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THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
TO LINEAR SYSTEMS OF ORDINARY

DIFFERENTIAL EQUATIONS

JACK W. MACKI AND JAMES S. MULDOWNEY

This paper is concerned with the system of differential
equations

(1) x' = A(t)x, te[0,ώ)

where A(t) is an n x n matrix of locally integrable complex-
valued functions on [0, ώ) and x(t) is an ?z-dimensional column
vector. The class of matrices A(t) such that (1) has a nontrivial
solution xo(t) satisfying lim*-™ | xo(t) | = 0 is denoted by Ωo; the
class of matrices Ait) such that (1) has a solution Xoo(t) satisfy-
ing lim*-ω I Xco(t) I — + oo is denoted by Ωco. If P is a projec-
tion then ΩP0 denotes the class of matrices A(t) such that (1)
has a nontrivial solution xo(t) satisfying lim^ω I Pxo{t) I = 0.
Sufficient conditions are given for A(t) G Ωo, A(t) e Ω^ and A(t) e
ΩP0; the result, obtained include as special cases theorems of
Coppel, Hart man, and Milloux.

Throughout, || || will denote the Euclidean norm and | | will be
used for any other norm (which of course must be topologically equiv-
alent to || ||) on the vector space of complex ^-tuples. If B is an
n x n matrix, then B* denotes its Hermitian conjugate and Tr B its
trace; if c is a complex number then Re c is its real part.

LEMMA 1. (Compare Hartman [3], p. 501). Let {tk} be a sequ-
ence in [0, co) converging to ω.

(a) Suppose 0 ^ lim^co 11 x(tk) 11 < + °° exists for each solution
x(t) of (1); then there exists a nontrivial solution xo(t) such that

k->oo
l i m \\xo(tk)\\ = 0
k

if and only if

lim Re [* Tr A = -
k->°° Jo

(b) Suppose 0 <; lim^oo 11 x(tk) 11 ^ + oo exists for each solution x(t)
of (1); then there exists a solution #«>(£) such that

lim ||a^OU II = + ^
k-ioo

if

693
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limRe Γ& Tr A = +00 .
J

Proof. (The proof parallels that of Hartman). (a) Since

0 ^ limx*(tk)x(tk) < +00
k-00

exists for each solution of (1) it is easy to see that

0 ^ \l\mxt{tk)xq(tk)\ < +00
k—00

exists for any solutions xp(t), xq(t). Thus if Φ(t) is the fundamental
matrix of (1) satisfying Φ(0) = E, we know that lim^co Φ*(tk)Φ(tk) = H
exists, each element of H is finite, and H is Hermitian. Also,

lim (det Φ(tk)f = lim (det Φ*Φ)(tk) = det H .

Hence, by the Liouville-Jacobi formula ([3], p. 46),

S
tk

Tr A < +00
0

exists and

det H = lim exp [2 Re Γ* Tr A\ .
k->oo L Jo J

Since x(t) solves (1) if and only if x(t) — Φ(t)c, c = x(0), we have

0 ^ lim II x(tk)\\2 = lim c*Φ*(tk)Φ(tk)c = c*Hc .

H is consequently nonnegative definite, so

3c Φ 0 such that c*Hc = 0 <=> det i ϊ = 0 ,

i.e., if and only if lim Re \ Tr A = — 00.
A -00 Jo

(b) If it were the case that lim^oo | | # ( ^ ) | | < + co for all solutions

( tk

Tr A < + 00.

REMARK. Note that the above proof depended in an essential way
on the fact that the Euclidean norm is generated by an inner product.

THEOREM 1. (a) Suppose (1) is stable and each solution x(t) has
the property:

( 2 ) // lim inf | x(t) \ = 0 then lim | x(t) | = 0 .
t-

Then
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A(t) e Ωo <=^ lim inf Re Γ Tr A = - oo .
t-*ω Jθ

(b) Suppose solutions of (1) have the property:

( 3 ) // lim sup I x(t) | = + oo then lim | x(t) | = + <χ> .

