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ON A CLASS OF NORLUND MEANS AND
FOURIER SERIES

H. P. DIKSHIT

By considering a class of Nδrlund means that covers as
a subclass the corresponding (C) means, we obtain in the
present paper, several results concerning absolute Nδrlund
summability and deduce from these the corresponding | C |
results as special cases. What is indeed remarkable, is that
a special case of our Theorem 2 improves an earlier result
due to Bosanquet and Hyslop in dropping one of the two
independent conditions used by them. Further, the proofs of
some of our results are shorter and even more direct than
the proofs given for the corresponding special cases by using
equivalent Riesz means instead of (C) means.

1* Definitions and notations* Let Σn vn be a given infinite
series with the sequence of partial sum {sn}. We shall consider

sequence to sequence transformations of the type

oo

tn = Σ dnksk; dnk = 0 for k > n

in which the elements of the matrix D = ζdnJJ) are real or complex

constants. tn is called the n-ίh D-mean of {sn}.

Let {pn} be a sequence of constants, real or complex and let

pn = p0 + pλ + . . . + pn Φ 0, P_γ = p_i = 0. Then the matrix D de-

fines a Norlund matrix (N, p), if

dnk = pn-k/Pn , n ^ k ^ 0 .

In the special case in which

(n + a ~ X\ - Γ ^ n + α ) σ =£ 1 2

the (N, p) mean reduces to the familiar (C, a) mean.

The (N, p)(C, 1) matrix is defined as the product of a (N, p)

matrix with the (C, 1) matrix. Thus the (N, p)(C, 1) mean of {sn} is

Similarly, one defines the (C, ΐ)(N, p) mean [5].
Let f(t) be integrable (L) in ( — π, π) and periodic with period 2π.

We assume as we may without any loss of generality that
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f(t) ~ Σ (α. cos nt + bn sin nt) = Σ An(t) .

Then the conjugate series is

Σ (6% cos %£ — an sin wί) = Σ Bn(t) .

We shall also consider the series

Έ-\tAk(t) - s\ = Σ^ΛUt) ,
n U U- l J n

where s is an appropriate number, independent of n.
Throughout the present paper we write La(t) for the series

Σn rc*An(ί), I>(ί) for Σnn*Bn(t), (α ^ 0), L*(ί) for Σ»-4ί(<) and J ^
for the class {La(t), La(t), L*(t)}.

Let Ef be a point set in the interval ( — π, π) for each function
f(t) and such that at every point x e Ef1 f(x) has a finite definite value
and satisfies a prescribed condition of regularity.

DEFINITION 1. A method of summation D = idnkj) is said to be
I A(x), Ef {-effective, if for each xeEf

Σ I tn(A(x)) - ίn-ΛAία)) l < - ,

symbolically, {ίΛ(A(a;))} e ΰ F ; where ίn(A(a?)) denotes the wth D-mean
of A(x) G

We write

Φ(t) - -|{/(» + t) + /(a - ί)} ^*(ί) - ^(ί) - s

α > 0 Φ0(ί)Γ(a)

- Γ(a + l)rαΦα(έ), α ^ 0

= \{f& + t) - f{x - t)} ,

Ψa(t) and ψa(t) have similar meanings.

[a;] denotes the greatest integer not greater than x.
By 'F(t)eBV(a, b)\ we mean that F(t) is a function of bounded

variation in (α, 6) and by '{λj e 2?' that {λj is a bounded sequence.
K denotes a positive constant, not necessarily the same at each

occurrence.
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DEFINITION 2. For some a ;> 0, the point x is said to be
( i ) \Fa\- regular, if φa(t) eBV(0, π),

(ii) \Fa\- regular, if Wa( + 0) = 0 and ί V α | dΨa(t) | ^ K,

(in) I Fa I - regular, if I V α | d^(ί) | ^ if,
Jo

(iv) I Fa I - regular, if f ( + 0) = 0 and ί V α | dψ(ί) | ^ if,

( v) I i^* I - regular, if 1V11 dφ*(t) | ^ if,
Jo

(vi) \F*\- regular, if (V 1 1 ψ(t) \dt ^ K.
Jo

Denoting the set of ] X \ — regular points with respect to f(t) in
(-7Γ, π) by E\X, f\, we know the following ([14], §13.24)

(1.2) E\F*,f\<£E\P0,f\ and E\ Fo, f | φ E\ F*, f I1 .

