ON WITT'S THEOREM FOR UNIMODULAR QUADRATIC FORMS, II

D. G. JAMES

An integral generalization of Witt's theorem for unimodular quadratic forms over the ring of integers in a local field is established.

1. In the first part of this paper [1] we established a Witt theorem for unimodular quadratic forms over the rational integers, provided the signature of the form was sufficiently small. We shall now use these methods to obtain a similar theorem for arbitrary unimodular quadratic forms over the ring of integers in a local field in which 2 is a prime. These theorems are important because they enable us to determine the essentially distinct representations of a quadratic form by a unimodular form. We hope to expand on this in a later paper.

Let F be a local field in which 2 is a prime, o the ring of integers in F and \mathfrak{u} the group of units in \mathfrak{o} . We need only assume that the residue class field $\mathfrak{o}/2\mathfrak{o}$ is perfect. We preserve as much of the notation in [1] as possible, but now the underlying ring will be \mathfrak{o} and not the rational integers Z. Thus L will be a free \mathfrak{o} -module of finite rank, endowed with a bilinear symmetric unimodular form $\Phi: L \times L \to \mathfrak{o}$. We denote $\Phi(\alpha, \beta)$ by $\alpha \cdot \beta$. Details on the structure of L are contained in O'Meara [2, 3]. We recall that L is *improper* if $\alpha^2 \in 2\mathfrak{o}$ for all $\alpha \in L$; otherwise L is *proper*.

A vector $\alpha \in L$ is called *primitive* if $\alpha = 2\beta$, with $\beta \in L$, is impossible. As in Wall [5] and our earlier paper [1], the crucial concept is that of a characteristic vector. We only define these when L is a proper lattice; in this case L has an orthogonal basis, that is $L = \langle \hat{\xi}_1 \rangle \bigoplus \cdots \bigoplus \langle \hat{\xi}_n \rangle$. A vector $\alpha = \sum_{i=1}^n a_i \hat{\xi}_i \in L$ is called *characteristic* if its orthogonal complement $\langle \alpha \rangle^{\perp}$ contains no vectors of unit norm. If α is primitive, this is equivalent to

$$a_i^2 \hat{arsigma}_i^2 \equiv a_j^2 \hat{arsigma}_j^2 \pmod{2}$$
 , $1 \leq i,j \leq n$.

Hence, in particular, $a_i \in \mathfrak{u}$, $1 \leq i \leq n$, and this reduces to the definition in [1]. If α is a primitive characteristic vector, we define $T(\alpha) \in$ $\mathfrak{o}/2\mathfrak{o}$ by $T(\alpha) \equiv a_i^2 \xi_i^2 \pmod{2}$. This definition is independent of the basis of L (see also Trojan [4]). If $\langle \alpha \rangle^{\perp}$ is proper, or if L is improper, we define $T(\alpha) = 0$; also let $T(2^s \alpha) = T(\alpha)$ for $s \geq 0$. We shall prove the following.

THEOREM. Let $\varphi: J \to K$ be an isometry between the primitive

sublattices J and K of L. Then φ extends to an isometry of L if and only if $T(\alpha) = T(\varphi(\alpha))$ for all $\alpha \in J$.

When the rank of J is 1, this is the same as Theorem 2.1 of Trojan [4]. We shall recover this as a special case. For local fields in which 2 is a unit the theorem remains true, but there is no need to consider characteristic vectors. Essentially the following proof of the theorem goes through in a much simpler manner.

