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ON WITT'S THEOREM FOR UNIMODULAR
QUADRATIC FORMS, II

D. G. JAMES

An integral generalization of Witt's theorem for unimodular
quadratic forms over the ring of integers in a local field is
established.

l In the first part of this paper [1] we established a Witt theorem
for unimodular quadratic forms over the rational integers, provided
the signature of the form was sufficiently small. We shall now use
these methods to obtain a similar theorem for arbitrary unimodular
quadratic forms over the ring of integers in a local field in which 2
is a prime. These theorems are important because they enable us to
determine the essentially distinct representations of a quadratic form
by a unimodular form. We hope to expand on this in a later paper.

Let F be a local field in which 2 is a prime, o the ring of in-
tegers in F and u the group of units in o. We need only assume that
the residue class field o/2o is perfect. We preserve as much of the
notation in [1] as possible, but now the underlying ring will be o and
not the rational integers Z. Thus L will be a free o-module of finite
rank, endowed with a bilinear symmetric unimodular form Φ: L x L-+o.
We denote Φ(a, β) by a β. Details on the structure of L are con-
tained in O'Meara [2, 3]. We recall that L is improper if a2e2o for
all a e L; otherwise L is proper.

A vector a e L is called primitive if a — 2/5, with β e L, is im-
possible. As in Wall [5] and our earlier paper [1], the crucial concept
is that of a characteristic vector. We only define these when L is a
proper lattice; in this case L has an orthogonal basis, that is L =
< O Θ # ' Θ < O A vector a — Σ?=i α<£» e L is called characteristic
if its orthogonal complement ζfx}L contains no vectors of unit norm.
If a is primitive, this is equivalent to

a\ζ\ = a)ξ) (mod 2) , 1 ^ i, j ^ n .

Hence, in particular, α̂  e u, 1 ^ i ^ n, and this reduces to the defini-
tion in [1]. If a is a primitive characteristic vector, we define T(μ) e
o/2o by T(a) = α f • (mod 2). This definition is independent of the basis
of L (see also Trojan [4]). If ζccyL is proper, or if L is improper, we
define T(a) = 0; also let T(2sa) = T(ά) for s ^ 0. We shall prove the
following.

THEOREM. Let φ:J—+K he an isometry between the primitive
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sublattices J and K of L. Then φ extends to an ίsometry of L if
and only if T(a) = T(φ(a)) for all aeJ.

When the rank of J is 1, this is the same as Theorem 2.1 of
Trojan [4]. We shall recover this as a special case. For local fields
in which 2 is a unit the theorem remains true, but there is no need
to consider characteristic vectors. Essentially the following proof of
the theorem goes through in a much simpler manner.

2* We first reduce to the case where L has maximal Witt index
(that is, the space FL is an orthogonal sum of hyperbolic planes).
We adjoin a unimodular lattice U to L so that U — L ® U has
maximal Witt index. Thus, if L = H, © . . . © Hm © <&> φ φ <ίs>
where Hlf , Hm are hyperbolic planes, we take U = <d> φ φ
<ζ,> where ζ\ = -£?, 1 ^ i ^ s. Let J ' - J ® U, Kr = K® U and
extend φ to J' by defining φ(ζ^ = ζiβ A similar extension is done if
L is improper, but now U may be taken as an improper lattice (see
the classification of unimodular lattices in O'Meara [3, p. 852]). We
observe that T(a) = T{φ(a)) for all a e J'. If U is improper, this is
trivial. If L is proper (and U Φ {0}), then no vector a e J will be
characteristic in I/. However, new characteristic vectors may be
created. Thus, if a e J is characteristic in L, and T(a) = a (mod 2)
where aeu, then a! — a + Σ =1 ^ ζ , is characteristic in Lr if w {eu
are chosen such that u\ζ\ = a (mod 2). Clearly Γ(α:') - T(φ(a')). If
we prove the theorem for lattices of maximal Witt index, it holds
for L'', and restricting the extension of φ back to L gives the general
result.

We may now assume that L has the form

where Hi = <λ4, /̂ i)>, 1 ^ i ^ m, are hyperbolic planes, and 5 = <£, ^>
where ί2 = c£, ί /0 = 1 and p2 = 0. If L is improper, we may take
cί = 0; otherwise cίeu.

