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ON CONTINUITY CONDITIONS FOR FUNCTIONS

EVELYN R. MCMILLAN

Suppose / is a function from a topological space X into
a topological space Y. Many classical theorems of topology
assert that from continuity of / follow certain other properties.
For example, if / is continuous, then its point inverses must be
closed (if Y is a TΊ space) and compact subsets of X must have
compact images under /, that is, / must be compact preserving.
Also, / must be connected, that is, connected subsets of X
have connected images. It is natural to ask whether some
combination of these properties is equivalent to continuity.

In particular, our main result (Theorem 2) concerns com-
pact preserving, connected functions. We give a proof of a
result announced but inadequately proved by E. Halfar that
such a function / is continuous if X is a locally connected
Hausdorff space with property K and Y is a Hausdorff space.
(A space X has property K if given that x0 is a limit point
of an infinite set A c l , then there is a compact set K c A U {x0}
such that x0 is a limit point of K.)

Examples are given in § 3 to show that the conditions on the
domain of / cannot, in general, be omitted.

The result stated above generalizes theorems of other authors.
Klee and Utz [11] proved that if X is a locally connected metric space,
then every compact preserving, connected function from X into a
metric space is continuous. Whyburn [19] showed that if the domain
satisfies the first axiom of countability then "metric space" can be
replaced at each occurrence by "Hausdorff space" in this result.

An important tool in our version of Halfar's theorem is the equi-
valence in Hausdorff spaces of property K with the following "com-
pactness condition": A space X has property E if given that x0 is a
limit point of an infinite set A c X, then there is an infinite sequence
of distinct points {xj c A such that {OJJ converges to xQ. This surprising
equivalence was pointed out to us by M. E. Rudin, whose slightly
modified proof we include in § 2. We are also indebted to her for
the example in Remark 2 of § 3.

We also consider spaces satisfying compactness conditions weaker
than properties E and K: Property a spaces and spaces in which
compactly closed sets are closed. A space X has property a if given
that xQ is a limit point of an infinite set A c X, then there is a compact
set KaX such that xQ is a limit point of K Π A. A subset A of a
space X is compactly closed if A Π K is closed in K for each compact
set K c X. A Hausdorff space with compactly closed sets closed is a
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k-space in the sense of Kelley [10]. It is easily seen that each of
the properties of spaces in the following list implies the next: ϊ\
and satisfies the first axiom of countability, property E, property K,
property α, all compactly closed sets are closed. Section 2 contains
examples to show that none of these implications is, in general,
reversible.

As remarks in § 3 and § 5 indicate, there is some difficulty in pin-
pointing precisely those spaces X for which the following proposition
holds: every compact preserving connected function with domain X
is continuous. For instance, the example in Remark 2 of § 3 shows
that the proposition may fail if X does not have compactly closed sets
closed. On the other hand (see § 5), neither property K nor property
a is a necessary condition on X for the truth of the proposition. It
seems reasonable to expect (because of an analogous result for compact
preserving functions with closed point inverses) that the condition that
X have all compactly closed sets closed may be necessary.

Section 4 is concerned with compact preserving functions with
closed point inverses. In [11] Klee and Utz showed that any such
function between metric spaces is continuous. Extending this result
to the case of such functions between Hausdorff spaces, various authors
have shown that continuity follows if the domain is assumed to satisfy
some compactness conditions: Halfar used property K, [8]; Fuller,
property α, [6]; Whyburn, compactly closed sets closed, [19]. In § 4
we show that this last result of Whyburn cannot be improved, in the
sense that a Hausdorff space X has compactly closed sets closed if and
only if it satisfies the following proposition: every compact preserving
function with closed point inverses from X into a Hausdorff space Y
is continuous.

For definitions not included in this paper, the reader is referred
to [10].

Some other papers, in addition to those mentioned above, which
deal with the problem of finding conditions which imply continuity are
[3], [7], [14], [15], [16], and [18].

