ON WITT'S THEOREM FOR UNIMODULAR QUADRATIC FORMS, II

D. G. James

Abstract

An integral generalization of Witt's theorem for unimodular quadratic forms over the ring of integers in a local field is established.

1. In the first part of this paper [1] we established a Witt theorem for unimodular quadratic forms over the rational integers, provided the signature of the form was sufficiently small. We shall now use these methods to obtain a similar theorem for arbitrary unimodular quadratic forms over the ring of integers in a local field in which 2 is a prime. These theorems are important because they enable us to determine the essentially distinct representations of a quadratic form by a unimodular form. We hope to expand on this in a later paper.

Let F be a local field in which 2 is a prime, o the ring of integers in F and \mathfrak{H} the group of units in \mathfrak{D}. We need only assume that the residue class field $\mathrm{o} / 2 \mathrm{o}$ is perfect. We preserve as much of the notation in [1] as possible, but now the underlying ring will be \mathfrak{o} and not the rational integers Z. Thus L will be a free 0 -module of finite rank, endowed with a bilinear symmetric unimodular form $\Phi: L \times L \rightarrow \mathrm{o}$. We denote $\Phi(\alpha, \beta)$ by $\alpha \cdot \beta$. Details on the structure of L are contained in O'Meara [2,3]. We recall that L is improper if $\alpha^{2} \in 20$ for all $\alpha \in L$; otherwise L is proper.

A vector $\alpha \in L$ is called primitive if $\alpha=2 \beta$, with $\beta \in L$, is impossible. As in Wall [5] and our earlier paper [1], the crucial concept is that of a characteristic vector. We only define these when L is a proper lattice; in this case L has an orthogonal basis, that is $L=$ $\left\langle\xi_{1}\right\rangle \oplus \cdots \bigoplus\left\langle\xi_{n}\right\rangle$. A vector $\alpha=\sum_{i=1}^{n} a_{i} \xi_{i} \in L$ is called characteristic if its orthogonal complement $\langle\alpha\rangle \perp$ contains no vectors of unit norm. If α is primitive, this is equivalent to

$$
a_{i}^{2} \xi_{i}^{2} \equiv a_{j}^{2} \xi_{j}^{2}(\bmod 2), \quad 1 \leqq i, j \leqq n
$$

Hence, in particular, $a_{i} \in \mathfrak{H}, 1 \leqq i \leqq n$, and this reduces to the definition in [1]. If α is a primitive characteristic vector, we define $T(\alpha) \in$ $\mathrm{o} / 2 \mathrm{o}$ by $T(\alpha) \equiv a_{i}^{2} \xi_{i}^{2}(\bmod 2)$. This definition is independent of the basis of L (see also Trojan [4]). If $\langle\alpha\rangle^{\perp}$ is proper, or if L is improper, we define $T(\alpha)=0$; also let $T\left(2^{s} \alpha\right)=T(\alpha)$ for $s \geqq 0$. We shall prove the following.

Theorem. Let $\varphi: J \rightarrow K$ be an isometry between the primitive
sublattices J and K of L. Then ρ extends to an isometry of L if and only if $T(\alpha)=T(\rho(\alpha))$ for all $\alpha \in J$.

