscr{B}_1^{n-1}$ (resp. $R^n-\mathscr{B}_2^{n-1}$) which does not contain \mathscr{B}_2^{n-1} (resp. \mathscr{B}_1^{n-1}). Applying the corollary to Theorem 1 of [3], there are diffeomorphisms Θ_1 , Θ_2 of R^n onto R^n such that $\Theta_i \mid \mathscr{B}_i^{n-1} = \Phi \mid \mathscr{B}_i^{n-1}$, i=1,2. Since any orientation-preserving diffeomorphism of R^{n-1} on itself is diffeotopic to the identity, we may assume that $\Theta\mid 0_i=\Phi\mid 0_i$, where 0_i is an open neighborhood of \mathscr{B}_i^{n-1} in R^n-R^{n-1} , i=1,2. Then $F\colon R^n\to R^n$ defined by

$$F(x) = heta_1(x) \qquad [x \in 0_1 \cup V_1] \; ,$$
 $F(x) = heta_2(x) \qquad [x \in 0_2 \cup V_2] \; ,$ $F(x) = heta(x) \qquad [x \in 0_1 \cup 0_2 \cup V] \; .$

satisfies the conclusions of Lemma 2.

Using one point compactification and stereographic projection, Theorem 2 below is obtained readily from Lemmas 2 and 1.

Theorem 2. Let $f: S \to R^n$ be a homeomorphism into R^n , $n \geq 4$, and let p be an arbitrary point in S. Suppose each point $x \in S - p$ has an open neighborhood V_x in R^n and a sensepreserving homeomorphism $f_x: V_x \to R^n$ into R^n such that $f_x|(V_x \cap S) = f|(V_x \cap S)$, $f|(V_x - S)$ is a diffeomorphism, and f_x carries points inside S to points inside f(S). Then there is a homeomorphism F of R^n onto itself such that F|S=f, and $F|(R^n-S)$ is a diffeomorphism which is the identity outside some compact subset in R^n .

REFERENCES

- 1. A. V. Chernavskii, Homeomorphisms of euclidean spaces and topological imbeddings of polyhedra in euclidean spaces II, Math. USSR Sbornik 1 (1967), 519-541.
- 2. W. Huebsch and M. Morse, Schoenflies extensions without interior differential singularities, Ann. of Math. 76 (1962), 18-54.
- 3. J. Stallings, "On infinite processes leading to differentiability in the complement of a point," *Differential and combinatorial topology*, Princeton Univ. Press, Princeton, New Jersey, 1965.

Received October 8, 1968. The author was partially supported by the National Science Foundation.

PURDUE UNIVERSITY LAFAYETTE, INDIANA