2. We first reduce to the case where L has maximal Witt index (that is, the space FL is an orthogonal sum of hyperbolic planes). We adjoin a unimodular lattice U to L so that $L' = L \bigoplus U$ has maximal Witt index. Thus, if $L = H_1 \oplus \cdots \oplus H_m \oplus \langle \xi_1 \rangle \oplus \cdots \oplus \langle \xi_s \rangle$ where H_1, \dots, H_m are hyperbolic planes, we take $U = \langle \zeta_1 \rangle \bigoplus \dots \bigoplus$ $\langle \zeta_s
angle$ where $\zeta_i^2 = -\xi_i^2$, $1 \leq i \leq s$. Let $J' = J \oplus U$, $K' = K \oplus U$ and extend φ to J' by defining $\varphi(\zeta_i) = \zeta_i$. A similar extension is done if L is improper, but now U may be taken as an improper lattice (see the classification of unimodular lattices in O'Meara [3, p. 852]). We observe that $T(\alpha) = T(\varphi(\alpha))$ for all $\alpha \in J'$. If L' is improper, this is trivial. If L is proper (and $U \neq \{0\}$), then no vector $\alpha \in J$ will be characteristic in L'. However, new characteristic vectors may be created. Thus, if $\alpha \in J$ is characteristic in L, and $T(\alpha) \equiv a \pmod{2}$ where $a \in \mathfrak{u}$, then $\alpha' = \alpha + \sum_{i=1}^{s} u_i \zeta_i$ is characteristic in L' if $u_i \in \mathfrak{u}$ are chosen such that $u_i^2 \zeta_i^2 \equiv a \pmod{2}$. Clearly $T(\alpha') = T(\varphi(\alpha'))$. If we prove the theorem for lattices of maximal Witt index, it holds for L', and restricting the extension of φ back to L gives the general result.

We may now assume that L has the form

$$L = H_1 \oplus \cdots \oplus H_m \oplus B$$

where $H_i = \langle \lambda_i, \mu_i \rangle$, $1 \leq i \leq m$, are hyperbolic planes, and $B = \langle \xi, \rho \rangle$ where $\xi^2 = d$, $\xi \cdot \rho = 1$ and $\rho^2 = 0$. If L is improper, we may take d = 0; otherwise $d \in \mathfrak{u}$.

3. The proof will be by induction on the rank r(J) of J. We consider now r(J) = 1. Let $J = \langle \alpha \rangle$ and $\varphi(\alpha) = \beta \in K$. Let

(1)
$$\alpha = \sum_{i=1}^m (a_i \lambda_i + b_i \mu_i) + u\xi + v\rho.$$

Case 1. If $\alpha^2 \in \mathfrak{u}$, then u (and d) are units. Apply the isometry

$$\theta_1: \langle \lambda_i, \mu_i \rangle \bigoplus \langle \xi, \rho \rangle \rightarrow \langle \lambda_i, \mu_i + x \rho \rangle \bigoplus \langle \xi - x \lambda_i, \rho \rangle$$

where $x = a_i/u \in \mathfrak{o}$. Then

$$heta_{\scriptscriptstyle 1}(a_i\lambda_i+b_i\mu_i+u\xi+v
ho)=b_i\mu_i+u\xi+(v+xb_i)
ho$$
 .

After applying a succession of such isometries we may assume $\alpha = \sum_{i=1}^{m} b_i \mu_i + u\xi + v\rho$. Then

$$L = \langle \alpha, \rho \rangle \oplus \langle u\lambda_1 - b_1 \rho, \mu_1 \rangle \oplus \cdots \oplus \langle u\lambda_m - b_m \rho, \mu_m \rangle$$

and each $\langle u\lambda_i - b_i\rho, \mu_i \rangle$ is a hyperbolic plane. Doing the same for β , and cancelling hyperbolic planes ([2, 93:14]), we may reduce to the case $L = \langle \alpha \rangle \bigoplus \langle \alpha_i \rangle = \langle \beta \rangle \bigoplus \langle \beta_i \rangle$, where the result is obvious by considering the determinant of L.

Case 2. Now suppose $\alpha^2 \notin \mathfrak{u}$, but that at least one of $a_i, b_i, 1 \leq i \leq m$, is a unit, say $a_i \in \mathfrak{u}$. Then

$$(2) L = \langle \alpha, \mu_i \rangle \oplus U$$

with $\langle \alpha, \mu_1 \rangle$ a hyperbolic plane. If we can also obtain

$$(3) L = \langle \beta, \mu \rangle \oplus V$$

with $\langle \beta, \mu \rangle$ a hyperbolic plane, then $U \cong V$, and we are reduced to considering $\alpha, \beta \in H = \langle \lambda, \mu \rangle$. Write $\alpha = a\lambda + b\mu, \beta = a'\lambda + b'\mu$, where without loss of generality we can take $a, a' \in \mathfrak{u}$. $\alpha^2 = \beta^2$ implies ab = a'b'. Apply $\langle \lambda, \mu \rangle \rightarrow \langle a'/a\lambda, a/a'\mu \rangle$, to complete the proof.