When the rank of J is 1 , this is the same as Theorem 2.1 of Trojan [4]. We shall recover this as a special case. For local fields in which 2 is a unit the theorem remains true, but there is no need to consider characteristic vectors. Essentially the following proof of the theorem goes through in a much simpler manner.
2. We first reduce to the case where L has maximal Witt index (that is, the space $F L$ is an orthogonal sum of hyperbolic planes). We adjoin a unimodular lattice U to L so that $L^{\prime}=L \oplus U$ has maximal Witt index. Thus, if $L=H_{1} \oplus \cdots \oplus H_{m} \oplus\left\langle\xi_{1}\right\rangle \oplus \cdots \oplus\left\langle\xi_{s}\right\rangle$ where H_{1}, \cdots, H_{m} are hyperbolic planes, we take $U=\left\langle\zeta_{1}\right\rangle \oplus \cdots \oplus$ $\left\langle\zeta_{s}\right\rangle$ where $\zeta_{i}^{2}=-\xi_{i}^{2}, 1 \leqq i \leqq s$. Let $J^{\prime}=J \oplus U, K^{\prime}=K \oplus U$ and extend φ to J^{\prime} by defining $\varphi\left(\zeta_{i}\right)=\zeta_{i}$. A similar extension is done if L is improper, but now U may be taken as an improper lattice (see the classification of unimodular lattices in O'Meara [3, p. 852]). We observe that $T(\alpha)=T(\varphi(\alpha))$ for all $\alpha \in J^{\prime}$. If L^{\prime} is improper, this is trivial. If L is proper (and $U \neq\{0\}$), then no vector $\alpha \in J$ will be characteristic in L^{\prime}. However, new characteristic vectors may be created. Thus, if $\alpha \in J$ is characteristic in L, and $T(\alpha) \equiv a(\bmod 2)$ where $a \in \mathfrak{H}$, then $\alpha^{\prime}=\alpha+\sum_{i=1}^{s} u_{i} \zeta_{i}$ is characteristic in L^{\prime} if $u_{i} \in \mathfrak{H}$ are chosen such that $u_{i}^{2} \zeta_{i}^{2} \equiv a(\bmod 2)$. Clearly $T\left(\alpha^{\prime}\right)=T\left(\phi\left(\alpha^{\prime}\right)\right)$. If we prove the theorem for lattices of maximal Witt index, it holds for L^{\prime}, and restricting the extension of ρ back to L gives the general result.

We may now assume that L has the form

$$
L=H_{1} \oplus \cdots \oplus H_{m} \oplus B
$$

where $H_{i}=\left\langle\lambda_{i}, \mu_{i}\right\rangle, 1 \leqq i \leqq m$, are hyperbolic planes, and $B=\langle\xi, \rho\rangle$ where $\xi^{2}=d, \xi \cdot \rho=1$ and $\rho^{2}=0$. If L is improper, we may take $d=0$; otherwise $d \in \mathfrak{H}$.
3. The proof will be by induction on the rank $r(J)$ of J. We consider now $r(J)=1$. Let $J=\langle\alpha\rangle$ and $\varphi(\alpha)=\beta \in K$. Let

$$
\begin{equation*}
\alpha=\sum_{i=1}^{m}\left(\alpha_{i} \lambda_{i}+b_{i} \mu_{i}\right)+u \xi+v \rho . \tag{1}
\end{equation*}
$$

Case 1. If $\alpha^{2} \in \mathfrak{H}$, then u (and d) are units. Apply the isometry

$$
\theta_{1}:\left\langle\lambda_{i}, \mu_{i}\right\rangle \oplus\langle\xi, \rho\rangle \rightarrow\left\langle\lambda_{i}, \mu_{i}+x \rho\right\rangle \oplus\left\langle\xi-x \lambda_{i}, \rho\right\rangle
$$

where $x=a_{i} / u \in \mathfrak{D}$. Then

$$
\theta_{1}\left(a_{i} \lambda_{i}+b_{i} \mu_{i}+u \xi+v \rho\right)=b_{i} \mu_{i}+u \xi+\left(v+x b_{i}\right) \rho .
$$

After applying a succession of such isometries we may assume $\alpha=$ $\sum_{i=1}^{m} b_{i} \mu_{i}+u \xi+v \rho$. Then

$$
L=\langle\alpha, \rho\rangle \oplus\left\langle u \lambda_{1}-b_{1} \rho, \mu_{1}\right\rangle \oplus \cdots \oplus\left\langle u \lambda_{m}-b_{m} \rho, \mu_{m}\right\rangle
$$

and each $\left\langle u \lambda_{i}-b_{i} \rho, \mu_{i}\right\rangle$ is a hyperbolic plane. Doing the same for β, and cancelling hyperbolic planes ($[2,93: 14]$), we may reduce to the case $L=\langle\alpha\rangle \oplus\left\langle\alpha_{1}\right\rangle=\langle\beta\rangle \oplus\left\langle\beta_{1}\right\rangle$, where the result is obvious by considering the determinant of L.