2, Some compactness conditions. The main result of this sec-
tion is that properties E and K are equivalent for Hausdorff spaces.
First we give an example to show that, in general, property E is
stronger than property K. This and the other examples which follow
show that no two of the compactness conditions defined in § 1 are
equivalent.

EXAMPLE 1. A Tx space which has property K but not property E:

Let X be the set of ordinals less than or equal to Ω, where Ω is
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the first uncountable ordinal. Give X the topology generated by the
sets of the form

Sa = {x e X: x> a} ,

for each a < Ω, together with those sets which are complements of
finite sets. That is, this is a subbasis for the topology on X.

X does not have property E, since Ω is a limit point of X — {£?},
but no sequence in X — {Ω} converges to Ω. To see that X does have
property K, one need only note that every subset A of X is compact.
For, if an open cover of A is given, then the element of that cover
which contains the first element of A also contains all but a finite
number of the remaining points of A.

EXAMPLE 2. A property E space which does not satisfy the first
axiom of countability:

Let X — USU Lnf where Ln is the line segment in the plane joining
the points (0, 0) and (1,1/n). Let X — {(0, 0)} have the relative topology
from the plane. A basis for the open sets about (0, 0) are sets of
the form U~=i^ where SnaLn for each n is a half-open interval
with (0, 0) as the included end point. (See [8], p. 691.) Note that
there is a countable basis at each point of X except (0, 0). However,
X has property Έ, since if (0, 0) is a limit point of A c X then for
some n, (0, 0) is a limit point of A Π Ln.

EXAMPLE 3. A compact Hausdorff space which has property a but
not property K:

Let X be the set of ordinals less than or equal to the first
uncountable ordinal, Ω. Give X the order topology. X has property
a since it is compact. However, Ω is a limit point of the set

A — {x + 1: x is a limit ordinal, x < Ω) ,

but no compact subset of A (J {Ω} has fiasa limit point.

Fuller in [6] indicates that he does not know whether property a
and compactly closed sets closed are equivalent concepts. The example
which follows shows that they are not.

EXAMPLE 4. A Hausdorίf space in which all compactly closed sets
are closed but which does not have property a:

Let
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X = {(1/n, 0 ) } ^ U {(1M l/m)}~ w = 1 U {(0, 0)} .

Let X — {(0, 0)} have the relative topology from the plane. A set U
containing (0, 0) will be open if U contains all but a finite number of
the points of the form (1/n, 0) and for each n0 such that (l/n0, 0) e U,
U contains all but a finite number of points of the form (l/n0, 1/m).
(See [5], p. 51.)

X does not have property ay since (0, 0) is a limit point of

but if if is a compact set in X, then K contains points of {(l/nQ1 l/m)}~=ι

for only finitely many n0. Thus, (0, 0) is not a limit point of

K n {(1/n, 1/m)}- w = 1 .

To see that compactly closed sets in X are closed, suppose S c X
is not closed. Then either (0, 0) or one of the points (1/n, 0) is a limit
point of S which is not in S.

If (l/n0, 0) for some n0 is a limit point of S not in S, then S must
contain infinitely many points of the set {(l/n0, l/m)}~=1. Let

K=(SΓί {(I/no, l/m)}:=1) U {(1M>, 0)} .

Then K is a compact set (a converging sequence plus its limit point),
however, K Π S is not closed in Ky since it does not contain the point
(l/n0, 0). Thus S is not compactly closed.

If S contains all of the points of the form (1/n, 0) which are limit
points of S, then (0, 0) must be a limit point of S which is not in S.
It follows that S must contain infinitely many points of {(1/n, 0)}"=1.
For, suppose not. Let

(1M, 0), (l/n2, 0), . . . (l/nk, 0)

be all of these points which are in S. Choose

m > max (nlt n2, , nk) ,

then no point (1/j, 0) with j ^ m is a limit point of S or is in S.
Thus, there is an open set about (0, 0) which contains no points of S.
This is a contradiction, and it follows that S contains infinitely many
points of {(1/n, 0)}^=1. Let

K = (S n {(i/rc, o)}:=1) u {(o, o)}.