DEFINITION 3. A method of summation, which is | A(x), Ef \ —
effective is said to be

( i ) I Fa\ - effective, if A(x) = L\x) and Ef = E\Fa,f\;
(ii) \Fa\ - effective, if A(x) = L\x) and Ef = E\Fa,f\;

(iii) I Fa

(iv) I Fa

- effective, if A(α ) = Lα(x) and Ef = E\Fa, f\
— effective, if A(x) = La(x) and Ef = E\Fa, f\

( v ) lί 7*! — effective, if A(&) = L*(») and Ef = E\F*, / |
(vi) absolute a-effective or | α: {-effective, if it is effective in the

sense of (i)-(iv) simultaneously.

The following notations will be used throughout. If for n =
0, 1, 2, . . .

Pn > 0, Vn + llVn ^ Pn+2/Pn + l ^ 1 ,

then we shall write {pn} e M. If {pn} e M and for some a,

(1.3) pfcf;_

then we write {pn} e Ma.
For a given series w = X B i;̂ ,

We also write

1 I.e., xeE\F*,f\ does not imply that x6E\Fo,f\ and conversely.
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2 n

h(n, ί) = — Σ Vn-k exp (ikt) ,
π k=o

H(n, u) = — - i \\t - u)-*4-h(n, t)dt ,
Γ(l - α) J« dt

g(n, t) and #(n, t) for the imaginary and real parts respectively of
h(n, t). J(n, u) (or J(n, u)) is H(n, u) with h(n, t) replaced by g(n, t)
(or g(n, t)). Further

V(n, u) =
Γ(l + a)

2* Introduction* Concerning | α | — effectiveness of the (C)-
method we have the following result which is known to be the best
possible in the sense that it breaks down if 8 = 0.

THEOREM A. If 0 < a < 1, ίfeew (C, α: + δ) /or any 3 > 0 is
— effective.

Starting with the proof of \Fa\ — effectiveness of (C, a + δ)
given by Bosanquet [1] in 1936, Theorem A has been completed in
stages by different authors. Thus \Fa\ — effective part of Theorem
A is due to Bosanquet and Hyslop ([2], Th. 2) and \Fa\ and \Fa\ -
effective parts are due to Mohanty ([11], Th. 1 and Th. 2). It is
somewhat peculiar to observe that Theorem A may be extended to
cover the case a = 0, as far as | Fa | or | Fa \ — effective parts are
concerned but for \FQ\ or equivalently | ^° | — effectiveness of the (C)
method, Bosanquet and Hyslop ([2], Th. K, with a = 0) require an
additional condition that x is | F * | — regular also, in the following.

THEOREM B. If x is \F*\ — regular, then the (C, δ) method is
I ̂ o I — effective for each δ > 0.

The condition that x is \F*\ —regular is independent of the
condition that x is | Fo \ — regular in view of (1.2).

In Theorem 1 of the present paper we prove | a | — effectiveness
(0 < a < 1) of a (iV, p) method which covers the corresponding (C)
method as a special subclass and deduce the various results of
Theorem A as particular cases of our Theorem 1. What is indeed
remarkable is that in Theorem 2, we have succeeded in extending
Theorem 1 to the case a — 0 by proving \F0\ — effectiveness of the
(N, p) method, even without using the hypothesis that x is a | F * —
regular point. Thus the following special case of Theorem 2 im-
proves Theorem B in dropping the condition that x is a \F*\ —
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regular point.

THEOREM C. The (C, S) method is \ Fo \ — effective for every
δ>0.

Covering as a special case, an earlier result due to Mohanty
and Mohapatra ([12], Th. 3) we prove in Theorem 3, | . F * | - effec-
tiveness of the (N, p) method and thus demonstrate that the | N, p |
of L*(x), is a local property of its generating function [6].

It may be observed that the proofs of some of our theorems are
shorter and even more direct than the proofs given in support of
the corresponding special cases by using equivalent Riesz methods
instead of the (C) — methods.

