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ULM'S THEOREM FOR ABELIAN GROUPS MODULO
BOUNDED GROUPS

N E A L HART

Let A be the category of Abelian groups, B the class of
bounded Abelian groups. It is shown that if G and H are
totally protective ^"groups1, then G = H in the quotient
category A/B if and only if there exists an integer k ^ 0
such that for all ordinals a and all integers r ^ 0,

r + k r+2k r + k r+2k

Σ Λ(« + Λ ^ Σ Λ(« + i) and Σ /*(«+*) ^ Σ /G(« + i)
j=A; j=0 j=k j=0

This extends a similar result of R. J. Ensey for direct sums
of countable reduced p-groups. It is also noted that if G and
H are totally projective p-groups, then G is quasi-isomorphic
to H if and only if there exists an integer k ^ 0 such that
for all integers n ^ 0 and r Ξ> 0,

r + k r+2k

Σ Mn + j) s Σ ΛKw + j)
j=k j=0

and
r + A; r+2k

Σ / ^ + i ) ^ Σ Λ ( n + i ) f and fσ(«) = Ma)
for all α ^ ω. This extends a similar result of R. S. Pierce
and R. A. Beaumont for direct sums of countable reduced
p-groups.

Preliminaries, Let A be the category of groups and B the Serre
class of bounded groups. Then A/B is the quotient category as defined
by Grothendieck [5]. The objects A/B are the objects of A.

Horn*,* (G, H) - lim Horn (<?', H/H') ,
(G',H')eD

where D = {Gr, H'\G' ^ G, Jϊ ' S -ff; G/G', IP e £}. D is directed by
(<?', IP) ̂  (G", if") if and only if G" S G' and H' S -ff". For a
thorough discussion of the category A/B, the reader should see either
Ensey [4] or E. A. Walker [9]. From Walker's results, it follows
that G = H in A/B if and only if there exist subgroups S and A of
G, and Γ and 5 of H such that S/A = T/B and G/S, ίί/Γ, A, and
5 are bounded. Two groups G and ϋf are quasi-isomorphic if there
exist isomorphic subgroups S and T of G and i ϊ respectively such
that G/S and ίί/27 are bounded. Then clearly, quasi-isomorphism
implies isomorphism in A/B, and for torsion-free groups, the converse
also holds.

1 From here on, the word group is used to mean Abelian group.
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The following two conditions of Beaumont and Pierce [1] are
used in the next section:

(I) there exists an integer k J> 0 such that for all integers

n ^ 0 and r ^ 0
r + k r+2k r + k r+2k

Σ fain + j)£ Σ Mn + j) and Σ Mn+j) £ Σ fo(n + j)
j = k j = 0 j = k j=0

(II) fG{a) = fH{a) for all a ^ ω.
Here G and H are groups and the notation fG{β) denotes the βth Ulm
invariant of G.

Ensey [4] showed that if G and H are direct sums of countable
reduced p-groups, then G ~ H in A/B if and only if

(III) there exists an integer Jc ^ 0 such that for all ordinals
a and integers r ^ 0

r + k r+2k r + k r + 2k

Σ /β(« + 3) ̂  Σ /fl(α + 3) and Σ /H(« + i) ^ Σ fa(« + i)
i i

Σ
In this paper, EnseyJs result is extended to the class of totally
protective groups. This class may be described as the smallest class
P of p-groups containing a cyclic group of order p and satisfying the
following two conditions:

(a) Gi e P if and only if Σ ί 6 j Γ G, e A
(b) For any ordinal a,GeP if and only if paG and G/paG are

in P. Full use is made of the fact that P. Hill [7] has recently
proved that Ulm's Theorem holds for totally protective groups and
that he has shown that there exists a totally protective group G
with Ulm invariants fG(a) if and only if

Σ fo<β)7£ Σ
β ) β

for each n < co and each a < τ(G), where τ(G) denotes the type of
G, defined below. These two results are referred to as "HilFs
Uniqueness Theorem" and "Hill's Existence Theorem," respectively.