K is a compact set, but K Π S is not closed, since it does not contain
(0, 0).

Thus, in either case if S is not closed, then S is not compactly
closed. It follows that the space X has compactly closed sets closed.
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The following lemma, which is the key to showing that a Haus-
dorff space which has property K also has property E, may be of
independent interest. The proof of the lemma involves the Hausdorff
Maximal Principle. (See [10], p. 32.)

LEMMA. // X is a Hausdorff space and xoe X is a limit point
of X, then there exists an infinite disjoint collection {Ub} bBB of
open subsets of X — xQ such that x0 is in the closure of their union,
but x0 is not in the closure of Ub for any b.

Proof. Let ̂  be the collection of all open subsets U of X — xQ

such that x0 is not in the closure of U. Since X is a Hausdorff space,
for each y e X — x0 there is an element Uy of ^ with y e Uy. Note
that X — x0 Φ 0 , since x0 is a limit point of X. Thus, ^ is nonempty.

Let Ssf consist of all subcollections of <%f whose elements are
pairwise disjoint. s%? is partially ordered by inclusion. Let ̂  be
any tower of elements of j ^ Then by the Hausdorff Maximal Principle
there is a maximal tower ^ containing ̂ /K

Let ^tf = {Ae}cec and {Ub}beB = \JcecAc. We claim that x0 is a
limit point of \JbeB Ub. Suppose not. Choose an open set W about x0

such that W contains no points of \JbeBUb. Choose y e W ΓΊ (X — xQ).
Let Vx and V2 be disjoint open sets containing y and x0 respectively.
Then Uy = V1 Π W is in ^ , is not in {Ub}beB, but is disjoint from
each Ub. This is a contradiction since ^ was a maximal tower.

Thus, x0 is a limit point of \JbeB Ub. Note that x0 is not in the
closure of Ub for each b since each Ub is in ^ .

THEOREM 1 (M. E. Rudin). If X is a Hausdorff space, then X
has property E if and only if X has property K.1

Proof As indicated in § 1, it is obvious that if X has property
E, then X has property K.

Suppose X has property K. Let A be an infinite subset of X with
x0 e X a limit point of A. A{j {x0} is a Hausdorff space. Applying
the lemma, there is a collection {Ub}beB of pairwise disjoint subsets of
A — {̂ 0}, such that each Ub is open in A — {x0}, x0 is a limit point of
\JbeB Ub, but xQ is not in the closure of Ub for any b.

Choose a compact set K such that x0 is a limit point of K and

K contains points of infinitely many Ub1 since otherwise x0 would be
a limit point of a finite collection {ϊ/dJU and hence, of some one Ui9

1 Added in proof: Another proof may be found in Theorem 1 of A. Arhangelskij,
A characterization of very k-spaces, Czech. Math. J. 18 (93) (1968), 392-395.
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contrary to the fact that x0 is not in the closure of any Ub. Let
{&JΓ=i be any infinite sequence of indices such that K Π Ub. Φ 0 for
each i. Choose xt in Ub. Π K, i = 1, 2, 3, . We claim that {cej
converges to x0. Suppose not. Choose an open set W about x0 with
infinitely many points xt in X — W. K is covered by W together
with {Vb}beB where Vb is open in X and Ub = Vb Π (A — {x0}). This
cover connot be reduced to a finite subcover since infinitely many sets
Vb are required to cover the points in (X — W) Π {̂ }. This is a
contradiction since K is compact. Thus {#J converges to x0.

Thus X has property E, and the proof is complete.