If L is improper, (3) is clear. If L is proper, (2) shows that α and hence β are not characteristic vectors. But if all the coefficients of λ_i and μ_i in β are in 20, β would be characteristic (see Case 3). Hence we can obtain the splitting (3).

Case 3. Finally suppose $\alpha^2 \in \mathfrak{u}$ and all a_i , b_i in (1) are nonunits. We may assume L is proper, $u \in \mathfrak{u}$ and $v \in \mathfrak{u}$.

$$\langle \lambda_i, \ \mu_i
angle \oplus \langle \hat{\xi}, \
ho
angle
ightarrow \langle \lambda_i, \ \mu_i - 2x(\xi - d
ho) + 2dx^2\lambda_i
angle \oplus \langle \xi, \
ho + 2x\lambda_i
angle$$

can be used to reduce each coefficient a_i of λ_i in (1) to zero. Then

$$L=\langle lpha,\, \hat{arsigma}
angle\oplus \langle b_{\scriptscriptstyle 1}(arsigma-d
ho)-v\lambda_{\scriptscriptstyle 1},\, \mu_{\scriptscriptstyle 1},\, \cdots,\, b_{\scriptscriptstyle m}(arsigma-d
ho)-v\lambda_{\scriptscriptstyle m},\, \mu_{\scriptscriptstyle m}
angle\,.$$

Since $\langle \alpha, \xi \rangle$ is now isotropic and $\langle \alpha, \xi \rangle^{\perp}$ is improper, it follows that $\langle \alpha, \xi \rangle^{\perp}$ is an orthogonal sum of hyperbolic planes. α and β are now characteristic. We therefore have a similar splitting $L = \langle \beta, \xi \rangle \bigoplus U$, with U a sum of hyperbolic planes. Thus we may reduce to the case $L = \langle \xi, \rho \rangle$ with $\alpha = 2u\xi + v\rho$ and $\beta = 2u_1\xi + v_1\rho$. $T(\alpha) = T(\beta)$ implies $v \equiv v_1 \pmod{2}$. If $u_1/u \equiv 1 \pmod{2}$, put $c = u_1/u \in \mathfrak{u}$ and apply

$$\langle \xi, \rho
angle
ightarrow \langle c \xi + rac{1}{2} c^{-1} d(1-c^2)
ho, c^{-1}
ho
angle$$
 ,

sending α into β . If $du_1/(du + v) \equiv 1 \pmod{2}$, put $c = du_1/(du + v)$

and apply $\langle \xi, \rho \rangle \rightarrow \langle c\xi + \frac{1}{2}dc^{-1}(1-c^2)\rho, 2cd^{-1}\xi - c\rho \rangle$, sending α into β . Since $\alpha^2 = \beta^2$, we have $u^2d + uv = u_1^2d + u_1v_1$, from which it follows that one of these two cases must occur. This completes the proof for r(J) = 1.

4. Using methods similar to those in [1], we now obtain canonical embeddings of an image of J in L. We only elaborate on the details that are substantially different. We assume $2r(J) \ge r(L)$; if 2r(J) < r(L) it is clear how to modify the arguments that follow.

Let $J = \langle \alpha_1, \dots, \alpha_s \rangle$ where, by eliminating the coefficients of ξ and ρ , we may assume $\alpha_i^2 = 2c_i$ with $c_i \in \mathfrak{o}$ for $1 \leq i \leq m$, and none of the α_i , $1 \leq i \leq m - 1$, are characteristic vectors. As in [1], we may apply isometries to L, and again writing the image of J as

$$J = \langle \alpha_1, \cdots, \alpha_s \rangle$$
,

obtain

where $\alpha_i \cdot \alpha_j = a_{ij}$ for i > j. Eliminating the coefficients of $\lambda_i, \dots, \lambda_{m-1}$ we may assume