3* The proof will be by induction on the rank r(J) of J. We
consider now r(J) = 1. Let J = <α> and <£>(α) = β e K. Let

Case 1. If a 2 e u , then n (and d) are units. Apply the isometry

θ,: <λ4, ̂ > © <ί, ί>> — <λ,, μ, + .τ^> © <ί - xXi9 ρ>

where x = α ^ e o. Then
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0i(αΛ* + M i + u>ζ + vp) = b{μ{ + %£ + (v + x6i)|O .

After applying a succession of such isometries we may assume a =

ΣΓ=i M< + uξ + ^ . Then

L = <α, β> © <uXL - δi/o, j"i> 0 0 <>λm - bmρ, μm>

and each ζuXi — bφ, μ>? is a hyperbolic plane. Doing the same for
J3, and cancelling hyperbolic planes ([2, 93 :14]), we may reduce to
the case L = ζμy 0 ζμ^ = ζβy 0 <&>, where the result is obvious
by considering the determinant of L.

Case 2. Now suppose a2 g u, but that at least one of ai9 biy 1 ^
i ^ m, is a unit, say αx e u. Then

( 2 ) L = <α

with <α, //^ a hyperbolic plane. If we can also obtain

( 3 ) L = <β

with </9, ^> a hyperbolic plane, then !7 ~ V, and we are reduced to
considering a, β e i ϊ = <λ, //>. Write α = αλ + bμ, β = α'λ + 6'/̂ , where
without loss of generality we can take α, a' en. a2 = /32 implies αδ =
α'δ'. Apply <λ, μy-+ζa'/aX, a/a'μy, to complete the proof.

If L is improper, (3) is clear. If L is proper, (2) shows that a
and hence β are not characteristic vectors. But if all the coefficients
of Xi and μi in β are in 2o, /S would be characteristic (see Case 3).
Hence we can obtain the splitting (3).

Case 3. Finally suppose a2 £ n and all ai9 bt in (1) are nonunits.
We may assume L is proper, u g u and VGU.

<λ*, jt£4> 0 <f, p>-><Xi, μi - 2x(ξ - d̂ >) + 2ώ2λ,> 0 <£, ^

can be used to reduce each coefficient a{ of λ̂  in (1) to zero. Then

L = <a, ς> 0 <61(f - dp) - vXi9 μlf , bm(ξ - d̂ o) - vXm, μm> .

Since <(α, ς> is now isotropic and ζμ, ξyL is improper, it follows that
<α, ς>J is an orthogonal sum of hyperbolic planes, a and /3 are now
characteristic. We therefore have a similar splitting L = </5, f> φ Z7,
with U a sum of hyperbolic planes. Thus we may reduce to the case
L = <f, py with α - 2^f + v^ and β - 2^f + v^. T(a) = T(β) im-
plies v = v, (mod 2). If uju = 1 (mod 2), put c = ^ / ^ e u and apply

sending α into /9. If duj(du + v) = I (mod 2), put c = duj(du +
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and apply <f, p} —> <cf + ldc~ι(l — c2)ρ, 2cd~ιξ — cp}, sending a into
β. Since a2 = /52, we have u2d + uv = u\d + uLv19 from which it follows
that one of these two cases must occur. This completes the proof
for r(J) = 1.

4* Using methods similar to those in [1], we now obtain canonical
embeddings of an image of J in L. We only elaborate on the details
that are substantially different. We assume 2r(J) ^ r(L); if 2r(J) <
r(L) it is clear how to modify the arguments that follow.

Let J = ζalf asy where, by eliminating the coefficients of ζ and
p, we may assume a\ — 2c{ with c{eo for 1 <g i ^ m, and none of
the ai9 1 ^ i ^ m — 1, are characteristic vectors. As in [1], we may
apply isometries to L, and again writing the image of J as

J = ζalf •••,«,>,

obtain

where α^ αy = α i y for i > j . Eliminating the coefficients of \, , λm_i
we may assume

where ζ G fίw © ΰ . If ζ is not primitive, at least one ami is a unit,
say αmfc e u. We now apply the isometry

#2: <λfc> ^ > 0 <λfc+1, μk+ίy 0 0 <λm_,, ^m_,> 0 <ί, ί>> —

<λfc + ckp, μk - py® <Xk+1 + ak+ίtkρ, μk+1> 0 •

0 <λw_! + am_1)kρ, μm^> 0 <ί - cA/ίΛ + λ λ - ak+ιkμk+1

This leaves fixed each α:̂  1 <^ i <: m — 1, but

Use the ai9 1 ^ i ^ m — 1, to eliminate any λ̂ , 1 ^ i ^ m — 1, occurr-
ing in Θ2{am) and obtain a new vector of the form (4), but now ζ is
primitive.