Then

A(t) e Ω^ < = lim sup Re f * Tr A = + oo .
t-*ω Jo

Proof.
(a) Suppose that no solution satisfies limt_ω | x(t) \ = 0; then by

(2) lim inft_ω \ x(t) \ > 0 for each solution, and so lim i n f ^ ||a;(ί)|| > 0
for each solution. By Lemma 1, we cannot have

lim Re Γ* Tr A = - oo
k-+oo Jo

for any sequence {tk} converging to α>, so lim inf^^ Re \ Tr A > - c o .
Jo

Conversely, suppose l i m ^ \xo(t)\ = 0 for a solution xo(t). Let Φ(t)
be a fundamental matrix. Since all solutions are bounded, we have

0 = lim Idet Φ(t) | = lim |det Φ(0) | exp (Re Γ Tr A)

(b) If all solutions are bounded then we must have

( * ) lim sup Re Γ Tr A < + oo

by part (b) of Lemma 1. So the negation of (*) implies the existence
of a solution xjjϊ) for which lim sup4_ω | xjf) \ = + oo which, by (3),
implies that lim^ω | xjf) | = + oo.

COROLLARY 1.1. If (1) is stable and satisfies condition (2) then

lim inf Re Γ Tr A = - oo = > lim Re Γ Tr A = - oo .
0

Γ t
Proof, lim inf Re I Tr A = -co implies the existence of a solu-

ί-»ω Jo

tion xo(t) such that lim^ω | xQ(t) | = 0. If Φ(t) is a fundamental matrix
for equation (1), then clearly l i m ^ |detΦ(£)| = 0 and hence

lim Re Γ Tr A = - oo .
ί->oo J 0

COROLLARY 1.2. (Hartman [3], p. 501; Coppel [2], p. 60). (a)
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Suppose that 0 ίg lim^^ | x(t) | < +©o exists for each solution of (1).
Then

A(t) e Ωo <==> lim Re Γ Tr A = -
ί-+ω JO

C O

(b) Suppose that 0 ^ l i m ^ | x(t) | ^ + °o eα^sίs /or eαcΛ, solution
of (1).

Oo <== lim Re Γ Tr A = + °o .
ί->ω JO

COROLLARY 1.3. Suppose (1) is uniformly stable ([2] p. 51).

A(ί) e Ωo <=> lim Re Γ Tr A -
t-»ω Jo

Proof. It suffices to show that if (1) is uniformly stable then it
satisfies (2). Uniform stability means that, for each ε > 0, there ex-
ists a δ(ε) > 0 such that, if \x(to)\ < δ(e), then \x(t)\ < ε for all te
[to,ω). If lim inft_+ω \ x(t) \ — 0 then, for each ε > 0, there exists a
tεe (0, ω) s u c h t h a t \x(te)\ < δ(ε) a n d so \x(t)\ < e if t e [tε1 ω); t h u s
limt_Jαj(*)l = 0.

REMARK ( i ). Corollary 1.1 implies in particular that if

- oo = lim inf Re Γ Tr A < lim sup Re (*Tr A ,
t-+ω Jo t-+ω Jo

then either (1) is unstable (i.e., it has an unbounded solution) or it
is stable but does not have the property (2); thus it is neither asy-
mptotically nor uniformly stable (cf. Corollary 1.3).

REMARK ( i i) . Although Theorem 1 requires a somewhat stronger
condition than stability, it is clear that if (1) is stable and condition
(2) holds, it does not necessarily follow that (1) is uniformly stable.
For example, condition (2) and stability are satisfied if (1) is asymp-
totically stable, but this does not imply that (1) is uniformly stable
(cf. Coppel [2], p. 52).

REMARK (iii). Corollary 1.2 was proved by Hartman for Euclidean
norms ([4]; [3], p. 501), and part (a) of this corollary was proved by
Coppel for general norms ([2], p. 60).