3- Halfar's theorem, E. Halfar [8, Th. 6, p. 690-691] purported
to prove the following theorem: If X is a locally connected Hausdorff
space with property K and f is a compact preserving, connected
function from X into a Hausdorff space Y, then f is continuous.
However, there appear to be gaps in his proof. The main objection
is in the second paragraph. By Theorem 5 of [8] it suffices for him
to show that / has closed point inverses. Thus, he supposes that
there is a point x0 such that

He claims to construct a compact set K with x0 as a limit point and
f(K) infinite. To do this he does not make full use of the connectedness
of the function—only that connected neighborhoods of x0 have connected
images. The following example shows that this is not sufficient in
trying to obtain such a compact set. The function below on a property
K space is neither continuous nor connected, but connected neighbor-
hoods of x0 do have connected images.

Let X be the closed triangular region in the plane bounded by
the triangle abx0, where a = (0, 0), b = (1, 0), and x0 = (1/2, 1). Open
sets about pe X — {xQ} are those subsets of X — {x0} which as subsets
of the line segment through p joining x0 to the base are open in the
relative Euclidean topology for this line segment. An open neigh-
borhood of x0 is obtained by choosing on each line segment, between
xQ and the base of the triangle, a point pa Φ X0 and taking the union
of the half open segments (pa, x0].

Let Y be the unit interval, [0, 1], with the usual topology. Define
/ : X—• Y by f(x0) = 1 and on X — {x0}, f is projection from x0.

X is locally connected and the image of every neighborhood of x0

is Y and hence is connected. Thus, in particular, connected neighbor-
hoods in X have connected images. However, every compact set KaX
with x0 as limit point has a finite image, since K must be contained
in only finitely many rays.
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A second objection to Halfar's argument is that assuming he obtains
K with f(K) infinite, it is not clear why / is one-to-one on K. He
needs this to be true at several points in the remainder of his proof.

We show below that the theorem Halfar stated is in fact true.
First, we give some lemmas. Lemma 1 states that on a property E
space continuity of a function is equivalent to sequential continuity.
The proof is straightforward, and we omit it. Lemma 2 shows that
a compact preserving function into a Hausdorff space already has a
certain amount of sequential continuity. Lemma 3 is used only once
in the proof of the theorem. It is stated separately to emphasize that
only the connectedness hypotheses are needed for that part of the
proof.

LEMMA 1. If X has property E and f:X—>Y is a function,
then f is continuous at x0 e X if and only if for every sequence {xj
which converges to xQ, it is true that {/(&»•)} converges to f{x0).

LEMMA 2. Iff:X—*Yisa compact preserving function, Y is
a Hausdorff space, {scj c X converges to x0 e X and f(Xi) Φ f(Xj) for
iφj, then {/(&*)} converges to f(x0).

Proof. Let {#J and x0 be as in the hypothesis. Suppose {/(&*)}
does not converge to f(x0). Let V be an open set about f(xQ) whose
complement contains infinitely many points of the set {/(#*)}. Let
be a subsequence of {x{} with {/(?/;)} infinite and

czY-V,

Now {y{} U {x0} is compact. Hence,

(F- v)

is compact. Thus some f(y/) is a limit point of {/(#,•)}. Let {z{} be
the subsequence of all elements of {yj with /fo) Φ f{Vj). Now {2J U
{x0} is compact, but

{/(*<)} = Λ{*i)u{χo})n(Y- V)

is not compact, since it is not closed. This is a contradiction since
f({Zi} U {̂ o}) is compact and Y — V is closed.

Thus, {f(Xi)} must converge to f(x0).

LEMMA 3. Suppose f is a connected function from a locally
connected space X into a Tι space Y. Let xe X be a limit point of
f~ι(F), where FczY is closed. If x has an open neighborhood U
such that U7 Π f~ι(F) is open in X, then xef~\F).
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Proof. Since X is locally connected, we may assume that U is
connected. Suppose x is not in f~ι{F). We claim that U Π f~ι{F)
is not connected. If it were, then it together with its limit point x
would be a connected set whose image is not connected.

Consider a component C of U Π f~\F). C is open since X is
locally connected. Since U is connected, it cannot be true that

(C - C) n U = 0 .

