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THE COMMUTATOR AND SOLVABILITY IN A
GENERALIZED ORTHOMODULAR LATTICE

E. L. MARSDEN, JR.

In this paper we prove in a generalized orthomodular
lattice the analog of the following theorem from group theory.
For a and b members of a group G, let abar1^1 be the com-
mutator of a and b. The set of commutators in G generates
a normal subgroup H of G possessing these properties: G/H
is Abelian. Moreover, if K is any normal subgroup of G for
which G/K is Abelian, then K 2 H. Continuing the analogy
with group theory, we determine a solvability condition on
generalized orthomodular lattices.

An orhomodular lattice is a lattice L with 0 and 1 and with an
orthocomplementation': L-^L satisfying the orthomodular identity:
for e <Z / in L, / = e V (/ Λ ef). Throughout this paper L shall
denote an orthomodular lattice. For feL the Sasaki projection deter-
mined by f φf : L —> L by eφf = (e V /') Λ /. We say e commutes
with f, ecf, when eφf = e Λf. Basic properties of orthomodular
lattices and of their coordinatizing Baer ^-semigroups are contained
in [1, 2].

A lattice ideal I in L is called a p-ideal if and only iί eel and
feL imply eφfel. Theorem 6, which concerns ^-ideals in generalized
orthomodular lattices, indicates the significance of p-ideals in ortho-
modular lattices.

2* The commutator* For elements e and / of the orthomodular
lattice L, we define the commutator of e and / by

[e, /] = (β V /) Λ (β V /') Λ (β' V /) Λ (e' V /') .

It is easily shown that ecf if and only if [e, /] = 0, and that [e, f] =
[e, f] = W, f] = W, / ' ] .

THEOREM 1. Let R be a Baer *-ring, and let Pf(R) denote the
orthomodular lattice of closed projections in R. Then for

e,feP'(R)Aef-feΓ = [e, f] .

In proving the theorem, we shall use the following computation.

LEMMA 2. [e, f] = (f'ef)" V (e'/e)".

Proof (f'ef)" = ((/'*)"/)" - ΓΦeΦf = {[(/' V β') Λ β] V /'} Λ / =
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(/' V e') Λ (e V /') Λ /, where the last equality holds by the Foulis-
Holland theorem [2]—observe that (/' V e')ce, and (/' V e')cf. Simi-
larly, (e'fe)" = (/' V e') A (e' V /) Λ e. The following expression is
simplified by repeated applications of the Foulis-Holland theorem*
We have

(f'ef)" V {e'fe)"

= [(/' V e') A(eV f) Λ /] V [(/' V e') A (e' V /) Λ e]

(/' V e')c(e V /') Λ /, (β' V /) Λ e

= (/' V e') A {[(e V /') Λ /] V [(β' V /) Λ e]}

(ef V f)c(e V /') Λ /, e

= (/' V e') A \(e' V /) Λ {[(e V /') Λ /] V e}]

(e V f')cf, e

= (/' V e') A (ef V /) Λ (e V /') Λ (/ V β) = [β, /] .

Proo/ 0/ theorem. The element (effe)" is the smallest closed
projection serving as a right identity for (ef fe). Equivalently, (ef-fe)'
is the greatest closed projection which serves as a right annihilator
for ef-fe. Thus for k e P'(R), k ^ (ef-fe)' if and only if efk = fek.

Suppose that for some k e Pr(R), efk — fek. Then f'efk — f'fek —
0 implies that k = (ffef)'k, or K (f'ef)'. Similarly k ^ (e'fe)', and
hence k ^ (effe)f A (f'ef)' = [e, / ] ' . Also, (ef)[e9 f]' = e(f[e, f\) -
e(f A [β, /]') - e(f A [(e A f) V (β Λ /') V (e' A f) V (β' Λ /')]) =
e[(e Λ /) V (ef A /)] = e A \(e A f) V (e' A /)] = e A f = /e[e, / ] ' .
Moreover, for fc ^ [β, / ] ' , then fc = [β, /]'& and e/fc = ef[e9 f]'k =
/e[e, /]Ά = /β/ .̂ Thus we have shown that efk = fek if and only if
k ^ [e, f\. Therefore (ef-fe)' - [β, / ] ' and (e//β)" = [β, / ] .

LEMMA 3. For e, feL, fφe^fv [/, e\.

Proof. By the Foulis-Holland theorem,

/ V [(/ V e) A {f V β') Λ (/' V e) A (f V e')\ = (f V e) A (f V e') .

LEMMA 4. Lβί L and X be orthomodular lattices.
( i ) For an ortho-homomorphism φ: L —> X and c a commutator

in L, cφ is a commutator in X.
(ii) For an ortho-epimorphism φ\L—>X and x a commutator

in X, x — cφ where c is a commutator in L.
(iii) X is Boolean if and only if 0 is the only commutator in X.

Proof. Ortho-homomorphisms preserve suprema, infima, and ortho-
complements.
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THEOREM 5. Let L be an orthomodular lattice, and let J be
the ideal generated by the commutators in L. Then J is a p-ideal,
and L/J is Boolean. Moreover, if I is any p-ideal for which L/I
is Boolean, then I Ξ2 J.

Proof. Let J be the ideal generated by the commutators in L, i.e.,

J = ly e L I for some commutators cγ, , cn in L, y ^ y cλ .

We claim that J is a p-ideal. Take any xeL and y ^ y ?=1 c{ a finite
join of commutators in L. Then by Lemma 3, yφx<L(\jn

i=1cϊ)φx =
VJU (crfx) ^ y?= 1 (ct V [cif x\), and hence yφx e J.