REMARK (iv). -A*(t)eΩ0 = > A(t) eO*,. Suppose the adjoint
equation of (1), x' = -A*(t)x, has a solution xo(t) such that
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Then there exists a solution #«(£) of (1) such that

and thus lim^ω 11xjfi) \| = + °o. (cf. [1], p. 71).

Hartman ([3], p. 501) observes that the conditions of Corollary
1.2(a) ((b)) are satisfied for the Euclidean norm when the matrix
[A + A*](t) is nonpositive (nonnegative) definite for all t e [0, ω). Fur-
ther sufficient conditions involving the logarithmic norm, μ, due to
Lozinskii [5] (cf. Coppel [2], pp. 41, 58-59) may be obtained. If B is
any n x n matrix, and \B\ is the operator norm of B induced by the
vector norm | |, i.e., \B\ = sup,X|=1 \Bx\, then

μ(B) = lim ( | J + ΛJB| — l)/h ,

where I is the n x n identity matrix. If \x\ is one of sup^ \xi\1 Σ* \χi\i
or | |g | | respectively, then the corresponding μ(B) is given by (see
Coppel [2], p. 41):

sup (Re bu + Σ I bik I), sup (Re bu + Σ \hι I) ,
i kηki i k^i

or i Λ(B + 5*), where Λ(C) denotes the largest eigenvalue of C. As
is shown in Coppel ([2], p. 58), if x(t) is a solution of (1), then

Ix(t) I exp ( - ^ μ(Aή, \x(t) \ exp (j* μ{-A))

are nonincreasing and nondecreasing, respectively. The hypotheses of
part (a) of Theorem 1 are satisfied if there exists a constant M, in-
dependent of both t and ί0, such that

Γ μ(A) ^ M for 0 ^ ί0 ^ ί < α> ,

(in fact, (1) is then uniformly stable), and the hypotheses of part (b)
of Theorem 1 are satisfied if there exists an N, independent of t0 and
tj such that

Γ μ(-A) ^ N for 0 ^ t0 ^ t < ω .
J*o

Furthermore, 0 ^ lim^Q, \x(t)\ < + °o exists for every solution if

-oo ^ lim I μ(A) < + oo exists; while
t-ω JO

0 < lim I x(t) I <; + oo exists if
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i t

μ( — A) < +co exists .
0

These facts can be applied, using Theorem 1 and its corollaries, to
obtain concrete conditions under which A(t) e Ωo or A(t) e Ω^.

Although Theorem 1 and its corollaries furnish sufficient condi-
tions for A e Ωo and 4GflM, it is clear that these are not necessary
conditions. For example, in the case of a constant matrix A with
co = +co, AeΩ0 if and only if Re μ < 0 for some eigenvalue μ of A;
while A e Ω^ if and only if Re μ ^ 0 for some eigenvalue μ of A and,
if Re μ — 0, μ occurs in a nondiagonal Jordan block in the normal
form of A (cf. [1], p. 77). However, the hypotheses of Theorem 1
and its corollaries are not invariant under changes of the dependent
variable in (1); this observation allows us to broaden considerably the
class of equations for which Theorem 1 gives information.

THEOREM 2. Let Γ(t) be a nonsingular n x n matrix of absolutely
continuous complex-valued functions on [0, co), and define

( 4 ) B = ΓT-1 + ΓAΓ-1 = ΓAA.

(a) // \Γ(t)x\ <L K\x\, for some constant K, for all x and all
t ^ 0, then:

AeΩ0 => B e ΩQ ,

AeΩ^ < = B e flw .

(b) If \Γ(t)x\ ^ k\x\, for some constant fc(^0), for all x and
all t ^ 0 then:

Be Ωo = > A e f l 0 ,

B 6 Ω^ <== AeΩ^ .

(c) // k\x\ ^ \Γ(t)x\ ^ K\x\ for some constants k(ΦU) and K,
for all x and all t ^ 0, then:

BeΩ0 <==> A e Ωo

^ <=> A e Ω^

(d) If \Γ(t)x\ ^ k\Px\ for some constant k(^0) and all x and
t ^ 0, where P is a projection, then

BeΩ0 = > A e ΩPQ .