Choose t e (C — C) Π U. Since t is not in f~\F), the connected set
C U {t} does not have a connected image.2 This contradicts the hypo-
thesis that / is a connected function.

Thus, x is in f~\F).
We are now ready to prove the theorem which Halfar stated. Note

that we state it with property E replacing property K. However, in
view of the equivalence of these two properties for Hausdorff spaces,
Theorem 2 below is equivalent to Halfar's statement.

THEOREM 2. If X is a locally connected, Hausdorff space with
property E, and f is a compact preserving, connected function from
X into a Hausdorff space Y, then f is continuous.

Proof. Suppose / is not continuous at xeX. Then by Lemma
1 there exists an infinite sequence {#J c X which converges to x, but
{f(Xi)} does not converge to f(x). By Lemma 2 we may assume that
for some y e Y>y Φ fix), f(Xi) = y for infinitely many i. Thus

x e f-'iy) - f~\y) .

Choose disjoint open sets U and V about f(x) and y, respectively.
Decompose f~ι{y) into three mutually exclusive sets Yly Y2, and Y3.

Let Yx consist of the interior points of f~ι{y). If z is in f~ι{y) but
is not an interior point, then z must be a limit point of X — f~ι{y)
Thus, by property E some sequence in X — f~ι(y) converges to z. Let

e f~ι{y)'. z$Yx and there exists an infinite sequence!

{Zi} of points from distinct point inverses^

f~ι(Wi) which converges to z )

and
2 This argument is essentially that used to show that components of the inverse of

a closed set are closed under a connected function, if the range is TΊ. (See Hamilton,
Fixed points for certain noncontinuous transformations, Proc. Amer. Math. Soc. 8
(1957), 750-756.) The author wishes to thank the referee for indicating this stronger
result for connected functions and pointing out that it could be used to give a direct
proof of Lemma 3.
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(z e f~ι(y): z$Y± and for each sequence {zj in X — f~\y)\

\ which converges to z, {/(«<)} is finite J .

Since x is a limit point of f~ι(y), it must be a limit point of at least
one of the subsets Yi9 i = 1, 2, or 3.

(1) Suppose x e Ϋ2, then there is an infinite sequence {z{} c Y2

which converges to x. For each zt there is an infinite sequence {zi3)
which converges to zi with

zi3- e f-'iWij), wih Φ wih , if j \ Φ j 2 .

Since f(Zi) — y for each i, each of the sequences {wi3)J=ι must converge
to y, by Lemma 2. Thus, we may assume that all of the points wi3

are in the open set V about y. We show that the sequences {zi3}T,j=i
can be chosen so that a point inverse f~ι(wi3) is represented only finitely
many times.

Consider zn e / φ n ) . If zi3 e f~\wn) for i > 1, then omit that
zi3 from that sequence. Consider z12 e /^(w^). If f~ι(w^ is represented
in any sequence after the second, omit each such representative. Thus,
for each n consider zln e f~x{wln). If f~ι{wln) is represented in any
sequence after the wth, omit each such representative. Now each
point inverse represented in the first sequence is represented in only
finitely many of the remaining sequences.

Consider the ith sequence and the first element of it still remaining,
zjme f~\wjm). If f~\Wjm) is represented in any sequence after the
yth, then omit each such representative. Consider the next remaining
element in the jth sequence, zάm, e f~ι{wjm). If f~ι(wjm,) is represented
in any sequence after the (j + l)st, then omit each such representative.
Continue in this manner for the rest of the elements of the ith sequence.

Now, if Zij e f~ι(wiά) remains at the end of this process, then the
point inverse f~ι{Wij) is represented in at most (i + j) sequences. On
the other hand, at most i(i — l)/2 elements have been omitted from
the ith sequence.