There are now two cases to consider.

Case 1. am not characteristic and (tm e 2o. It is possible that ζ
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is characteristic in HmQ)B. If this is the case, at least one ami is a
unit, and another isometry of the form θ2, but with <(ς, py replaced
by <λm, μmy, will introduce a term amiμm into ζ. We may therefore
assume ζ is not characteristic, and am has the form

(after applying an isometry to Hm 0 B). We may now take

As above (with ζ), we may arrange that uζ + v^ is primitive. First,
assume that u is a unit. Then, changing the basis of <£, jO> to <wj,
u^py, we may assume w = 1. This gives us the canonical embeddiu^
of ζaιy • ••, am+iy we desire; all the coefficients a{j, ct and v are uni-
quely determined by a^aά and a\, 1 ^ i, i g m + 1. If now 2r(J) >
r(L), we eliminate the λ̂  and ζ terms in α:w+2 so that it takes the
form

m

<*m+2 = Σ 6<i"ί + ^

Hence α^+ 2 = 0. If 6fc e u, say, then <α:m+2, aky is a hyperbolic plane
splitting L and J . Its image under φ will be a hyperbolic plane
splitting L and K. Cancelling these hyperbolic planes reduces the
rank of / and we are finished by induction. (The invariants of vectors
in the new J and K will still correspond.) If 6^e 2o and ben, then
am+2 is characteristic. Also ctm+1 am+2 e u. In this case ζam+1, am+2y^ ~
Hi 0 0 Hm (since it is improper with maximal Witt index). We
may now cancel <(μm+1, am+2y with its image and we are again finished
by induction.

Now assume u e 2o and hence ct2

m+ί e 2o. Then changing the basis
of <f, py to ζv^ξ, vpy, we may assume

m

<̂m + l = Σ ^m + lί^i + 2uζ + p .

Notice that a2

m+1 e 4o, so that if any α m + l i is a unit, say am+lk e u, then
^α^, am+iy is a hyperbolic plane. In this case we can cancel and re-
duce the rank of J . Thus we may assume all am+ιί e 2o, so that if L
is proper, am+1 is characteristic. This gives our canonical embedding
of <#!, •••, am+ίy. If now 2r(J) > r(L), we eliminate the X{ and p
terms in <xm+2, so that it takes the form

am+2 = Σ b^i + bξ .
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If ben, then am+1*am+2eu. ζam+1, am+2y is isotropic since we obtain an
isotropic vector by eliminating the ζ term between am+1 and am+2.
Since <xm+1 is characteristic, it follows that

<αm + 1, am+y = H, © 0 Hm .

We may therefore cancel <αm + 1, am+2y with its image under φ and
finish by induction. If b $ u, then a2

m+2 e 4o. If now bk e u,

<^&, α:m+2> = if ,

and may be cancelled with its image. This completes this case.

In summary; we need only consider 2r(J) = r(L) and

J = <a19 , αm+1>

where

'mî i + + amm-iμm-ι + λ m + cmμm

2a m + 1 1 ^ + + 2am+lmμm + 2uξ + p

Um+nPl + + ^m+lm^m + ξ + Vp

according as am+ι is characteristic, or not.

Case 2. am characteristic. Then we may take am = Σ S 1 ««*£** +
ζ where ζ e Hm 0 £. Since αm is characteristic, ami e 2o and hence ζ
is primitive and characteristic. Applying an isometry to Hm 0 B, we
may assume ζ = 2%f + vp, and changing the basis of <£, /9> we may
take v = 1. We may now assume that am+1 has the form

TO — 1

If c e 2o, α^+1 e 2o and αm + 1 is not characteristic. Therefore, this vector
could be used as am in Case 1 and there is no need to consider it
again here. Thus cen.