It should be noted that the results of this paper follow equally
well from the uniqueness and existence theorems of P. Crawley and
A. Hales [3].

All groups considered are reduced p-groups for a fixed prime p.
τ(G) denotes the type of G, the smallest ordinal τ such that Gr = 0;

Ga = pωaG. Q& = Qa/Ga+\ the αth Ulm factor of G. The notation
d.s.c, adopted from R. Nunke [8], stands for a direct sum of countable
reduced p-groups.

2* Ulm's Theorem in A/B. The following theorem is an ex-
tension of a theorem of Beaumont and Pierce [1] from the class of
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d.s.c. groups to the class of totally protective groups, which follows
immediately from results of Nunke [8] and Hill [6], [7].

THEOREM 1. Let G and H be totally projective. Then G is
quasi-isomorphic to H if and only if G and H satisfy conditions (I)
and (II).

Proof. It was shown in [1] that if G and H are arbitrary
p-groups, then (I) and (II) hold if G is quasi-isomorphic to H. In
[6], Hill proved that if G and H are p-groups such that GfpωG and
H/pωH are direct sums of cyclic groups then (I) and the condition
that pωG ~ pωH are necessary and sufficient conditions in order that
G is quasi-isomorphic to H. If G and H are totally projective, then
G/pωG and H/pωH are direct sums of cyclic groups and since (II) and
Hill's Uniqueness Theorem imply pωG ~ pωH, the theorem is proved.

DEFINITION. (Ensey, [4].) Let {Ga}aeI and {Ha}aeI be two families
of groups indexed by the same set /. These families are uniformly
quasi-isomorphic if there exists an integer k ^ 0 and for each a el,
subgroups Sa £ Ga, Ta e HΛ such that pkGa C Sa, pkHa S Ta, and
Sa = Ta.

The following lemma relates this concept to that of isomorphism
in A/B for totally projective groups.

LEMMA 2. Let G and H be totally projective. If G = H in
A/B, then the corresponding Ulm factors of G and H are uniformly
quasi-isomorphic.

Proof. Ensey [4] has shown that for any reduced p-groups G
and H such that G = H in A/B, (I) holds for Ga and Ha with the k
of (I) the same for all a. Since Ga = pωaG/pω{a+1)G, and pωaG is
totally projective, it follows that Ga and Ha are direct sums of
cyclic groups. This being the case, Ensey [4] has shown that the
corresponding Ulm factors of G and H are uniformly quasi-isomorphic.

That the converse of Lemma 2 also holds is the content of the
next two lemmas and the succeeding theorem. The notation fr(G)
is used to denote the final rank of G. Recall that if the rank of G
is denoted r(G), then by definition, fr(G) = min%<ω r(pnG). All re-
ferences to Ensey refer to [4].

LEMMA 3. Let G be totally projective and τ(G) = τ. For a < τ,
let Ga = Sa® Ta where fr{Ta) = fr(Ga). Let H be totally projective
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such that for all a < τ, Ha = pkSa 0 Ta for some fixed integer
k^O. Then G ~ H in A/B.

Proof. Since HilΓs Existence Theorem is used several times in
this proof, it seems advisable to translate his condition from the
setting of Ulm invariants to that of Ulm factors, their ranks and
final ranks. The Ulm invariants of Ga are the Ulm invariants
of pωaG for n < ω. But fpωaG(n) = fG(ωa + n). Thus fβa(n) =
fG(ωa + n), n < ω. Therefore r(Ga) = Σ«β̂ <»<«+i> fσ(β) and fr(Ga) =

