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COMPARISON THEOREMS FOR ELLIPTIC
DIFFERENTIAL SYSTEMS

C. A. SWANSON

Comparison theorems of Sturm's type are established for
systems of quasilinear elliptic partial differential equations.
Specialization to ordinary linear systems and to single partial
differential inequalities yields sharper results than those previ-
ously available.

The classical Sturm-Picone comparison theorem was generalized
to systems of ordinary linear second order equations by M. Morse in
1930 [11]. Refinements and extensions of Morse's theorem have been
developed by Atkinson [2], Birkhoff and Hestenes [3], Coppel [4],
Diaz and McLaughlin [5], Jakubovic [7], and Lidskiϊ [10].

A Sturmian comparison theorem for systems of linear elliptic
partial differential equations was obtained by Kuks [9] in 1962, gener-
alizing results of Picone [12] and Hartman and Wintner [6] for a
single elliptic equation. The purpose here is to extend Kuks' result
to quasilinear elliptic systems and to sharpen the original theorem.
In particular, a "strong" comparison theorem of Kreith's type [8] is
proved for arbitrary regular bounded domains by means of a device
used by Allegretto [1] for single equations. An alternative procedure
depending on Hopf's maximum principle, as employed by Kreith [8]
and the author [13], could have been used to obtain the same conclu-
sion under stronger regularity assumptions on the boundary.

The hypothesis used by Kuks, Morse, and others that the coef-
ficients of the differential operators satisfy certain pointwise inequali-
ties is replaced by a weaker integral inequality. In particular,
specialization of our result to one dimension yields a refinement of
Morse's theorem.

Let G be a nonempty regular bounded domain in ^-dimensional
Euclidean space Rn and let H be a domain in Rm containing the origin,
m, n = 1, 2, . Points in Rn will be denoted by x = (x19 x2, , xn)
and differentiation with respect to x{ by Di} i — 1, 2, , n. The
quasilinear elliptic partial differential operator I defined by

lu = Σ Di[dij{x, u)DjU] + b(x, u)u, ai3 = adi

will be considered for xeG, ue H, where b and each ai3 are real
symmetric m x m matrix functions of class Cι(G x H), and the
mn x mn matrix (α^ (x, u))(ί, j = 1, 2, , n) is positive definite in
G x H. The domain ® of I is defined as the set of all vector func-
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tions ueC2(G) Γ) C\G) with range in H.
The notation ®m will be used for the set of all m x m matrix

functions whose column vectors v{ e 35, i = 1, 2, , m. The conclusion
of the comparison theorems below concerns matrices F G ® W with the
property that VTLV is negative semidefinite throughout G, where L
is the partial differential operator defined by

L F - Σ AUM&, F ) £ , F ] + £(£, F)F, ^ - A* .

It is assumed that B and each Ai3 are real symmetric m x m matrix
functions of class C\G x Hm) and that the mn x mn matrix (Ai3(x, V))
is positive definite in G x Hm.

Let f[u], F[u, v] be the functionals defined by

< 1) f[u] = I Σ DiUτai3(xy u(x))D3u — uτb(x, u(x))u \dx
JGLi,j J

(2) F[u, V] = \ [ Σ DiVFAiiix, V(x))D3u - uτB(x, V(x))u\dx
J(?Li,i J

with domains 3)/, ©/ x ®m, respectively, where 35/ denotes the set of
all vector functions ueCι{G) with range in H such that u vanishes
identically on dG.

In analogy with Morse's definition of a conjugate basis for an
ordinary linear system [11, p. 56], a matrix V is said to be conjugate
relative to L if and only if Y^x, V) = 0 identically for i = 1, 2, , n,
where

( 3) Yi(x, V) = Σ [ F Γ ^ (x, F ) A ^ - CDiFOiiiifo F)F] .

Similarly to the well known fact for ordinary linear systems, it follows
easily from the symmetry of the matrices involved that

identically in G for any solution Ve S)m of LV = 0. As in the ordinary
case, this motivates the definition of a conjugate matrix.

The first comparison theorem is "weak" in the sense that the
conclusion applies to G rather than G. The rather simple proof of
the weak theorem suggests the proof of the strong Theorem 2. For
the weak theorem, dG is required only to be piecewise C1.

THEOREM 1. If

( i ) There exists a nontrivial vector function ue&f such that
flu] ^ 0;
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(ii) 7eS) m is a conjugate matrix such that VTLV is negative
semidefinite throughout G; and

(iii) f[u]^F[u, V],
then det V(x) must vanish at some point in G.

Proof. Suppose to the contrary that V(x) is nonsingular for all
xeG. Then there exists a unique w e ®y satisfying u(x) = V(x)w(x)
identically in G. An easy calculation similar to that given in [14, p.
188] yields the following identity:

4(*. V)VDsw + Σ A [ ( W Σ 4 ( ^ V)(DJV)W]

< 4 ) = Σ DiiVwyAijix, V)Dj(Vw) - (Vw)τB(x, V)Vw
i,3

+ (Vw)τ(LV)w + Σ vfYifa V)Diw
i

where Y^x, V) is given by (3). Since Yi(x, V) = 0 identically for
i = 1, 2, , n, VTLV <̂  0 in G, and w — 0 on <5G, integration of (4)
over G and use of Green's identity gives the inequality

<5) F[u, V]^0,

where F is given by (2), equality if and only if DiW — 0 identically
in G for each i = 1, 2, , n and LV = 0, i.e., %(a?) = F(^)^(α?) = V(x)c
for some constant vector c and L F Ξ O . However, u — 0 on 3G
and c Φ 0 since u(α ) is nontrivial by hypothesis, and hence equality
in (5) implies that V(x) is singular on dG. Thus the assumption that
V(x) is nonsingular throughout G leads to the contradiction

f[u] ^ F[u, V] > 0 .