Case 2. Now suppose $\alpha^{2} \notin \mathfrak{u}$, but that at least one of $a_{i}, b_{i}, 1 \leqq$ $i \leqq m$, is a unit, say $a_{1} \in \mathfrak{H}$. Then

$$
\begin{equation*}
L=\left\langle\alpha, \mu_{1}\right\rangle \oplus U \tag{2}
\end{equation*}
$$

with $\left\langle\alpha, \mu_{1}\right\rangle$ a hyperbolic plane. If we can also obtain

$$
\begin{equation*}
L=\langle\beta, \mu\rangle \oplus V \tag{3}
\end{equation*}
$$

with $\langle\beta, \mu\rangle$ a hyperbolic plane, then $U \cong V$, and we are reduced to considering $\alpha, \beta \in H=\langle\lambda, \mu\rangle$. Write $\alpha=a \lambda+b \mu, \beta=a^{\prime} \lambda+b^{\prime} \mu$, where without loss of generality we can take $a, a^{\prime} \in \mathfrak{H} . \quad \alpha^{2}=\beta^{2}$ implies $a b=$ $a^{\prime} b^{\prime}$. Apply $\langle\lambda, \mu\rangle \rightarrow\left\langle a^{\prime} / a \lambda, a / a^{\prime} \mu\right\rangle$, to complete the proof.

If L is improper, (3) is clear. If L is proper, (2) shows that α and hence β are not characteristic vectors. But if all the coefficients of λ_{i} and μ_{i} in β are in $20, \beta$ would be characteristic (see Case 3). Hence we can obtain the splitting (3).

Case 3. Finally suppose $\alpha^{2} \notin \mathfrak{H}$ and all a_{i}, b_{i} in (1) are nonunits. We may assume L is proper, $u \notin \mathfrak{u}$ and $v \in \mathfrak{H}$.

$$
\left\langle\lambda_{i}, \mu_{i}\right\rangle \oplus\langle\hat{\xi}, \rho\rangle \rightarrow\left\langle\lambda_{i}, \mu_{i}-2 x(\xi-d \rho)+2 d x^{2} \lambda_{i}\right\rangle \oplus\left\langle\xi, \rho+2 x \lambda_{i}\right\rangle
$$

can be used to reduce each coefficient a_{i} of λ_{i} in (1) to zero. Then

$$
L=\langle\alpha, \hat{\xi}\rangle \oplus\left\langle b_{1}(\hat{\xi}-d \rho)-v \lambda_{1}, \mu_{1}, \cdots, b_{m}(\xi-d \rho)-v \lambda_{m}, \mu_{m}\right\rangle
$$

Since $\langle\alpha, \xi\rangle$ is now isotropic and $\langle\alpha, \xi\rangle^{\perp}$ is improper, it follows that $\langle\alpha, \xi\rangle$ is an orthogonal sum of hyperbolic planes. α and β are now characteristic. We therefore have a similar splitting $L=\langle\beta, \xi\rangle \oplus U$, with U a sum of hyperbolic planes. Thus we may reduce to the case $L=\langle\xi, \rho\rangle$ with $\alpha=2 u \xi+v \rho$ and $\beta=2 u_{1} \xi+v_{1} \rho . \quad T(\alpha)=T(\beta)$ implies $v \equiv v_{1}(\bmod 2)$. If $u_{1} / u \equiv 1(\bmod 2)$, put $c=u_{1} / u \in \mathfrak{H}$ and apply

$$
\langle\xi, \rho\rangle \rightarrow\left\langle c \xi+\frac{1}{2} c^{-1} d\left(1-c^{2}\right) \rho, c^{-1} \rho\right\rangle,
$$

sending α into β. If $d u_{1} /(d u+v) \equiv 1(\bmod 2)$, put $c=d u_{1} /(d u+v)$
and apply $\langle\xi, \rho\rangle \rightarrow\left\langle c \xi+\frac{1}{2} d c^{-1}\left(1-c^{2}\right) \rho, 2 c d^{-1} \xi-c \rho\right\rangle$, sending α into β. Since $\alpha^{2}=\beta^{2}$, we have $u^{2} d+u v=u_{1}^{2} d+u_{1} v_{1}$, from which it follows that one of these two cases must occur. This completes the proof for $r(J)=1$.
4. Using methods similar to those in [1], we now obtain canonical embeddings of an image of J in L. We only elaborate on the details that are substantially different. We assume $2 r(J) \geqq r(L)$; if $2 r(J)<$ $r(L)$ it is clear how to modify the arguments that follow.