Σ fa(β) Hence Hill's condition can be written fr(Ga) ^Σ
Έi*<β<r r(Gβ). Thus such an H exists and since fr(Ta) = fr(Ga), Ta can
be broken up in the following way: Ta = Σa<β<vGaβ where fr(Gaβ) =
fr(Ga). Again by HilΓs Existence Theorem, there exist totally pro-
jective groups {La}a<τ with Ulm factors (La)β = Gβa for all β < a; (La)a =
Sa] and (La)β = 0 for all β > a. Since the class of totally protective
groups is closed under taking arbitrary direct sums, ^a<TLa is totally
protective, and thus G = Σ«<r^α by Hill's Uniqueness Theorem since
they have the same Ulm factors. For all a < τ, let Ma = LaILa

a[pk\.
Ensey has shown that for any reduced p-group G, (G/A)β = Gβ/A for
all β ^ 7 whenever A S G r. Hence pω αMα = (Lα/L2[pfc])α = La

a/La

a[pk] =
pkLa

a, and since La is totally projective, pωaMa is totally protective.
Using the same result of Ensey's, MJpωaMa = (LJLa

a[pk])/(LaJLa

a[pk]) =
LJLa and hence MJpωaMa is totally projective. Therefore Ma is
totally projective. Ensey has also shown that for any reduced p-group
G, ordinal a and integer k ^ 0, G/Ga[pk] has Ulm factors Gβ for
β Φ a and pkGa/Ga+1 for β = a. Thus Λfα has Ulm factors (La)β for
/S ̂  a and (ilfβ)β = pkL«/L«+ι ~ pk(La)a = p fcSα. Let M = Σ*<τM« and
A = Σ«<r^«[pfc] Then ikf is totally projective and since G = Σ«<r La,
G/A = Λf. Ensey has shown that K ~ L in A/S if and only if there
exists a bounded subgroup B Q L such that if is quasi-isomorphic to
L/B. Therefore G ~ M in A/B since A is bounded. But since M
has the same Ulm factors as H, M ~ H in A/B by Hill's Uniqueness
Theorem. Therefore G = H in 1/JB.

LEMMA 4. Lei G be totally projective, τ(G) = τ, and for a < τr

let Ga = Sa 0 Tα. Lei £Γ δe totally projective such that for all
a < τ, i ί α = p ^ 0 Tα /or some fixed integer k :> 0. TΛew G = H
in A/B.

Proof. Such an if exists by Hill's Existence Theorem. Let

I i = z { a < T \ fr( Ta) = /r(Gα)}, I2 = {a<τ\ fr( Ta) < fr(Ga)}. For a e I2,
/r(Sα) - fr(Ga). Thus, let Sα - S'a 0Sίf where fr(S'a) = /r(Si') - /r(Sα).
Let H' be totally projective with the following Ulm factors: H'a =
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PkSa 0 Ta for all a e I,, H'a = pkS'a 0 Sϊ 0 Ta for all a e I2. Such an
Hr exists by HilΓs Existence Theorem. By Lemma 3, G ~ Hf in
A/B and H' ~ H in A/B. Therefore G ~ H in i

THEOREM 5. Lβ£ G and H be totally projective. Then G = H in
A/B if and only if the corresponding Ulm factors of G and H are
uniformly quasi-isomorphic.

Proof. Suppose the corresponding Ulm factors of G and H are
uniformly quasi-isomorphic. Without loss of generality, it can be
assumed that τ(G) = τ(H) = τ. Suppose τ(G) = τ, τ(H) >̂ r + 1.
Since Hτ is quasi-isomorphic to Gτ = 0, HT is bounded and thus
τ(H) = τ + 1. ̂  Since Hr is bounded, G = H in A/B if and only if
G ~ H/Hτ in A/B. H/Hτ has type τ and is totally projective by the
description given previously. Moreover, the corresponding Ulm factors
of G and H/Hτ are uniformly quasi-isomorphic since the Ulm factors
of H and H/Hτ agree except at the rth place. By uniform quasi-
isomorphism, there exists an integer k ̂  0 and for each a < τ, sub-
groups Sa S Gα, Ta S Ha such that phGa S Sa, pkHa S Tβ, and Sα s
Ta. Thus for each α < r, (I) holds for Ga and Ha. D. Bertholf [2]
has shown that if this is the case, then for all a < v, Ga =
Ga>0 0 0 GaΛh and Ha - Ha,Q 0 . . . 0 Ha,2k where pfeG«,0 = Ha^
Ί>k~ιGa,ι = ίf«,iJ > Gα,fc = fl"α,jfc, Ga,k+ι = pHa,k+ι, , Gα,2A; = pkHaf2fc. B y

applying Lemma 4.2A; times, G = ίΓ in A/B is verified. The converse
is Lemma 2.