(4)
$$\alpha_m = \sum_{i=1}^{m-1} \alpha_{mi} \mu_i + \zeta$$

where $\zeta \in H_m \bigoplus B$. If ζ is not primitive, at least one a_{mi} is a unit, say $a_{mk} \in \mathfrak{u}$. We now apply the isometry

$$egin{aligned} & heta_2&:\langle\lambda_k,\,\mu_k
angle\oplus\langle\lambda_{k+1},\,\mu_{k+1}
angle\oplus\cdots\oplus\langle\lambda_{m-1},\,\mu_{m-1}
angle\oplus\langle\xi,\,
ho
angle
ightarrow \ &<\langle\lambda_k+c_k
ho,\,\mu_k-
ho
angle\oplus\langle\lambda_{k+1}+a_{k+1,k}
ho,\,\mu_{k+1}
angle\oplus\cdots \ &\oplus\langle\lambda_{m-1}+a_{m-1,k}
ho,\,\mu_{m-1}
angle\oplus\langle\xi-c_k\mu_k+\lambda_k-a_{k+1k}\mu_{k+1}\ &-\cdots-a_{m-1k}\mu_{m-1}+c_k
ho,\,
ho
angle. \end{aligned}$$

This leaves fixed each α_i , $1 \leq i \leq m - 1$, but

$$heta_{2}(lpha_{m}) = \sum_{i=1}^{m-1} a_{mi} \mu_{i} - a_{mk}
ho + heta_{2}(\zeta) \;.$$

Use the α_i , $1 \leq i \leq m-1$, to eliminate any λ_i , $1 \leq i \leq m-1$, occurring in $\theta_2(\alpha_m)$ and obtain a new vector of the form (4), but now ζ is primitive.

There are now two cases to consider.

Case 1. α_m not characteristic and $\alpha_m^2 \in 20$. It is possible that ζ

is characteristic in $H_m \oplus B$. If this is the case, at least one a_{mi} is a unit, and another isometry of the form θ_2 , but with $\langle \tilde{\varsigma}, \rho \rangle$ replaced by $\langle \lambda_m, \mu_m \rangle$, will introduce a term $a_{mi}\mu_m$ into ζ . We may therefore assume ζ is not characteristic, and α_m has the form

$$lpha_m = \sum_{i=1}^{m-1} a_{mi} \mu_i + \lambda_m + c_m \mu_m$$

(after applying an isometry to $H_m \oplus B$). We may now take

$$\alpha_{m+1} = \sum_{i=1}^m a_{m+1i} \mu_i + u\hat{\varsigma} + v\rho$$

As above (with ζ), we may arrange that $u\xi + v\rho$ is primitive. First, assume that u is a unit. Then, changing the basis of $\langle \xi, \rho \rangle$ to $\langle u\xi, u^{-1}\rho \rangle$, we may assume u = 1. This gives us the canonical embeddius of $\langle \alpha_1, \dots, \alpha_{m+1} \rangle$ we desire; all the coefficients a_{ij}, c_i and v are uniquely determined by $\alpha_i \cdot \alpha_j$ and α_i^2 , $1 \leq i, j \leq m + 1$. If now 2r(J) > r(L), we eliminate the λ_i and ξ terms in α_{m+2} so that it takes the form

$$lpha_{\scriptscriptstyle m+2} = \sum\limits_{\scriptstyle i=1}^{\scriptstyle m} b_{i} \mu_{i} + b
ho$$
 .

Hence $\alpha_{m+2}^2 = 0$. If $b_k \in \mathfrak{u}$, say, then $\langle \alpha_{m+2}, \alpha_k \rangle$ is a hyperbolic plane splitting L and J. Its image under φ will be a hyperbolic plane splitting L and K. Cancelling these hyperbolic planes reduces the rank of J and we are finished by induction. (The invariants of vectors in the new J and K will still correspond.) If $b_i \in 20$ and $b \in \mathfrak{u}$, then α_{m+2} is characteristic. Also $\alpha_{m+1} \cdot \alpha_{m+2} \in \mathfrak{u}$. In this case $\langle \alpha_{m+1}, \alpha_{m+2} \rangle^+ \cong$ $H_1 \bigoplus \cdots \bigoplus H_m$ (since it is improper with maximal Witt index). We may now cancel $\langle \alpha_{m+1}, \alpha_{m+2} \rangle$ with its image and we are again finished by induction.