Let $J=\left\langle\alpha_{1}, \cdots \alpha_{s}\right\rangle$ where, by eliminating the coefficients of ξ and ρ, we may assume $\alpha_{i}^{2}=2 c_{i}$ with $c_{i} \in \mathcal{0}$ for $1 \leqq i \leqq m$, and none of the $\alpha_{i}, 1 \leqq i \leqq m-1$, are characteristic vectors. As in [1], we may apply isometries to L, and again writing the image of J as

$$
J=\left\langle\alpha_{1}, \cdots, \alpha_{s}\right\rangle
$$

obtain

$$
\begin{gathered}
\alpha_{1}=\lambda_{1}+c_{1} \mu_{1} \\
\cdot \cdot \cdot \cdot \\
\alpha_{m-1}=a_{m-11}, \mu_{1}+\cdots+a_{m-1, m-2} \mu_{m-2}+\lambda_{m-1}+c_{m-1} \mu_{m-1}
\end{gathered}
$$

where $\alpha_{i} \cdot \alpha_{j}=a_{i j}$ for $i>j$. Eliminating the coefficients of $\lambda_{1}, \cdots, \lambda_{m-1}$ we may assume

$$
\begin{equation*}
\alpha_{m}=\sum_{\imath=1}^{m-1} \alpha_{m i} \mu_{i}+\zeta \tag{4}
\end{equation*}
$$

where $\zeta \in H_{m} \oplus B$. If ζ is not primitive, at least one $\alpha_{m i}$ is a unit, say $a_{m k} \in \mathfrak{H}$. We now apply the isometry

$$
\begin{aligned}
\theta_{2}: & \left\langle\lambda_{k}, \mu_{k}\right\rangle \oplus\left\langle\lambda_{k+1}, \mu_{k+1}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m-1}, \mu_{m-1}\right\rangle \oplus\langle\xi, \rho\rangle \rightarrow \\
& \left\langle\lambda_{k}+c_{k} \rho, \mu_{k}-\rho\right\rangle \oplus\left\langle\lambda_{k+1}+a_{k+1, k} \rho, \mu_{k+1}\right\rangle \oplus \cdots \\
& \oplus\left\langle\lambda_{m-1}+a_{m-1, k} \rho, \mu_{m-1}\right\rangle \oplus\left\langle\xi-c_{k} \mu_{k}+\lambda_{k}-a_{k+1 k} \mu_{k+1}\right. \\
& \left.-\cdots-a_{m-1 k} \mu_{m-1}+c_{k} \rho, \rho\right\rangle .
\end{aligned}
$$

This leaves fixed each $\alpha_{i}, 1 \leqq i \leqq m-1$, but

$$
\theta_{2}\left(\alpha_{m}\right)=\sum_{i=1}^{m-1} \alpha_{m i} \mu_{i}-\alpha_{m k} \rho+\theta_{2}(\zeta)
$$

Use the $\alpha_{i}, 1 \leqq i \leqq m-1$, to eliminate any $\lambda_{i}, 1 \leqq i \leqq m-1$, occurring in $\theta_{2}\left(\alpha_{m}\right)$ and obtain a new vector of the form (4), but now ζ is primitive.