Proof. y(t) is a solution of

( 5 ) y' = Γ A A(t)y



ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO LINEAR SYSTEMS 699

if and only if y(t) = Γ(t)x(t) where x(t) is a solution of (1), so that,
in case (a), we have \y(t)\ ^ K\x(t)\ for corresponding solutions of (5)
and (1), and the result is obvious. The argument is similar in cases
(b), (c) and (d) and, in fact, (a) and (b) are equivalent since B = Γ A A
if and only if A = Γ~ι A B.

The change of variable used above has been studied from several
points of view, but always under (at least) the assumption in part (c)
of the Theorem. This assumption implies that the class of allowable
transformations forms a group, or, equivalently, that the relation of
"kinematic similarity"—A ~ B if and only if there exists a Γ, satisfy-
ing the assumptions in (c), such that B — Γ A A—is an equivalence
relation. This concept was developed by Markus [6]. For a full dis-
cussion with references, see Sansone and Conti ([8], p. 457). The
conditions of Theorem 1 are invariants of kinematic similarity, but
are not invariant under the assumptions of parts (a), (b) and (d) of
Theorem 2; thus, less restrictive conditions than those in (c) are more
useful in the present context. For example, given a matrix A(t) which
satisfies the conditions of part (a) of Corollary 1.2, then

{ΓAA: \Γ(t)x\ ^K\x\ for some K = K(Γ)}<zΩQ .

Notice that stability is preserved under this class of transformations,
but the property described in (2) is not.

Theorem 3 below will illustrate how Theorems 1 and 2 may be
used in practice to obtain information on the asymptotic nature of
solutions to differential equations. The following simple lemma will
be useful.

LEMMA 2. If Γ is a nonsingular matrix of absolutely con-
tinuous functions on [0, ω), with άetΓ(t) > 0, then

Ύr(ΓT~ι) = (logdetΓ)' a.e. on [0, ω) .

Proof. Observe that Γ is a fundamental matrix for the differ-
ential equation x' = ΓT~ιx\ the result then follows immediately from
the Liouville-Jacobi formula.

Throughout the following, the notation H > 0, ^0 etc. will mean
that the matrix H is positive definite, nonnegative definite, etc.

THEOREM 3. Let H(t) be a nonsingular Hermitian matrix of
absolutely continuous functions on [0, ω).

(a) //
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( 6 ) Hf + A*H + HA^O a.e. on [0, ω) ,

then x*Hx is nonincreasing, and x*H~~ιx is nondecreasing, whenever
x(t) and x(t) are solutions of (1), and the adjoint of (1), respectively.

(b) If (6) holds and H > 0, then

(7) lim \i log det H(t) + R e Γ τ r / ] - -oo
ί-ω L JO J

is necessary and sufficient for the existence of a solution xo(t) such
that limt^ω x£Hxo(t) = 0. (7) is a sufficient condition for the existence
of a solution Xoo(t) of the adjoint of (1) such that

lim xZH-'xM) = + °°
t—*<D

Proof of (a). (6) implies (x*Hx)f ^ 0 a.e. so x*Hx is nonincreas-
ing. Pre-multiplication of (6) by — H~ι and post-multiplication by H~ι

shows (H-ιY - AH~ι - H~ιA* ^ 0 a.e., which implies (x*Hrιx)' ^ 0
a.e.

Proof of (b). Let Γ = H1'2, the unique positive definite square root
of H. Then, y(t) is a solution of (5) if and only if y = Γx, where
x(t) is a solution of (1), and \\y\\2 = x*Hx. Therefore, by part (a),
0 ^limt^ω\\y(t)\\ < + oo exists for each solution y(t) of (5) and, by
Corollary 1.2(a), ΓAAeΩQ if and only if

lim Re

But the lemma implies

Tr(ΓAA) = (log det Γ)' + Tr A = i(logdetiϊ) ' + Tr A ,

and hence (7) is necessary and sufficient for the existence of a solution
xo(t) of (1) as described.