Now assume $u \in 2o$ and hence $\alpha_{m+1}^2 \in 2o$. Then changing the basis of $\langle \xi, \rho \rangle$ to $\langle v^{-1}\xi, v\rho \rangle$, we may assume

$$lpha_{\scriptscriptstyle m+1} = \sum\limits_{\scriptscriptstyle i=1}^m a_{\scriptscriptstyle m+1i} \mu_i + 2 u \xi +
ho$$
 .

Notice that $\alpha_{m+1}^2 \in 40$, so that if any a_{m+1i} is a unit, say $a_{m+1k} \in \mathfrak{u}$, then $\langle \alpha_k, \alpha_{m+1} \rangle$ is a hyperbolic plane. In this case we can cancel and reduce the rank of J. Thus we may assume all $a_{m+1i} \in 20$, so that if L is proper, α_{m+1} is characteristic. This gives our canonical embedding of $\langle \alpha_1, \dots, \alpha_{m+1} \rangle$. If now 2r(J) > r(L), we eliminate the λ_i and ρ terms in α_{m+2} , so that it takes the form

$$lpha_{\scriptscriptstyle m+2} = \sum\limits_{i=1}^m b_i \mu_i + b arepsilon$$
 .

If $b \in \mathfrak{u}$, then $\alpha_{m+1} \cdot \alpha_{m+2} \in \mathfrak{u}$. $\langle \alpha_{m+1}, \alpha_{m+2} \rangle$ is isotropic since we obtain an isotropic vector by eliminating the ξ term between α_{m+1} and α_{m+2} . Since α_{m+1} is characteristic, it follows that

$$\langle lpha_{m+1}, lpha_{m+2}
angle^{ot} \cong H_1 \oplus \cdots \oplus H_m$$
 .

We may therefore cancel $\langle \alpha_{m+1}, \alpha_{m+2} \rangle$ with its image under φ and finish by induction. If $b \notin \mathfrak{u}$, then $\alpha_{m+2}^2 \in 4\mathfrak{o}$. If now $b_k \in \mathfrak{u}$,

 $\langle \alpha_k, \alpha_{m+2} \rangle \cong H$,

and may be cancelled with its image. This completes this case.

In summary; we need only consider 2r(J) = r(L) and

$$J = \langle \alpha_1, \cdots, \alpha_{m+1} \rangle$$

where

$$lpha_1 = \lambda_1 + c_1 \mu_1 \ lowbreak a_m = a_{m1} \mu_1 + \dots + a_{mm-1} \mu_{m-1} + \lambda_m + c_m \mu_m \ lpha_{m+1} = egin{cases} 2a_{m+11} \mu_1 + \dots + 2a_{m+1m} \mu_m + 2u \xi +
ho \ a_{m+11} \mu_1 + \dots + a_{m+1m} \mu_m + \xi + v
ho \end{cases}$$

according as α_{m+1} is characteristic, or not.

Case 2. α_m characteristic. Then we may take $\alpha_m = \sum_{i=1}^{m-1} a_{mi}\mu_i + \zeta$ where $\zeta \in H_m \bigoplus B$. Since α_m is characteristic, $a_{mi} \in 2\mathfrak{o}$ and hence ζ is primitive and characteristic. Applying an isometry to $H_m \bigoplus B$, we may assume $\zeta = 2u\xi + v\rho$, and changing the basis of $\langle \xi, \rho \rangle$ we may take v = 1. We may now assume that α_{m+1} has the form

$$lpha_{m+1} = \sum_{i=1}^{m-1} a_{m+1i} \mu_i + c \hat{z} + e \lambda_m + f \mu_m$$
 .

If $c \in 20$, $\alpha_{m+1}^2 \in 20$ and α_{m+1} is not characteristic. Therefore, this vector could be used as α_m in Case 1 and there is no need to consider it again here. Thus $c \in \mathfrak{u}$.