There are now two cases to consider.
Case 1. α_{m} not characteristic and $\alpha_{m}^{2} \in 20$. It is possible that ζ
is characteristic in $H_{m} \oplus B$. If this is the case, at least one $a_{m i}$ is a unit, and another isometry of the form θ_{2}, but with $\langle\tilde{\kappa}, \rho\rangle$ replaced by $\left\langle\lambda_{m}, \mu_{m}\right\rangle$, will introduce a term $\alpha_{m i} \mu_{m}$ into ζ. We may therefore assume ζ is not characteristic, and α_{m} has the form

$$
\alpha_{m}=\sum_{\imath=1}^{m-1} \alpha_{m i} \mu_{i}+\lambda_{m}+c_{m} \mu_{m}
$$

(after applying an isometry to $H_{m} \oplus B$). We may now take

$$
\alpha_{m+1}=\sum_{i=1}^{m} a_{m+1 i} \mu_{i}+u \hat{\xi}+v \rho .
$$

As above (with ζ), we may arrange that $u \xi+v \rho$ is primitive. First, assume that u is a unit. Then, changing the basis of $\langle\hat{\xi}, \rho\rangle$ to $\langle u \stackrel{\xi}{\xi}$, $\left.u^{-1} \rho\right\rangle$, we may assume $u=1$. This gives us the canonical embeddiu. of $\left\langle\alpha_{1}, \cdots, \alpha_{m+1}\right\rangle$ we desire; all the coefficients $a_{i j}, c_{i}$ and v are uniquely determined by $\alpha_{i} \cdot \alpha_{j}$ and $\alpha_{i}^{2}, 1 \leqq i, j \leqq m+1$. If now $2 r(J)>$ $r(L)$, we eliminate the λ_{i} and ξ terms in α_{m+2} so that it takes the form

$$
\alpha_{m+2}=\sum_{i=1}^{m} b_{i} \mu_{i}+b \rho
$$

Hence $\alpha_{m+2}^{2}=0$. If $b_{k} \in \mathfrak{H}$, say, then $\left\langle\alpha_{m+2}, \alpha_{k}\right\rangle$ is a hyperbolic plane splitting L and J. Its image under φ will be a hyperbolic plane splitting L and K. Cancelling these hyperbolic planes reduces the rank of J and we are finished by induction. (The invariants of vectors in the new J and K will still correspond.) If $b_{i} \in 20$ and $b \in \mathfrak{u}$, then α_{m+2} is characteristic. Also $\alpha_{m+1} \cdot \alpha_{m+2} \in \mathfrak{H}$. In this case $\left\langle\alpha_{m+1}, \alpha_{m+2}\right\rangle^{+} \cong$ $H_{1} \oplus \cdots \oplus H_{m}$ (since it is improper with maximal Witt index). We may now cancel $\left\langle\alpha_{m+1}, \alpha_{m+2}\right\rangle$ with its image and we are again finished by induction.

Now assume $u \in 20$ and hence $\alpha_{m+1}^{2} \in 20$. Then changing the basis of $\langle\xi, \rho\rangle$ to $\left\langle v^{-1} \xi, v \rho\right\rangle$, we may assume

$$
\alpha_{m+1}=\sum_{\imath=1}^{m} a_{m+1 i} \mu_{i}+2 u \xi+\rho
$$

Notice that $\alpha_{m+1}^{2} \in 4 \mathfrak{0}$, so that if any $\alpha_{m+1 i}$ is a unit, say $a_{m+1 k} \in \mathfrak{H}$, then $\left\langle\alpha_{k}, \alpha_{m+1}\right\rangle$ is a hyperbolic plane. In this case we can cancel and reduce the rank of J. Thus we may assume all $a_{m+1 i} \in 2 \mathrm{o}$, so that if L is proper, α_{m+1} is characteristic. This gives our canonical embedding of $\left\langle\alpha_{1}, \cdots, \alpha_{m+1}\right\rangle$. If now $2 r(J)>r(L)$, we eliminate the λ_{i} and ρ terms in α_{m+2}, so that it takes the form

$$
\alpha_{m+2}=\sum_{i=1}^{m} b_{i} \mu_{i}+b \xi
$$

If $b \in \mathfrak{H}$, then $\alpha_{m+1} \cdot \alpha_{m+2} \in \mathfrak{H} .\left\langle\alpha_{m+1}, \alpha_{m+2}\right\rangle$ is isotropic since we obtain an isotropic vector by eliminating the ξ term between α_{m+1} and α_{m+2}. Since α_{m+1} is characteristic, it follows that

$$
\left\langle\alpha_{m+1}, \alpha_{m+2}\right\rangle^{\perp} \cong H_{1} \oplus \cdots \oplus H_{m}
$$