Denote the countably many sequences remaining {ziά}, then x is a
limit point of {ziά}. Hence some sequence {sj c {zi3] converges to x.
Now {/(Si)} is infinite, since by the process above a given point inverse
is represented only finitely many times in {zid}. However, /(s*) is
contained in the open set V about y for each i. Thus {/(«<)} does
not converge to f(x). This contradicts Lemma 2, and we must have
x$Ϋ2.

(2) We will show in this part that x cannot be a limit point of
y3. First, we demonstrate a useful property of the set F3.

If z e F8, then z is an interior point of the set

= \J{f~\w):zef-\w)}.
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Note that f~ι(y) c Wz since z e f~\y). Thus, z is in Wz. It follows
from the definition of Y3 that z cannot be a limit point of X — Wz.
Thus z has an open neighborhood Uz with Uz contained in Wz. Note
that if Ό[ n f"\q) Φ 0 for some q, then /"'(g) c T72, that is, 2 is in
the closure of f~~ι(q). We will also always choose Uz to be connected
in what follows.

Suppose x e F3, then there is an infinite sequence {̂ } c F3 which
converges to x. For each i, there is a ^ in 7 such that ^ is the
limit of a sequence in f~ι(Wi). We show that the w/s can be chosen
distinct from one another.

There is some wι in F different from f(x) and from y such that
2i is a limit point of f^iwj. For otherwise, the image of the connected
neighborhood UZl about z19 whose existence was demonstrated above
would be {f(x), y), which is not connected. Let Kλ and Ko be the
closures of disjoint open sets containing w1 and f(x), respectively, with
y not in Kt U Ko. Consider ϊ7/2> the connected open neighborhood of
z2 whose existence was demonstrated above. /(Z7/2) contains y and
some w Φ y. Thus, it must contain some point w2 not in the set
K! U KQ U {]/}, since otherwise, it would not be connected. Then z2 is
a limit point of f~ι(w2). Choose K2 to be a closed neighborhood of
w2 with y not in iΓ2. As for z2t we can choose w3 in

' Γ - (Ko U iξ U iΓ2 U {y})

with ^3 a limit point of f~ι(w^).
Continuing in this way we get each z{ the limit of a sequence

from a point inverse f~l(w^) with w{ Φ wjy if i Φ j . Choose a sequence
{ti} in the union of these sequences such that {£j converges to x. Now
{f(ti)} is infinite, however,

{/(£,)} c 7 - i ί 0 and /(x) e Int JBΓ0 .

Thus, {/(ίi)} does not converge to f(x). This contradicts Lemma 2,
and we must have x$ F3.

(3) Since x is not a limit point of Y2 U F3, there is an open
neighborhood U of x with

*7fΊ(F2U Ys)= 0 .

That is, [7 Π /-1(2/) is an open set. From Lemma 3 it follows that
# G f~ι{y), contrary to the original assumption.

It follows that / is continuous at x.

REMARK 1. If the hypothesis that X is locally connected is re-
moved from the statement of Theorem 2, the resulting statement is
not true in general. Klee and Utz [11] prove that if X is a metric
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space which is not locally connected, then X admits a real-valued
compact preserving and connected function which is not continuous.
The following example is suggested by their argument.

A compact preserving, connected, but not continuous function f
from a non-locally connected metric space onto the interval [0, 1/4]:

Let

X = {(x, sin 1/α?): 0 < x ^ 1} U {(0, 0)}

with the relative topology from the plane. Let 0 = (0, 0). Define /:
X-[0,1/4] by

(Ό if p = 0 or d(p, 0) ^ 1/2

f(p) = 11/2 - d(p, 0) if 1/4 < d(p, 0) < 1/2

(l/4 if 0 < d(p, 0) ^ 1/4 .

It is easily seen that / is continuous on X — 0 but not at 0. However,
/ is compact preserving, since if A c X is compact, then so is the set

Q = A n (X - NlU(0))

Thus, since / is continuous on X — 0, f(Q) is compact. Since the
image of the remainder of A can be at most the two numbers 1/4
and 0, it follows that f(A) is compact.