Theorem 2 (strong comparison theorem). Under the hypotheses of
Theorem 1 (where dGeC1) either det V(x) vanishes at some point in
G or there exists a constant vector c Φ 0 such that u(x) — V(x)c
throughout G.

Proof. If det V(x) Φ 0 in G, there exists a unique weCι(G)
such that u(x) = V(x)w(x) for all xeG. Since dG is of class C1, it
is well known that u belongs to the Sobolev space Hι

0(G) (the closure
in the norm || ||,. defined by

it[ \D4u\2dx
i=ί JG

of the class C~(G) of infinitely diίferentiable vector functions with
compact support in G.)

Let {un} denote a sequence of C?(G) functions converging to u in
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the norm (6). It follows analogously to (5) that

( 7 ) F[un, V] ^ \ Σ {VD^YA^x, V)VDάwndx ̂  0
JG i,3

where wn is the unique solution of un(x) - V(x)wn(x), xeG. Since
Ai,-(x, V(x))(i, j = 1, 2, •••,%) and £(#, F(α)) are uniformly bounded in
G, use of (2) shows that there is a constant K > 0 such that

, V]-F[u, V]\

^ K\ Σ DiUlDjiUn - u) + A K - ̂ Γ)£>

K(t6Λ - %) + (ul - uτ)u\dx .
JG

Application of the Schwarz inequality then yields the estimate

(8) \F[un, V] -F[u, V]\

Since lim \\un - u\l = 0 (w— °o), i^[^, F] ̂  0 in view of (7). If
F[u, V] > 0, we obtain the contradiction f[u] > 0 as in Theorem l r

and hence F[u, V] = 0.
Let S denote a ball with S c G and define

H8[un, V] -

Then (7) implies that

(9) 0^H8[un, V] ^F[un, V] ,

and the following analogue of (8) is valid:

\ H s [ u n , V] - H s [ u , V ] \ ^ M ( \ \ w n \ \ ί , s + \ \ w \ \ u s ) \ \ w n - w\\us

where M is a positive constant and the subscript S indicates that
the integrals involved in the norm (6) are taken over S only. Since
V-\x) e C'iS) and w = V-'u, wn = F " X , it follows that

Hs[un, V]->Hs[u, V] as \\Uu - u\l-+0 .

Since F[un, V]-+F[u, V] = 0 from (8), we conclude from (9) that
Hs[u, V] = 0, and hence that D{w = 0 identically in S for i =
1,2, , n. Since S is arbitrary, w(x) = c or %(cc) = F(x)c throughout
G, and hence throughout G by continuity, for some nonzero constant
vector c. This completes the proof of Theorem 2.

It follows from Green's formula that hypothesis (i) of Theorem 1
or 2 is implied by the existence of a solution u e © of the differential
inequality uτlu Ξg 0 in G such that u = 0 on 3G.

Also, hypothesis (iii) is implied by the conditions that the matrices
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[aiS(x, u(x)) - Ai3{x, V{x))l B(x, V(x)) - b(x, u{x))

of order mn and m, respectively, are positive semidefinite for all xeG.
In the linear case, hypothesis (iii) reduces to E[u] ^ 0, where

E[u] = ( [ Σ D^la.jix) - Ai3lx)]DjU + uτ[B(x) - b(x)]u\dx ,

which is independent of V. The following special case of Theorem
2 is then immediate.

THEOREM 3. (Linear case). If there exists a nontrivial solution
ue S) of uτlu ^ 0 in G such that u — 0 on dG and E[u] ^ 0, then
every conjugate matrix V for which VTL V is negative semidefinite
in G is singular at some point in G unless u(x) = V(x)c for a con-
stant vector c Φ 0.

This sharpens Kuks' theorem [9] in two directions: (i) Theorem
3 is "strong" in the sense described above; and (ii) The integral in-
equality E[u] ^ 0 is weaker than Kuks' point wise inequalities
[«ϋ(^)] S [^M#)] and B(x) ^ b(x) (as forms) throughout G, as shown
by an example in [14, p. 189] in the case m = 1. (Since the state-
ment of Kuks' theorem does not include the alternative u(x) — V(x)c,
it is false as stated for (open) domains.)

In the case m = 1, Theorem 3 extends results of Kreith [8] and
Diaz and McLaughlin [5] to arbitrary regular bounded domains G and
to differential inequalities. In the case that n = 1 and the hypotheses
are strengthened to lu = 0 identically in an interval (x19 x2), LV = 0
in (xly x2), and a(x) — A(x) and B(x) — b(x) are positive semidefinite at
every point, Theorem 3 reduces to a result of Morse [11], also stated
by Diaz and McLaughlin [5] in a different form.
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