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ON A CLASS OF NORLUND MEANS AND
FOURIER SERIES

H. P. DIKSHIT

By considering a class of Norlund means that covers as
a subclass the corresponding (C) means, we obtain in the
present paper, several results concerning absolute Norlund
summability and deduce from these the corresponding |C |
results as special cases, What is indeed remarkable, is that
a special case of our Theorem 2 improves an earlier result
due to Bosanquet and Hyslop in dropping one of the two
independent conditions used by them. Further, the proofs of
some of our results are shorter and even more direct than
the proofs given for the corresponding special cases by using
equivalent Riesz means instead of (C) means.

1. Definitions and notations. Let >, v, be a given infinite
series with the sequence of partial sum {s,}. We shall consider
sequence to sequence transformations of the type

Ms

tn - dnksk; d%k - 0 fOI‘ k > n;

£
1t

0

in which the elements of the matrix D = (d,,) are real or complex
constants. ¢, is called the n-th D-mean of {s,}.

Let {p,} be a sequence of constants, real or complex and let
P,=p,+p, ++++0,#0,P_,=p_,=0. Then the matrix D de-
fines a Norlund matrix (N, p), if

dnk:pn—k/Pns nngO'

In the special case in which

_(n+a—-1\_ I'n+a 1. —9 ...
(1.1) pn“( oa—1 >‘F(n+1)r(a)’ai 1’ 2’ ’

the (I, p) mean reduces to the familiar (C, &) mean.
The (N, p)(C,1) matrix is defined as the product of a (IV, p)
matrix with the (C, 1) matrix. Thus the (V, p)(C, 1) mean of {s,} is
1 & 1 <

tn: n—r S .
Pnrg‘op ')”+1kz=:o k

Similarly, one defines the (C, 1)}(V, p) mean [5].
Let f(t) be integrable (L) in (—=, w) and periodic with period 2.
We assume as we may without any loss of generality that
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ft) ~ i‘, (a, cosnt + b, sinnt) = >, A,.(t) .
Then the conjugate series is
i (b, cosnt — a, sin nt) = >, B,(t) .
We shall also consider the series
1(& *
DRSPIWHOREIES WHOY
n N k=1 n

where s is an appropriate number, independent of x.

Throughout the present paper we write L*(t) for the series
3. n2A,(t), L«t) for 3, n*B,(t), (@ = 0), L*(t) for 3, AX(t) and &
for the class {L(t), L*(t), L*(t)).

Let E; be a point set in the interval (—m, m) for each function
f(t) and such that at every point x € E,, f(x) has a finite definite value
and satisfies a prescribed condition of regularity.

DEFINITION 1. A method of summation D = (d,,) is said to be
| A(x), B, |-effective, if for each x e K,

St (A®) = ta_(A@) ] < o,

n=1

symbolically, {t.(A(x))} e BV; where t,(A(x)) denotes the nth D-mean
of A(x)e ..

We write

ma=%vw+w+ﬂx—m;wm=mn—u

-

mw=7%ﬂp—MHWMma>o;ww=wn

Bu(t) = I'(a + 1)I7°D,(t), a = 0 ;
W0=%U@+ﬁ—ﬂx—m,
¥, (t) and +.(t) have similar meanings.

[#] denotes the greatest integer not greater than .

By ‘F(t)e BV(a, b)’, we mean that F(¢) is a function of bounded
variation in (a, b) and by ‘{\,} e B’ that {\,} is a bounded sequence.

K denotes a positive constant, not necessarily the same at each
occurrence.
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DEFINITION 2. For some a = 0, the point 2 is said to be

(i) |F,|— regular, if ¢.(t) e BV(0, 7),

(ii) |17’a| — regular, if ¥,(+0) = 0 and Slt—“ [dT(t) | = K,
0

(ii) |Fe| — regular, if g:t—“{dgé(t)l < K,
(iv) |F*| — regular, if ¥(+0) = 0 and S:t—“ |dy(t)| < K,
(v) | F*| = regudar, it | td"0)| < K,
i) | EF*| — regular, if S:t*‘ () |dE < K.

Denoting the set of | X| — regular points with respect to f(t) in
(—m, ) by E|X, ], we know the following ([14], §13.24)

(1.2) E|F* fI ¢ E|F, f| and E|F, f|¢ EIF* f|'.

DEFINITION 3. A method of summation, which is | A(z), E,| —

effective is said to be

(i) |F,| — effective, if A(x) = L%x) and E, = E|F,, f|;

(ii) | F,| — effective, if A(x) = L'(x) and E, = E|F,, f|;

(ii) | F«| — effective, if A(x) = L*x) and E, = E|F*, f];

(iv) | F~| — effective, if A(x) = L*x) and E, = E|F*, f|;

(v) |F*| — effective, if A(x) = L*(x) and E, = E|F*, f|;

(vi) absolute a-effective or |« |-effective, if it is effective in the
sense of (i)-(iv) simultaneously.

The following notations will be used throughout. If for » =
0,1,2 ---

pn > O! pn—l—l/pn g p’n+2/pn+1 g 1 ’

then we shall write {p,} e M. If {p,} e M and for some «,

oo

(1.3) Py —L < gie, E=1,2 -
= N'"*P,

then we write {p,} € M,.
For a given series v = >, v,,

O',,,(’U) = kz:'gpn_kk'vk .