Also, / is connected. Let C c l b e a connected set. If 0 is not
in C, then f(C) is connected, since / is continuous on X — 0. If 0 6 C
and C — 0 Φ 0 , then f(C) = [0, 1/4] since C must contain points at a
distance r from 0 for each 0 <̂  r < 1.

REMARK 2. If the hypothesis that X has property E is removed
from the statement of Theorem 2 the resulting statement is not true
in general.

A compact preserving, connected, but not continuous function f
from a locally connected Hausdorff space X onto the unit interval:

Let

X = {(a, x): a is a countable ordinal and 0 ^ x < 1} U {Ω} .

The topology on X has basis consisting of the following sets: for
each (a, x) e X and e > 0

Uε(a, x) = {(a, y)eX:x - ε <y < x + e}

and for each (a, x)eX

Via, x) = {(β, y)eX:β>a,0^y<l}U {(δ, y)eX:y>x}U {Ω} .

Define /: X~> [0, 1] by f(a, x) = x and f(Ω) - 1.
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/ is continuous on X — {Ω}, but it fails to be continuous at Ω,
since every open set about Ω has [0, 1] as its image. However, / is
compact preserving, since any compact set K in X can contain points
in only finitely many sets a x [0, 1), and the intersection of K with
each (a x [0, 1)) U {Ω} must be compact. Hence, f{K) is the union of
finitely many compact sets and thus is compact.

Also, / is connected. Let C c X be a connected set. If Ω is not
in C, then C c α x [0, 1) for some a. Thus, since / is continuous on
each a x [0, 1), f(C) is connected. If ΩeC and C is nondegenerate,
then each set

Ca = Cn(ax [0, 1)) ,

which is nonempty, has Ω as a limit point and is connected. Thus,
f(Ca) = [x, 1) or f(Ca) = (x, 1) for some x with 0 ^ x < 1. Hence, f(C)
is connected, since it is the union of a collection of connected sets
each of which has f(Ω) — 1 as a limit point.

X is locally connected, since basic open sets are connected. How-
ever, X not only does not have property E, but in fact, it does not
have compactly closed sets closed. Property E fails since Ω is a limit
point of the set

A = {(a, 0): a < Ω} ,

but no sequence in A has Ω as limit point. Also, A is compactly
closed, since A n K for any compact set KdX is a finite set, but A
is not closed.

4* A characterization of spaces with compactly closed sets closed*
Whyburn has shown that any compact preserving function with closed
point inverses from a Hausdorίf space with compactly closed sets closed
into a Hausdorff space is continuous. We show in Theorem 3 below
that it is necessary that the domain (if it is a 2\ space) have compactly
closed sets closed in order that every such function on it be continuous.

Given a space X we define an associated space Xk (see [17]) which
has the same compact subsets and has compactly closed sets closed.
Let Xk be the space with the same set of points as X and with topology
defined as follows: U aXk is open in Xk if U Π K is open in K (using
the relative topology from X on K) for each compact subset K of X.

Note that the topology on Xk contains the topology on X. For
this reason if K is a compact subset of Xk then it is compact as a
subset of X. The converse is also true. Suppose K is a compact
subset of X. Since the relative topologies K inherits from X and Xk

are the same, K must be compact as a subset of Xk. Thus, X and
Xk have the same compact subsets. Also, X and Xk have the same
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compactly closed sets, again, because a compact set K has the same
relative topology in the two spaces.

We claim that if S is compactly closed in Xk then it is closed in
Xk. Equivalently, we show that U = Xk — S is open in Xk. If K is
a compact set, then

Uf]K = K-(SΓ\K).

Since S is compactly closed, S Π K is closed in K. Thus, U Π K is
open in if and C7 is open in Xk.

THEOREM 3. If X is a Tx space containing a compactly closed
set which is not closed, then there is a function with X as domain
which is compact preserving and has closed point inverses but is not
continuous.