If neither e nor f are units, apply the isometry

$$egin{aligned} &\langle \hat{\xi},\,
ho
angle \oplus \langle \lambda_m,\,\mu_m
angle
ightarrow \langle \hat{\xi}+\lambda_m,\,
ho-2u\lambda_m
angle \oplus \langle \lambda_m,\,\mu_m-(1+2ud)
ho\ &+2u\xi+2u(1+ud)\lambda_m
angle \,. \end{aligned}$$

This leaves α_m fixed and in α_{m+1} changes the coefficient of λ_m to a unit. Eliminating any ρ term between α_m and α_{m+1} , we can take

$$\alpha_{m+1} = \sum_{i=1}^{m-1} a_{m+1i} \mu_i + c\xi + \lambda_m + c_m \mu_m .$$

Again, if 2r(J) > r(L), we may assume α_{m+2} has the form

$$lpha_{\scriptscriptstyle m+2} = \sum\limits_{i=1}^m b_i \mu_i + b \xi$$
 .

Eliminate the ξ term between α_{m+1} and α_{m+2} to obtain a noncharacteristic vector with norm 2*a*. This could have been taken as our α_m in Case 1.

This concludes the investigation of the embedding of J in L. From now on we consider 2r(J) = r(L), and there are essentially three embeddings possible, two from Case 1 and one from Case 2.

5. Now assume that $J = \langle \alpha_1, \dots, \alpha_{m+1} \rangle$ has been canonically embedded in L in one of the above forms. Because of the similarity with the proofs in [1], we will assume $\varphi(J) = K = \langle \alpha_1, \dots, \alpha_m, \beta \rangle$, where $\varphi(\alpha_i) = \alpha_i$, $1 \leq i \leq m$, and $\varphi(\alpha_{m+1}) = \beta$. We now apply isometries to L that leave $\alpha_1, \dots, \alpha_m$ fixed and send β into α_{m+1} . This will complete the proof of the theorem. Only the more involved cases are considered, the remaining cases may be handled similarly. First assume

$$egin{aligned} &lpha_1 &= \lambda_1 + c_1 \mu_1 \ &ledsymbol{\cdot} & \cdot & \cdot \ &lpha_m &= a_{m1} \mu_1 + \cdots + a_{mm-1} \mu_{m-1} + \lambda_m + c_m \mu_m \ &lpha_{m+1} &= 2a_{m+11} \mu_1 + \cdots + 2a_{m+1m} \mu_m + 2u \xi +
ho \end{aligned}$$

so that α_{m+1} is a characteristic vector. β will also be characteristic, so we may write

$$eta=2{\sum\limits_{i=1}^m \left(b_i\lambda_i+d_i\mu_i
ight)}+2e\xi+f
ho$$
 .

Since β is primitive, $f \in \mathfrak{u}$; and since $T(\alpha_{m+1}) = T(\beta)$, it follows that $f \equiv 1 \pmod{2}$. We apply isometries to L that reduce, in turn, the coefficients b_1, \dots, b_m to zero. Assume b_1, \dots, b_{k-1} have been reduced to zero.¹ The isometry

$$\begin{array}{l} \langle \lambda_k, \, \mu_k \rangle \bigoplus \cdots \bigoplus \langle \lambda_m, \, \mu_m \rangle \bigoplus \langle \xi, \, \rho \rangle \rightarrow \langle \lambda_k \,+\, c_k x \rho, \, \mu_k \,-\, x \rho \rangle \\ \oplus \langle \lambda_{k+1} \,+\, a_{k+1k} x \rho, \, \mu_{k+1} \rangle \bigoplus \cdots \bigoplus \langle \lambda_m \,+\, a_{mk} x \rho, \, \mu_m \rangle \\ \oplus \langle \xi \,-\, c_k x \mu_k \,+\, x \lambda_k \,-\, a_{k+1k} x \mu_{k+1} \,-\, \cdots \,-\, a_{mk} x \mu_m \\ &+\, c_k x^2 \rho, \, \rho \rangle \end{array}$$

leaves $\alpha_1, \dots, \alpha_m$ fixed. However, in β the coefficient of λ_k is changed from $2b_k$ to $2b_k + 2ex$, which can be made zero by choice of x. In this manner reduce β to a vector with $b_1 = \dots = b_m = 0$. Since $f \equiv 1$ (mod 2), an isometry in $\langle \xi, \rho \rangle$ can be found sending $2e\xi + f\rho$ into

¹ Using a symmetry in $\langle \xi, \rho \rangle$, we may assume that e is a unit.