If neither e nor / are units, apply the isometry

λm, p - 2uXmy 0 <λm, μm- (1 + 2ud)p

- 2u(l +

This leaves am fixed and in α m + 1 changes the coefficient of λm to a
unit. Eliminating any p term between am and αm + 1, we can take

m—1

#m+l = Σ dm+liPi + Cξ + λm + Cm/«m .
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Again, if 2τ(J) > r(L), we may assume am+2 has the form

<*m+2 = Σ M i + &f
i — l

Eliminate the ξ term between am+ι and am+2 to obtain a noncharacter-
istic vector with norm 2a. This could have been taken as our am in
Case 1.

This concludes the investigation of the embedding of J in L.
From now on we consider 2r(J) = r(L), and there are essentially three
embeddings possible, two from Case 1 and one from Case 2.

5* Now assume that J = ζa19 , am+iy has been canonically
embedded in L in one of the above forms. Because of the similarity
with the proofs in [1], we will assume <p(J) = K = ζaly •••, am, /3>,
where φ(a>) — aίf 1 ^ i <̂  m, and φ(am+ί) = /3. We now apply isome-
tries to L that leave «„ , am fixed and send β into α:m+1. This will
complete the proof of the theorem. Only the more involved cases are
considered, the remaining cases may be handled similarly. First
assume

am = amlμx + + amm_^m_y + λm + cmμm

am+1 = 2am+ιlμ, + + 2am+ιmμm + 2nζ + p

so that am+ί is a characteristic vector, β will also be characteristic,
so we may write

β = 2 Σ (&Λ* + d&i) + 2eξ + fp .
* = 1

Since β is primitive, fen; and since T(am+1) — T(β), it follows that
/ ΞΞΞ 1 (mod 2). We apply isometries to L that reduce, in turn, the
coefficients b19 •••, bm to zero. Assume b19 •••, bk_x have been reduced
to zero.1 The isometry

Ofc, μky 0 0 <λm, ^ w > 0 <f, p) -> <λfc + cfca?p, μk - xp>

0 ^ + i + ak+lkxp, μk+iy 0 0 <λm + amkxp, μm>

0 <f - ckxμk + xXjc - ak+lkxμk+1 - . . . - amkxμm

+ ckx
2ρ, p}

leaves a19 , am fixed. However, in β the coefficient of \k is changed
from 2bk to 26^ + 2ex, which can be made zero by choice of x. In this
manner reduce β to a vector with bλ = = bm = 0. Since / = 1
(mod 2), an isometry in ζξ, p) can be found sending 2eξ + fp into

Using a symmetry in ζξ, p), we may assume that e is a unit.
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2uξ + p. This completes the proof in this case.

Finally, we consider the case where aιy * , α w _ i are as above,

<xm = 2XΓ="I1 α«<£*» + 2wf + p and

m—1

ΐ = l

where α m = ^>(α:w) is characteristic and a2

m+ι e u, so that cen. In this

case we may write β = φ(am+1) = ΣΓ=i (M* + d^i) + ef + / ^

β G u. If neither bm nor cϊm is a unit, apply the isometry

λw> |0 - 2uXmy 0 <λm r ^ m + 2uζ

2u(l

Then a19 -- ,am are left fixed, and in β the coefficient of λm be-

comes β — 2uf + 6m + 2u(l + ud)d m G u. Now apply the isometry

x , μ,y © . e <λm_15 //„,_,> e <?, >̂> © <λm, ^ w > ->
<X + cλxμm, μι - xμmy 0 <λ2 + a2ιxμm1 μ2> © ©
<λm_x + am_nxμm, μm_λy © <f, ^ + 2amlxμm> 0
<λm - d ^ i + xλ : - α21xμ2 - . . . - αm_nx/«m_1

x2(cx + 2da2

ml)μm1 μm> ,

which leaves alt •••, α m fixed. The coefficient of λL in /5 changes to

by + ίcδm, and may be made zero. Reduce, in turn, δx, , bm_x to zero.

Finally, apply

my 0
<λm - ^ + 2ux(ζ - djθ) + 2ux2(l + ud)μm,

In /S the coefficient of p becomes / — bmx(l + 2nd), which can be

made zero. We have therefore mapped K onto J. This completes

the proof of the theorem.
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