3. We prove the following.

THEOREM 1. // 0 < a < 1 and {pn} e Ma, then (N, p) is \ a \ -
effective.

THEOREM 2. //{pn} eMQ, then (N, p) is \FQ\ and \F0\ — effective.

THEOREM 3. If {pn} e Mo, then (N, p) is \F*\ — effective.

4. Some preliminary results* We need the following lemmas,
of which Lemma 1 is the same as Theorem 6 of Das [3].

LEMMA 1. If {pn} e M, then a necessary and sufficient condition
that {tn(v)} eBV, for a given series Σ%vn is that

Σ 1 σn(v)

where tn(v) is the n-th (N, p) mean of Σn Vn

LEMMA 2. If {pn} is a nonnegative monotonic nonincreasing
sequence, then for any n and 0 ^ a ^ b

_Z pk exp i(n — k)t i_
k — a

uniformly in 0 < t ^ π.

Lemma 2 is given in McFadden [10].

LEMMA 3. 1/ {pn} is a positive nonincreasing sequence, then
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0{naPn) , for all u ,

0 ( ^ α P [ 1 / % ] ) , for u ^ ^ .
n

Proof. We write

Γ(l - a)H{n, u) = \\ + I Ut - u)-a—h(n, t)dt
Uiί Ju + HIn)) dt

say. If u ^ 1/w, then by Abel's Lemma and Lemma 2,

(1/n\t - u)~anPίl/t]dt ^ Kn*Pίl/ul ,

since {PJ is nondecreasing. Next, we have

jLh(n, t)dt
in) dt

u + — < η < π
n

^ Kn"Pίli%1 ,

by virtue of Lemma 2.
This proves the second part of the lemma. The other part

follows by a similar reasoning when one observes that

n-kk exp (ikt) £ KnPn .

LEMMA 4. If {pn} is a positive monotonic nonincreasing sequence,
then

V(n, u)
(O(nauaPn) for all u

\θ(na) + O(nauaPίilul) for u ^ — .
n

For the proof of Lemma 4, reference may be made to ([9],
p. 265).

5. Proof of Theorem !• (I) | Fa \ — effectiveness: We have

and

nAn(x) - Ά\φ(t)— sin ntdt
π Jo dt

σn{L\x)) = [φ(f)A-g(n, t)dt .
J dt

As in ([1], proof of Theorem 1), on integration by parts, we get
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σn(L\x)) = Φa{π)J(ni π) - φa{π)V(n, π) + \'v(n, u)dφa(u) .
Jo

Thus, by Lemma 3

σn(L°(x)) = O(n«) - φa(π)V(n, π) + \*V(n, u)dφa(u) .
Jo

If in particular, we suppose φ(t) = 1 for all t, in which case φa(t) = 1
for all t and σn(L°(x)) = 0 for every n, we obtain

0 = O(n*) - φa(π)V(n, π)

and therefore

σn{L\x)) - O(na) + [v(n, u)dφa{u) .
Jo

Thus,

±J—\σn{L\x))

since by hypothesis \ | dφa(u) \ <̂  iΓ and by Lemma 4,
Jo

Σ -4-1 ^ ( ^ ") I ̂  ^ β Σ n*-1 + K{i + ^P[1/M]} Σ
^ ! / >i/

Σ « n Pn

by virtue of the hypothesis that {pn} e Ma.
This completes the proof of \Fa\ — effective part of Theorem 1,

when one appeals to Lemma 1.
(II) I Fa I — effectiveness: We have

2 fA f/,χ d . c o s n t d t

π Jo

and therefore

σn(L°(x))= - jV(ί)A£

As in ([2], proof of Theorem 2), we have

σn(L%x))= -[~4τ

/ (1 — α)

= - [*J(n, u)dΨa{u) .
Jo

Γ(1 — α)Jo

[dΨa(u)[(t - u)-«-4τd(n>
Jo ju dt
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I Fa I ~ effectiveness of the (N, p) mean now follows from Lemma
u~a\ dΨa(u) I ̂  K, when we observe that