The assertion about the adjoint of (1) may be proved similarly,
using Corollary 1.2(b). It also follows from the observation that there
exists a solution xj^t) of the adjoint of (1) such that

1 = χZxQ(t) = xZH-^l2)Hίl2xQ(t) S [SiH-'x^Y^xίHxoit)]112

where H~{ll2) = (Hll2)~l = (if-1)1'2.
Consider the scalar equation

( 8 ) {pur)r + qu = 0 ,

where p and q are real-valued measurable functions such that 1/p and
q are locally integrable on [0, ω).
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COROLLARY 3.1. (a) // a, β, 7 are absolutely continuous real-
valued functions on [0, ω) such that, for t e [0, ω),

a* + ?£L ^ 0 , β' - 2jq ^ 0 ,
P

(a' + —)(β' - 2yq) - (7' + £ - aq)% ^ 0 ,
\ p / \ p /

, if u is a solution of (8),

i? = α(p^')2 + βu2 + 2yu(puf)

is nonincreasing while, if aβ — 72 Φ 0 0^ [0, α>),

aβ — 72

is nondecreasing.

(b) 1/ (9) holds, and in addition

a > 0, aβ - 72 > 0 for t e [0, ω) ,

then

(10) lim (aβ - y2)(t) = 0
ί—>ω

is necessary and sufficient for the existence of a solution, uo(t), of
(8) such that lim^ω E(t) = 0; cmd is α sufficient condition for the ex-
istence of a solution of (8), u^(t), linearly independent of uQ(t), such
that l i m ^ E(t) = + co.

Proof. Let xλ = p^', a;2 = %, so that (8) is equivalent to the system

(11) x[ = -qx2, x'2 = —a?! ,

which is of the form (1), with Tr A = 0. The adjoint of (11) is

P

and the solutions of this equation are of the form xί = u, x2 = —pu',
where u is any solution of (8). The corollary is an immediate conse-
quence of Theorem 3 if we take

_7 β_

(9) is equivalent to (6) and (10) is equivalent to (7) in this case. That
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u0 and Uπ are linearly independent can be seen from the proof of
Theorem 3, since

1 = x*xo(t) = piu^uΌ - uLuo)(t) .

EXAMPLE 1. If pq is absolutely continuous and positive then

a = — — e x p ( - \ μ + \ β = exp(-l μ_) and 7 = 0

pq(0) V Jo / V Jo /

s a t i s f y ( 9 ) , w h e n μ = (logpq)', μ+ = i(\μ\ + μ), a n d μ_ = i(\μ\- μ).

Hence (8) has a solution uo(t), such that

^ e x p ( Γ ^ + ̂  exp (-(/£-)] = 0
pq(0) \ Jo / V Jo /J

if and only if I \μ | = + oo, and this is also a sufficient condition for
Jo

the existence of a solution u^{t) such that

lim (piC)2 exp (I μ\ + ^Lpg(O) exp (\ μ+) = +
t-»ω L \ JO / \Jθ /J

We can conclude, for example, that if

S ω Γ ω

μ^ < + co and I ^+ = + cχo ,
o Jo

then lim^ω uQ(t) — 0 for some solution of (8).
Special cases of Example (1) have been obtained by Milloux [7j

and Hartman [4], under the assumption that pq is positive and mono-
tone and lim^ω pq — + oo. Here we have pq positive but not necess-
arily monotone. In Example 2 we show that Corollary 3.1 may be
applicable even when pq is neither positive nor monotone, in fact we
have lim sup^ω pq = + ̂  and lim inf t_ω pq = - c o .

EXAMPLE 2. Let p(t) = 2e*(l + e~% q(t) = i Sin ί, ω = + oo,

α(ί) = β-*, /S(ί) = 1 + β-' and τ(ί) = 0 .