THEOREM 6. Lei G αwd i ϊ δβ totally projective. Then G ~ H
in A/B if and only if (III) is satisfied.

Proof. Suppose (III) holds. Then there exists a i ^ O such t h a t

for each a and integers r >̂ 0 and n ^ 0,

Σ / * > + i) = Σ Λ(ωα + w + i) ̂  ΈfAωa + n + j)
3=k j=k j=0

r+2k

= Σ /ffβ(Λ + 3) ,
3=0

and similarly, ^ilfHa(n + i) ̂  Σ ί i S V ^ + i) Therefore Gα and
£Γα satisfy (I) for all a and a fixed k. If this is the case, Ensey has
shown that the corresponding Ulm factors of G and H are uniformly
quasi-isomorphic. Therefore, by Theorem 5, G = H in A/ί?. Ensey
has shown that the converse is true for arbitrary reduced p-groups.

COROLLARY 7. Let G and H be totally projective, a any ordinal.
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Then G ~ H in A/B if and only if paG ~ paH in A/B and G/paG s
H/paH in A/B.

Proof. Ensey has shown that if G and H are any reduced
p-groups and if G = H in A/B, then paG = paH in A/B and G/paG ~
H/paH^ in A/B. Now suppose paG = paH in A/B and G/paG = H/paH
in A/B. Without loss of generality, it can be assumed that a is a
limit ordinal. If not, then a = β + n where β is a limit. But if
pαG = paH in A/B, then pβG ~ pβH in A/B, and if G/pαG = H/paH in
i/B, then G/p^G = H/pβH in i / S . This follows since a and /3 differ
by a finite ordinal and hence pβG/paG is bounded. Now assuming a
is a limit ordinal, the Ulm sequence of G is precisely that of G/paG
followed by that of paG; that is, the Ulm sequence of G is fGιPaG(Q),
foipaad), , fσi,aσ(β), for all β < a followed by ./WO), Λ«G(1),
Now pαG, paH, G/paG, and H/paH are all totally projective, so by
Theorem 6, there exist k, ̂  0 and fc2 ̂  0 such that the inequalities
in condition (III) hold for paG and paH, and G/paG and H/paH.
Therefore, letting k = max (k19 k2), condition (III) holds for G and H
and hence G ~ H m A/B by Theorem 6.

BIBLIOGRAPHY

1. R. A. Beaumont and R. S. Pierce, Quasi-isomorphism of p-groups, Proceedings of

the colloquium on Abelian groups, ed. by L. Fuchs and E. T. Schmidt, Budapest,

1964, 13-27.

2. D. Bertholf, Isomorphism invariants for quotient categories of Abelian groups,

Thesis, New Mexico State University, 1968.

3. P. Crawley and A. Hales, The structure of Abelian p-groups given by certain

presentations, J. of Algebra 12 (1969), 10-23.

4. R. J. Ensey, Isomorphism invariants for Abelian groups modulo bounded groups,

Pacific J. Math. 24 (1968), 71-91.

5. A. Grothendieck, Sur quelques points d'algebra homologique, Tohoku Math. J. 9

(1957), 119-221.

6. P. Hill, Quasi-isomorphism of primary groups, Michigan Math. J. 13 (1966),

481-484.

7. , On the classification of Abelian groups (to appear)

8. R. J. Nunke, Homology and direct sums of countable Abelian groups, Math. Zeit.

101 (1967), 182-212.

9. E. A. Walker, Quotient categories and quasi-isomorphisms of Abelian groups,

Proceedings of the colloquium on Abelian groups, ed. by L. Fuchs and E. F. Schmidt,

Budapest, 1964, 147-163.

Received December 4, 1969. The results of this paper were part of a doctoral

dissertation completed in May 1969 under Professor Elbert A. Walker at New Mexico

State University. The work was partially supported by NSF Grant GP 6564.

UNIVERSITY COLLEGE, NAIROBI