0

"uniformly in 0 < u ^ π

a Σ v) \^
»>i/« n aPn

by virtue of Lemma 3 and the hypothesis that {pn} e Ma.
(Ill) I Fa I — effectiveness: Integrating by parts, we have

na+1An(x) = — f
π Jo

cos = -—[*n" am ntdφ(f) .
7Γ Jo

Thus

I ^ α I — effectiveness, of the (N, p) mean now follows from Lemma
t~a\ dφ(t) I ^ K, when one observes that

0

uniformly in 0 < t ^ π

1
Σ Pn-kkα sin

^ κtα+ί

^ if +

ί-Σ^h max Σ PΛ sin (% —

by Abel's lemma, Lemma 2 and the hypothesis that {pn} e Mα.
(IV) I Fα I — effectiveness: Integrating by parts and observing

that τK + O) = 0, we have

nα+1Bn(x) = —
+1 sin

2
= ——ψ(π)nα cos W7Γ +

π 7Γ Jo
cos ntdψ(t) .

Thus

CO

Σ
7Γ ( CO 1

iΣ—
0 U = l ^ P

Σ 2v-*&a

Σ P - * * α cos fcί

I Fα I — effectiveness now follows from Lemma 1 and the hypothesis
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that ^ K, when one observes that uniformly in 0 < t ^ π

1
Σ Pn-kk" COS kt

1

^ iί + κtaP[ίlt] Σ —-—

max cos (w -

by Lemma 2 and the hypothesis that {pn} e Ma.
(V) IF* I — effectiveness: This follows from the result of Theorem 3,

when one observes that {pn} e Ma, a < 0, implies {pn} e Λf0.
This completes the proof of Theorem 1.

6. Proof of Theorem 2. It may be observed that the proof
of I Fa I — effectiveness, given in the preceeding section remains valid
even for the case a — 0 and therefore the (N, p) method is \ F° \ or

equivalently effective.
In order to prove \ FQ\

tion by parts we get

Bn{x) = —(
π Jo

" cos wί

effectiveness, we observe that on integra-

ntdt = - — Γ 1 ~
J n

7Γ Jo n
•dψ(t) ,

since γ(π) = ψ(0) = 0.
Thus, we have (cf. [13])

, ί>n-ife(l - cos kt) \df(t) ,

or

\ JoU=o
cos kt\dψ(t) ,

and

Σ Pn~k(l - cos Σ

say. I Fo \ — effectiveness of the (N> p) method now follows from

Lemma 1 and the hypothesis that \ | dψ(t) \ ̂  K, when one observes
Jo

that uniformly in 0 < t ^ π
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Zlγ ^ JΛ.0 S I IV — •£*• y

since 11 — cos kt | ^ /c2ί2 and

by virtue of Lemma 2 and the hypothesis that {pn} e Mo.
This completes the proof of Theorem 2 (cf. [7]).

7- Proof of Theorem 3, We have ([14], §13.2)

—
π Jo

Thus

—)t/$m—t)dt .
2 / 2 J

I ^ * i — effectiveness of the (N, p) method now follows from

Lemma 1 and the hypothesis that \ t~ι \ φ*(t) \dt ^ K, when*|we observe
Jo

that uniformly in 0 < t 5ί π

1

1 +

by virtue of Lemma 2 and the hypothesis that {pn} e Mo.
This completes the proof of Theorem 3.

8* Remarks* Corresponding to our Theorem 2, we have an
earlier result of Hille and Tamarkin ([8], Th. II) for ordinary (JV, p)
summability of L\x) which states that under certain condition on
φ(t) the hypothesis

(8.1) eB

is both necessary and sufficient for (N, p) summability of L\x), if
{pn} is a positive monotonic nonincreasing sequence. The intrinsic
character of the hypothesis {pn} e Mo of Theorem 2, emerges from
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the above result when one observes that the condition (8.1) implies
that

* = » kPk

= κ > ^ - l , 2,

This follows from a recent paper of the author ([4], p. 168).
The claim that the corresponding (C) method results, reduce to

special cases of our theorems, follows when we observe that

n + β -

β-1

and appeal to a well known inclusion relation for the absolute
(C)-method.

Recently | Fx \ - effectiveness of (N, p)(C, 1) and (C, ΐ)(N, p)
methods have been proved by the present author.
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