To show that L/J is Boolean, use the natural ortho-epimorphism
φ: L —+ L/J, and apply Lemma 4 (ii). A second application of Lemma
4 completes the proof of the theorem.

3* Solvability in a generalized orthomodular lattice* At this
point it is impossible to mimic the solvability conditions of group
theory [4]. The difficulty is that the p-ideals in orthomodular lattices
need not be orthomodular lattices. In fact, a p-ideal I of L contains
a greatest element d if and only if I = L(0, d), where d is central
in L. In order to generalize both orthomodular lattices and p-ideals
we make the following

DEFINITION. G is a generalized orthomodular lattice (GOML) if
and only if

( i ) O G G ,

(ii) for every nonzero aeG, G(0, a) = {x e G | 0 <̂  x <̂  a} is an
orthomodular lattice, and

(iii) for x ^ a ^ b in G, and for a-x and b-x the orthocomple-
ments of x in G(0, a) and G(0, b) respectively, a-x — (b-x) Λ a.

M. F. Janowitz [5] has shown that every GOML G can be
embedded as a p-ideal in an orthomodular lattice L. If G is not
already an orthomodular lattice then G is embedded as a prime ideal
in L, i.e., for aeL either aeG or a'eG. Let G be a GOML, and
let G ^ L be the Janowitz embedding. For any e,feL, since G is
prime in L, then [e, f] e G. Thus the p-ideal generated by the cum-
mutators in L is a subset of G. The following theorem clarifies this.
For elements e,feG we define the generalized Sasaki projection by
eΨf = {e V [(β V /) - /]} Λ /, the Sasaki projection in G(0, e V / ) .
An ideal / of G is called a p-ideal of G when / is closed under all
generalized Sasaki projections. For elements e,feG we say that e
is perspective to f via t, written e — pf, if and only if for some
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teG, β V t = / V t and e A t = f A t = 0.

THEOREM 6. Let I be an ideal of G, and let G rg L be the
Janowitz embedding. These conditions are equivalent.

( i ) For eel, feG and e ~ pf, then feI.
(ii) I is a p-ideal of G.
(iii) I is a p-ideal of L.
(iv) For eel, feL and e ~ pf, then fel.
( v ) I is the kernel of a (unique) congruence on L.
(vi) I is the kernel of a (unique) congruence on G.

Proof, (i) => (ii). Let e e / a n d / e G. A computation shows that
eΨf ~ pJΨe via (β V /) - eΨf. Since fψe ^ e, then fΨe e I, and by (i)
eΨf e I.

(ii) ==> (iii). Let eel and feL. If feG, we are finished. Other-
wise, f eG and it follows that ey feG and eφf = (ey f) ΛfeG.
By (ii), e¥eφfel. But

eSF.,/ = [e V [(β V β^) - eφf]} A eφf = {e V [(β^)' Λ (β V eφf)]} A eφf

= [e V (β^/)'] Λ [β V eφf] A eφf

= [e V (β' Λ /) V /'] Λ eφf = β ^ .

(iii) <=> (iv) <=> (v) are well known [3].
(v) ==> (vi). The restriction of the congruence on L to G is a con-

gruence. Notice that the congruence preserves relative orthocomple-
ments. The uniqueness stems the fact in any relatively complemented
lattice with 0, every ideal is the kernel of at most one congruence [3].

(vi) ==> (i). Suppose that θ is a congruence on G with ker θ — I.
Let eel and feG with e ~ pf via te G. The eθO implies e V tθt, or
f V tθt. It follows that / = (/ V t) A fθt A f = 0. Hence fel.

The Janowitz embedding and Theorem 6 furnish an immediate
generalization of Theorem 5.

THEOREM 7. Let G be a GOML, and let J be the commutator
p-ideal in G. Then G/J is distributive. Moreover, if I is a p-ideal
of G for which G/I is distributive, then I ΞΞ> J.

We are now in a position to discuss solvability of GOML. Let
G be a GOML, let Gt be the p-ideal generated by the commutators
in G, and for n > 1 let Gn be the p-ideal generated by the com-
mutators in GΛ_! A GOML G will be called solvable if and only if
for some n Gn = {0}.

LEMMA 8. Let J be a p-ideal in a GOML G, and let I be a
p-ideal in J. Then I is a p-ideal in G.
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Proof. We shall show for e e l , feG that eΨfeL Since eeJ,
a p-ideal in G, then e¥feJ. Therefore e¥eψfel. A computation
shows that eΨeΨf = eΨf.

THEOREM 9. Let G be a GOML. For G to be solvable it is a
necessary and sufficient condition that G be distributive.

Proof. Theorem 7 proves the sufficiency. We shall prove the
necessity by showing that G2 = Gx and hence that Gn = Gx for all
positive integers n.

Let G ^ L be the Janowitz embedding, and let ' be the orthocom-
plementation of L. For elements e, feG, set c = (e' V /') Λ (ef V /) Λ e
and d = (/' V e') Λ (/' V β) Λ /. Then c V d = [e, f] by the com-
putation of Lemma 2. Moreover,

c\J d'

= [(e' V /') Λ (e' V /) Λ β] V (β Λ /) V (/ Λ β') V / '

(β Λ / ) φ ' V / '), W V / ) , β

= [(β' V /) Λ β] V (/ Λ β') V / '

(β' V / ) ^ , / '

- (β V /') V (/ Λ β') = 1 .

Similarly <f V d = 1. Also c' V cί' ̂  (e Λ /) V e' V / ' = 1.
We have shown for any e, feG and for c, d as above that

le> f] = [c, i ] = c V ^. Here c, d ^ [c, d] imply that c, de G19 and thus
[e, f] = [c, d] e G2. This completes the proof that Gx = G2*
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