 $2u\xi + \rho$. This completes the proof in this case.

Finally, we consider the case where $\alpha_1, \dots, \alpha_{m-1}$ are as above, $\alpha_m = 2\sum_{i=1}^{m-1} a_{mi}\mu_i + 2u\xi + \rho$ and

$$lpha_{{m+1}} = \sum_{i=1}^{m-1} a_{{m+1}i} \mu_i + c \xi + \lambda_m + c_m \mu_m \; ,$$

where $\alpha_m = \varphi(\alpha_m)$ is characteristic and $\alpha_{m+1}^2 \in \mathfrak{u}$, so that $c \in \mathfrak{u}$. In this case we may write $\beta = \varphi(\alpha_{m+1}) = \sum_{i=1}^m (b_i \lambda_i + d_i \mu_i) + e\xi + f\rho$ with $e \in \mathfrak{u}$. If neither b_m nor d_m is a unit, apply the isometry

$$ig< \xi,
ho
angle \oplus \langle \lambda_m, \, \mu_m
ight
angle o \langle \xi + \lambda_m, \,
ho - 2u\lambda_m
ight
angle \oplus \langle \lambda_m, \, \mu_m + 2u\xi \ - (1 + 2ud)
ho + 2u(1 + ud)\lambda_m
ight
angle.$$

Then $\alpha_1, \dots, \alpha_m$ are left fixed, and in β the coefficient of λ_m becomes $e - 2uf + b_m + 2u(1 + ud)d_m \in \mathfrak{u}$. Now apply the isometry

$$egin{aligned} &\langle\lambda_1,\,\mu_1
angle\oplus\cdots\oplus\langle\lambda_{m-1},\,\mu_{m-1}
angle\oplus\langle\xi,\,
ho
angle\oplus\langle\lambda_m,\,\mu_m
angle
ightarrow\ &\langle\lambda_1+c_1x\mu_m,\,\mu_1-x\mu_m
angle\oplus\langle\lambda_2+a_{21}x\mu_m,\,\mu_2
angle\oplus\cdots\oplus\ &\langle\lambda_{m-1}+a_{m-11}x\mu_m,\,\mu_{m-1}
angle\oplus\langle\xi,\,
ho+2a_{m1}x\mu_m
angle\oplus\ &\langle\lambda_m-c_1x\mu_1+x\lambda_1-a_{21}x\mu_2-\cdots-a_{m-11}x\mu_{m-1}\ &-2a_{m1}x(\xi-d
ho)+x^2(c_1+2da_{m1}^2)\mu_m,\,\mu_m
angle\,, \end{aligned}$$

which leaves $\alpha_1, \dots, \alpha_m$ fixed. The coefficient of λ_1 in β changes to $b_1 + xb_m$, and may be made zero. Reduce, in turn, b_1, \dots, b_{m-1} to zero. Finally, apply

$$egin{aligned} &\langle \hat{arsigma}, \,
ho
angle \oplus \langle \lambda_{m}, \, \mu_{m}
angle & o \langle \hat{arsigma} + x \mu_{m}, \,
ho - 2ux \mu_{m}
angle \oplus \ &\langle \lambda_{m} - x
ho + 2ux (\hat{arsigma} - d
ho) + 2ux^{2} (1 + ud) \mu_{m}, \, \mu_{m}
angle \,. \end{aligned}$$

In β the coefficient of ρ becomes $f - b_m x(1 + 2ud)$, which can be made zero. We have therefore mapped K onto J. This completes the proof of the theorem.

References

1. D. G. James, On Witt's theorem for unimodular quadratic forms, Pacific J. Math. 26 (1968), 303-316.

2. O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, Berlin, 1963.

3. _____, The integral representations of quadratic forms over local fields, Amer. J. Math. 80 (1958), 843-878.

4. A. Trojan, The integral extension of isometries of quadratic forms over local fields, Canad. J. Math. 18 (1966), 920-942.

5. C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms, Math. Ann. 147 (1962), 328-338.

Received May 23, 1969. This research was partially supported by the National Science Foundation.

THE PENNSYLVANIA STATE UNIVERSITY

652