We may therefore cancel $\left\langle\alpha_{m+1}, \alpha_{m+2}\right\rangle$ with its image under φ and finish by induction. If $b \notin \mathfrak{H}$, then $\alpha_{m+2}^{2} \in 4 \mathfrak{p}$. If now $b_{k} \in \mathfrak{H}$,

$$
\left\langle\alpha_{k}, \alpha_{m+2}\right\rangle \cong H
$$

and may be cancelled with its image. This completes this case.
In summary; we need only consider $2 r(J)=r(L)$ and

$$
J=\left\langle\alpha_{1}, \cdots, \alpha_{m+1}\right\rangle
$$

where

$$
\begin{aligned}
\alpha_{1} & =\lambda_{1}+c_{1} \mu_{1} \\
\cdot & \cdot \cdot \\
\alpha_{m} & =a_{m 1} \mu_{1}+\cdots+a_{m-1} \mu_{m-1}+\lambda_{m}+c_{m} \mu_{m} \\
\alpha_{m+1} & =\left\{\begin{array}{r}
2 a_{m+11} \mu_{1}+\cdots+2 a_{m+1 m} \mu_{m}+2 u \xi+\rho \\
a_{m+11} \mu_{1}+\cdots+a_{m+1 m} \mu_{m}+\xi+v \rho
\end{array}\right.
\end{aligned}
$$

according as α_{m+1} is characteristic, or not.
Case 2. α_{m} characteristic. Then we may take $\alpha_{m}=\sum_{i=1}^{m-1} a_{m i} \mu_{i}+$ ζ where $\zeta \in H_{m} \oplus B$. Since α_{m} is characteristic, $a_{m i} \in 20$ and hence ζ is primitive and characteristic. Applying an isometry to $H_{m} \oplus B$, we may assume $\zeta=2 u \xi+v \rho$, and changing the basis of $\langle\xi, \rho\rangle$ we may take $v=1$. We may now assume that α_{m+1} has the form

$$
\alpha_{m+1}=\sum_{\imath=1}^{m-1} a_{m+1 i} \mu_{i}+c \xi+e \lambda_{m}+f \mu_{m}
$$

If $c \in 2 \mathrm{o}, \alpha_{m+1}^{2} \in 2 \mathrm{o}$ and α_{m+1} is not characteristic. Therefore, this vector could be used as α_{m} in Case 1 and there is no need to consider it again here. Thus $c \in \mathfrak{H}$.

If neither e nor f are units, apply the isometry

$$
\begin{aligned}
&\langle\xi, \rho\rangle \oplus\left\langle\lambda_{m}, \mu_{m}\right\rangle \rightarrow\left\langle\xi+\lambda_{m}, \rho-2 u \lambda_{m}\right\rangle \oplus\left\langle\lambda_{m}, \mu_{m}-(1+2 u d) \rho\right. \\
&\left.+2 u \xi+2 u(1+u d) \lambda_{m}\right\rangle .
\end{aligned}
$$

This leaves α_{m} fixed and in α_{m+1} changes the coefficient of λ_{m} to a unit. Eliminating any ρ term between α_{m} and α_{m+1}, we can take

$$
\alpha_{m+1}=\sum_{i=1}^{m-1} a_{m+1 i} \mu_{i}+c \xi+\lambda_{m}+c_{m} \mu_{m} .
$$

Again, if $2 r(J)>r(L)$, we may assume α_{m+2} has the form

$$
\alpha_{m+2}=\sum_{i=1}^{m} b_{i} \mu_{i}+b \xi
$$

Eliminate the ξ term between α_{m+1} and α_{m+2} to obtain a noncharacteristic vector with norm $2 a$. This could have been taken as our α_{m} in Case 1.