Then a\t) = -e-* < 0, /5'(ί) = -e-* < 0, and

(A - aq)\t) = (iβ- ί - ί β"ί Sin ί)2 rg e"2ί = α'/S'ίί) .
\p /

Clearly (9) holds, and since lim^*, αj8(ί) = 0 (i.e., (10) holds) and

β(t) ^ 1, αp2(ί) ^ 4e* ,

it follows that there exists a solution uo(t) of
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(e\l + e-ι)uf)f + i(Sin t)u = 0

such that lim^oo uo(t) = l i m ^ etl2u'0(t) = 0.

In the preceding example the rapid smooth growth of the func-
tion p helped to overcome the oscillatory behaviour of q. We now
give an example to show that we can have p(t) = 1, lim i n f ^ q(t) —
— oo, lim supt_ω q(t) == + oo, and still be able to establish the existence
of a zero-tending solution.

EXAMPLE 3. Let p = l, q = (l + a + a')/a, ω = + oo in (8), where
a'{t) = 0 for te(O, 1),

a'(t) =

— n, te(n,n + —

, t e (n + -ί , n + l)
\ n3 /

n - 1, 2, 3,

= ξ- + [a' .
6 Jo

Note that lim^oo a(t) = 0, lim inf ̂  g(ί) = — oo, Hm supt_oo q(t) = + °°.
Then we can choose 7 = 0, a as given, and /5 = 1 + a in Corollary
3.1 to conclude that there exists a solution, uo(t), of u" + gu = 0 such
that lim^c uo(O = 0 and l im,^ a{t){uf

Q{t)f = 0.

Theorem 3 can also be applied to second order vector equations.
Let P and Q be n x n matrices of complex-valued measurable func-
tions on [0, ω) such that P is nonsingular a.e., and P~ι and Q are
locally integrable. Consider the system of differential equations

(12)

and

(13)

its adjoint

(Px'Y H

(P*x'Y 4

- Qx =

- Q*x

= 0,

= 0

COROLLARY 3.2. Let P and Q be as above.
(a) Suppose S and T are Hermitian matrices of absolutely con-

tinuous functions on [0, ω) such that

(14) σι

M ^ 0, τι

M ^ 0, σ ^ Λ - || TP~ι - Q*S | | 2 ^ 0 α.β.,

where σ\{ and τι

M are the largest eigenvalues of S' and T', respectively.
Then

E = x*'P*SPx' + x*Tx
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is nonίncreasing if x(t) is a solution of (12). Furthermore, if S
and T are nonsingular on [0, ω), then

E = x*S~1x + x*'PT~ιP*x'

is nondecreasing whenever x(t) is a solution of (13).
(b) //, in addition to the assumptions in part (a), we have

S > 0 and T > 0, then

(15) limdetSΓ(ί) - 0
ί-»ω

is a necessary and sufficient condition for (12) to possess a solution
for which l i m ^ E(t) = 0. In this case, (15) is also a sufficient con-
dition for (13) to possess a solution for which l i m ^ E(t) = + oo.

Proof. We set

-Q

o

and write (12) in the form of (1). The adjoint of (1), z' = -A*(t)z,
will have solutions of the form

z —
X

— P*x

where x is a solution of (13). We now apply Theorem 3, using

~S 0~
H =

0 T

The only nonroutine part remaining is to show that (14) implies H' +
A*ίf + HA ^ 0 a.e. on [0, ω). Note first of all that Sr and T are
Hermitian and nonpositive. It follows from a simple computation that

H' + A*H + HA = Γ 1 F = TP-1 - Q*S ,
[_F T'_\

and the associated (real-valued) quadratic form can be written

x*S'x + y*Fx + x*F*y + y*T'y, x and y ^-vectors.

The values taken by this form are clearly bounded above by

The remainder of the proof is now easily completed by applying
Theorem 3.
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Corollary 3.2 is an improvement of results due to Hartman ([3],
p. 502) and Coppel ([2], p. 61), one part of which can be stated as
follows:

//, in (12), we have P, Q commutative Hermitian continuously
differentiate matrices, with PQ > 0 and (PQY ^ 0, then

R(t) = x*x + x*'PQ~ιx', x a solution of (12) ,

is nonincreasing. Furthermore, (12) has a solution, xo(t), for which
^ ω R(t) = 0 if and only if lim^ω det PQ = + °o.