Proof. Let Xk be the space associated with X which was defined
above. Let / be the identity transformation from X onto Xk. We
show that if S is any subset of X which is compactly closed and p
is a point in S — S, then / is not continuous at p. Let U = Xk — S.
Since S is compactly closed in X, it is compactly closed in Xk. Thus.
S is closed in Xk and hence, U is open in Xk. Note that p = f(p) is
in U. However, every neighborhood of p which is open in X contains
points of S and hence, is not contained in U. Thus / is not continuous
at p.

Since X and Xk have the same compact sets, / is compact preserving.
Since X is a T1 space, / has closed point inverses. This completes
the proof.

COROLLARY. If X is a Hausdorff space then X has compactly
closed sets closed if and only if every compact preserving function with
closed point inverses from X into a Hausdorff space Y is continuous.

Proof. We need only remark that if X is a Hausdorff space then
so is the associated space Xk.

5* Extending Halfar's theorem* Let us say that a locally
connected Hausdorff space X has property (*) if each compact preserv-
ing, connected function from X into a Hausdorff space is continuous.
We have shown that each of properties E and K implies property (*).
Is there a weaker condition than property K which implies property
(*), that is, can the compactness condition on X in Theorem 2 be
weakened? Conversely, if a locally connected space has property (*),
does it necessarily satisfy one of the compactness conditions?
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With regard to the first question, it seems likely that if a locally
connected, Hausdorff space X has property a and if X — {p} has
property E for some point p in X, then X has property (*). This is
suggested by the case in which X is the long line with the point Ω
added (see [9], p. 55). The proof that X does have property (*) is
contained in [13]. Note that this example also shows that neither
properties E nor K is a necessary condition for a locally connected
Hausdorff space to have property (*).

Property (*) also does not imply property a as the following ex-
ample, in which X is a modification of Example 4 of § 2, shows.

EXAMPLE 4'. A locally connected, Hausdorff space which does not
have property a, but on which every compact preserving, connected
function into a Hausdorff space is continuous:

Let

X = {(x, 0): 0 <; x ^ 1} U {(1/n, y): 0 <Ξ y <̂  1 and n is a positive integer} .

Let X — {(0, 0)} have the relative topology from the plane. A basic
open set about (0, 0) is of the form

{(x, 0):0^x<y}U \J 1/n x [0, yn)
\ln<y

where 0 < y <Ξ 1 and 0 < yn <̂  1 for each n.
An argument similar to that given in the discussion of Example

4, § 2 will show that X does not have property a but does have com-
pactly closed sets closed. X is locally connected, since basic open sets
are connected.

To see that every compact preserving connected function / from
X into a Hausdorff space is continuous, first note that, by Theorem 2,
such an / is continuous on X - {(0, 0)}, since X - {(0, 0)} has property
E. The subspace

{(x, 0): 0 g x ^ 1}

of X has property E. Thus, if W is an open set about /(0, 0), then
there is a set

Ay = {(x, 0): 0 ^ x < y} such that f(Ay) c W.

If 1/n < y, then / is continuous at (1/n, 0). Hence for each such 1/n
there is some yn between 0 and 1 so that

fll/n x [0, yn)) c W .

Thus, we have an open set U about (0, 0)
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U = Ay U U 1/Λ x [0, y.) ,
l/»<y

such that f(U)a W. Consequently, / is continuous at (0, 0).
Perhaps, property (*) does imply that all compactly closed sets

are closed. This conjecture is suggested by the analogous result
(Theorem 3) for compact preserving functions with closed point inverses.
Also the space X in Remark 2 of § 3, which fails to have property
(*), does not have compactly closed sets closed.

We do have the following result which extends Theorem 2 to
multifunctions. See Whyburn's paper [19] for all definitions. This
result also extends Corollary C6 of [19]. The proof is essentially the
same as that for Theorem 2.

THEOREM 4. If X is a locally connected Hausdorff space with
property E, and f is a compact preserving, connected multifunction
with nonmingled values from X into a Hausdorff space Y, then f is
upper semicontinuous.
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