This concludes the investigation of the embedding of J in L. From now on we consider $2 r(J)=r(L)$, and there are essentially three embeddings possible, two from Case 1 and one from Case 2.
5. Now assume that $J=\left\langle\alpha_{1}, \cdots, \alpha_{m+1}\right\rangle$ has been canonically embedded in L in one of the above forms. Because of the similarity with the proofs in [1], we will assume $\varphi(J)=K=\left\langle\alpha_{1}, \cdots, \alpha_{m}, \beta\right\rangle$, where $\varphi\left(\alpha_{i}\right)=\alpha_{i}, 1 \leqq i \leqq m$, and $\varphi\left(\alpha_{m+1}\right)=\beta$. We now apply isometries to L that leave $\alpha_{1}, \cdots, \alpha_{m}$ fixed and send β into α_{m+1}. This will complete the proof of the theorem. Only the more involved cases are considered, the remaining cases may be handled similarly. First assume

$$
\begin{aligned}
\alpha_{1} & =\lambda_{1}+c_{1} \mu_{1} \\
\cdot & \cdot \cdot \\
\alpha_{m} & =a_{m 1} \mu_{1}+\cdots+a_{m m-1} \mu_{m-1}+\lambda_{m}+c_{m} \mu_{m} \\
\alpha_{m+1} & =2 a_{m+11} \mu_{1}+\cdots+2 a_{m+1 m} \mu_{m}+2 u \xi+\rho
\end{aligned}
$$

so that α_{m+1} is a characteristic vector. β will also be characteristic, so we may write

$$
\beta=2 \sum_{i=1}^{m}\left(b_{i} \lambda_{i}+d_{i} \mu_{i}\right)+2 e \xi+f \rho .
$$

Since β is primitive, $f \in \mathfrak{H}$; and since $T\left(\alpha_{m+1}\right)=T(\beta)$, it follows that $f \equiv 1(\bmod 2)$. We apply isometries to L that reduce, in turn, the coefficients b_{1}, \cdots, b_{m} to zero. Assume b_{1}, \cdots, b_{k-1} have been reduced to zero. ${ }^{1}$ The isometry

$$
\begin{aligned}
\left\langle\lambda_{k}, \mu_{k}\right\rangle & \oplus \cdots \oplus\left\langle\lambda_{m}, \mu_{m}\right\rangle \oplus\langle\xi, \rho\rangle \rightarrow\left\langle\lambda_{k}+c_{k} x \rho, \mu_{k}-x \rho\right\rangle \\
& \oplus\left\langle\lambda_{k+1}+a_{k+1 k} x \rho, \mu_{k+1}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m}+a_{m k} x \rho, \mu_{m}\right\rangle \\
& \oplus\left\langle\xi-c_{k} x \mu_{k}+x \lambda_{k}-a_{k+1 k} x \mu_{k+1}-\cdots-a_{m k} x \mu_{m}\right. \\
& \left.+c_{k} x^{2} \rho, \rho\right\rangle
\end{aligned}
$$

leaves $\alpha_{1}, \cdots, \alpha_{m}$ fixed. However, in β the coefficient of λ_{k} is changed from $2 b_{k}$ to $2 b_{k}+2 e x$, which can be made zero by choice of x. In this manner reduce β to a vector with $b_{1}=\cdots=b_{m}=0$. Since $f \equiv 1$ $(\bmod 2)$, an isometry in $\langle\xi, \rho\rangle$ can be found sending $2 e \xi+f \rho$ into

[^0]$2 u \xi+\rho$. This completes the proof in this case.
Finally, we consider the case where $\alpha_{1}, \cdots, \alpha_{m-1}$ are as above, $\alpha_{m}=2 \sum_{i=1}^{m-1} a_{m i} \mu_{i}+2 u \xi+\rho$ and
$$
\alpha_{m+1}=\sum_{i=1}^{m-1} a_{m+1 i} \mu_{i}+c \xi+\lambda_{m}+c_{m} \mu_{m}
$$
where $\alpha_{m}=\varphi\left(\alpha_{m}\right)$ is characteristic and $\alpha_{m+1}^{2} \in \mathfrak{H}$, so that $c \in \mathfrak{H}$. In this case we may write $\beta=\varphi\left(\alpha_{m+1}\right)=\sum_{i=1}^{m}\left(b_{i} \lambda_{i}+d_{i} \mu_{i}\right)+e \xi+f \rho$ with $e \in \mathfrak{H}$. If neither b_{m} nor d_{m} is a unit, apply the isometry
\[