This result follows immediately from Corollary 3.2 by choosing
T = I (the n x n identity matrix) and S = P^PQ-ψ-1 = (PQ)"1.
The remainder of their results follow from the full statement of
Corollary 3.2.

EXAMPLE 4. If there exists a matrix Φ such that Φ*P~ι and ΦQ
are absolutely continuous, Hermitian, and positive definite, with

(φ*p-γ ^ 0, (ΦQY ̂  0 a.e. on [0, ω) ,

then the hypotheses of Corollary 3.2(a) are satisfied by

S = Φ*P~\ T = ΦQ .

This is easily verified by direct computation. For example, if either
(i) P*Q or (ii) PQ* is absolutely continuous, Hermitian, and positive
definite, then we may choose, respectively,

or

-jV), Γ=P*Qexp(-jV),

= (PQ*)-ιexp(-jV), T=

where v is the ratio of the largest eigenvalue of (P*Q)' to the least
eigenvalue of P*Q, and p is the ratio of the least eigenvalue of (PQ*)'
to the least eigenvalue of PQ*. These cases correspond to choosing,
respectively,

( i ) Φ = P * e x p ( - j V ) , (ii) Φ = Q

That Φ satisfies the conditions outlined above can be verified by direct
computation; for example, in case (i)

T = (ΦQY = [(P*QY - v+P*Q] exp ( - J V ) ,
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and the choice of v guarantees that c* Tc ^ 0 for any complex n~
vector c.

A somewhat sharper, but considerably less practical, result can
be obtained in cases (i) and (ii) above by choosing v as the largest
eigenvalue of ΛΓ + AT*, and p as the smallest eigenvalue of R + i?*,
where

N= [(P*Q)1/2]'(P*Q)~(1/2), R = (PQ*)-(1/2)[(PQ*)1/2]' .

A differentiation of the quadratic forms, coupled with some simple
manipulations, shows that S' ^ 0, T <£ 0 in each case.

Remark (added in proof). Theorem 3 and its corollaries can be
strengthened at the cost of making the hypotheses less concrete. The
conditions (6), (9) and (14) are in each case specific sufficient conditions
for property (2) to hold, in the sense that lim inf^ V(t) = 0 implies
\imt^ωV(t) = 0, where V(t) is, respectively, x*Hx(t), E(t) as defined
below (9), and E{t) as defined below (14), in each case evaluated along
solutions to the appropriate equation. We thank Professor H. Goll-
witzer of Drexel University for his helpful comments on this and other
matters.

REFERENCES

1. E. A. Coddington and N. Levinson, Theory of ordinary differential equations,,
McGraw-Hill, New York, 1955.
2. W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C.
Heath and Co., Boston, 1965.
3. P. Hartman, Ordinary differential equations, John Wiley and Sons, New York,
1964.
4. , The existence of large or small solutions of linear differential equations,
Duke Math. J. 28 (1961), 421-429.
5. S. M. Lozinskii, Error estimates for the numerical integration of ordinary differ-
ential equations (Russian), Izv. Vyss. Ucebn. Zaved., Matematika (6) 5 (1958), 52-90.
6. L. Markus, Continuous matrices and the stability of differential systems, Math.
Zeit. 62 (1955), 310-319.
7. H. Milloux, Sur Vequation differentielle %" + A{t)x = 0, Prace Mat. Fiz. 4 1 (1934),
39-53.
S. G. Sansone and R. Conti, Nonlinear differential equations, Macmillan-Pergamon,
iNew York, 1964.

Received June 2, 1969. This research was supported in part by the National
Research Council of Canada, under grants NRC A-3053 and NRC A-7197.

UNIVERSITY OF ALBERTA