$$
\begin{aligned}
&\langle\xi, \rho\rangle \oplus\left\langle\lambda_{m}, \mu_{m}\right\rangle \rightarrow\left\langle\xi+\lambda_{m}, \rho-2 u \lambda_{m}\right\rangle \oplus\left\langle\lambda_{m}, \mu_{m}+2 u \xi\right. \\
&\left.-(1+2 u d) \rho+2 u(1+u d) \lambda_{m}\right\rangle .
\end{aligned}
$$
\]

Then $\alpha_{1}, \cdots, \alpha_{m}$ are left fixed, and in β the coefficient of λ_{m} becomes $e-2 u f+b_{m}+2 u(1+u d) d_{m} \in \mathfrak{H}$. Now apply the isometry

$$
\begin{aligned}
& \left\langle\lambda_{1}, \mu_{1}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m-1}, \mu_{m-1}\right\rangle \oplus\langle\xi, \rho\rangle \oplus\left\langle\lambda_{m}, \mu_{m}\right\rangle \rightarrow \\
& \quad\left\langle\lambda_{1}+c_{1} x \mu_{m}, \mu_{1}-x \mu_{m}\right\rangle \oplus\left\langle\lambda_{2}+a_{21} x \mu_{m}, \mu_{2}\right\rangle \oplus \cdots \oplus \\
& \quad\left\langle\lambda_{m-1}+a_{m-11} x \mu_{m}, \mu_{m-1}\right\rangle \oplus\left\langle\xi, \rho+2 a_{m 1} x \mu_{m}\right\rangle \oplus \\
& \quad\left\langle\lambda_{m}-c_{1} x \mu_{1}+x \lambda_{1}-a_{21} x \mu_{2}-\cdots-a_{m-11} x \mu_{m-1}\right. \\
& \left.\quad-2 a_{m 1} x(\xi-d \rho)+x^{2}\left(c_{1}+2 d a_{m 1}^{2}\right) \mu_{m}, \mu_{m}\right\rangle,
\end{aligned}
$$

which leaves $\alpha_{1}, \cdots, \alpha_{m}$ fixed. The coefficient of λ_{1} in β changes to $b_{1}+x b_{m}$, and may be made zero. Reduce, in turn, b_{1}, \cdots, b_{m-1} to zero. Finally, apply

$$
\begin{aligned}
\langle\xi, \rho\rangle \oplus\left\langle\lambda_{m}, \mu_{m}\right\rangle \rightarrow & \left\langle\xi+x \mu_{m}, \rho-2 u x \mu_{m}\right\rangle \oplus \\
& \left\langle\lambda_{m}-x \rho+2 u x(\xi-d \rho)+2 u x^{2}(1+u d) \mu_{m}, \mu_{m}\right\rangle .
\end{aligned}
$$

In β the coefficient of ρ becomes $f-b_{m} x(1+2 u d)$, which can be made zero. We have therefore mapped K onto J. This completes the proof of the theorem.

References

1. D. G. James, On Witt's theorem for unimodular quadratic forms, Pacific J. Math. 26 (1968), 303-316.
2. O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, Berlin, 1963.
3. The integral representations of quadratic forms over local fields, Amer. J. Math. 80 (1958), 843-878.
4. A. Trojan, The integral extension of isometries of quadratic forms over local fields, Canad. J. Math. 18 (1966), 920-942.
5. C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms, Math. Ann. 147 (1962). 328-338.

Received May 23, 1969. This research was partially supported by the National Science Foundation.

The Pennsylvania State University

[^0]: ${ }^{1}$ Using a symmetry in $\langle\xi, \rho\rangle$, we may assume that e is a unit.