We also write

1 1e., erlf'*,f] does not imply that x€ E | Fb, f| and conversely.
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hin, t) = —721_ k}i] Do_i, €XD (tkt) ,
1 = ad
y = e——— — —a-— y ’
H(n, u) = Fi L(t u) dth(n t)dt

g(n, t) and §(n, t) for the imaginary and real parts respectively of
h(n, t). J(n, w) (or J(n, w)) is H(n, w) with h(n, t) replaced by g(n, )
(or g(n, t)). Further

1 (. d
cu) = —2 (" L g, vydo .
Vi %) = rim So” (O

2. Introduction. Concerning |a| — effectiveness of the (C)-
method we have the following result which is known to be the best
possible in the sense that it breaks down if ¢ = 0.

THEOREM A. If 0 <a <1, then (C,a + 0) for any 6 >0 1is
|| — effective.

Starting with the proof of |F,| — effectiveness of (C, a + 0)
given by Bosanquet [1] in 1936, Theorem A has been completed in
stages by different authors. Thus |F,| — effective part of Theorem
A is due to Bosanquet and Hyslop ([2], Th. 2) and |F<| and | F<| —
effective parts are due to Mohanty ([11], Th. 1 and Th. 2). It is
somewhat peculiar to observe that Theorem A may be extended to
cover the case a =0, as far as |F,| or | F'*| — effective parts are
concerned but for | F,| or equivalently | F°| — effectiveness of the (C)
method, Bosanquet and Hyslop ([2], Th. K, with a« = 0) require an
additional condition that x is | F'*| — regular also, in the following.

THEOREM B. If « is |F'*| — regular, then the (C, ) method is
| Fy| — effective for each 6 > 0.

The condition that « is |F*| — regular is independent of the
condition that « is | F,| — regular in view of (1.2).

In Theorem 1 of the present paper we prove |« | — effectiveness
0 <a<1) of a (N, p) method which covers the corresponding (C)
method as a special subclass and deduce the various results of
Theorem A as particular cases of our Theorem 1. What is indeed
remarkable is that in Theorem 2, we have succeeded in extending
Theorem 1 to the case a = 0 by proving |F,| — effectiveness of the
(N, p) method, even without using the hypothesis that « is a | F*| —
regular point. Thus the following special case of Theorem 2 im-
proves Theorem B in dropping the condition that z is a |F*| —
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regular point.

THEOREM C. The (C, d) method 1is ]F‘ol — effective for every
0> 0.

Covering as a special case, an earlier result due to Mohanty
and Mohapatra ([12], Th. 3) we prove in Theorem 3, |F*| — effec-
tiveness of the (N, p) method and thus demonstrate that the | N, p|
of L*(x), is a local property of its generating function [6].

It may be observed that the proofs of some of our theorems are
shorter and even more direct than the proofs given in support of
the corresponding special cases by using equivalent Riesz methods
instead of the (C) — methods.

3. We prove the following.

THEOREM 1. If 0 <a <1 and {p,}eM, then (N, p) is |a| —
effective.

THEOREM 2. If {p.} € M,, then (N, p) is | F,| and | F,| — effective.
THEOREM 3. If {p.} € M, then (N, p) is | F' *| — effective.

4. Some preliminary results. We need the following lemmas,
of which Lemma 1 is the same as Theorem 6 of Das [3].

LemMmA 1. If {p,} € M, then a mecessary and sufficient condition
that {t,(v)} € BV, for a given series >, v, 1s that

1

nPnlon(v)I <K,

where t,(v) is the n-th (N, p) mean of 3, V..

LeEMMA 2. If {p.} is a monnegative monotonic noONiINCcreasing
sequence, then for any n and 0 < a < b

b
,Z‘ peexpi(n — k)t| < KPPy, ,
uniformly m 0 < t < 7.
Lemma 2 is given in McFadden [10].

LEMMA 3. If {p.} is a positive nomincreasing sequence, then
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On*P,), for all u,

| H(n, w)| = { 1
On*Pppy) , Jfor u = Z .

Proof. We write

u+(1/n) Fd d
rd — a)Hmn, u) = {S + Sw(l/m}(t —uy L h(n, tit
= Hl + Hz ’

say. If w = 1/n, then by Abel’s Lemma and Lemma 2,

wt(1/n)
|H,| = KS Ut — WPyt < KnePy,

u
since {P,} is nondecreasing. Next, we have

n"gn ih(n, t)dt|, U + 1 <n<m,
ut/n) At n

= Kn*Py,u ,

]H2I =

by virtue of Lemma 2.
This proves the second part of the lemma. The other part

follows by a similar reasoning when one observes that

( S p._ .k exp (ikt)| < KnP, .
=0

Lemma 4. If {p,} is a positive monotonic nonincreasing sequence,
then

O(n*usP,) for all wu ;

1

| Vin, u)| = {
o(n®) + O(n*u*Py,,) for u= -

For the proof of Lemma 4, reference may be made to ([9],
p. 265).

5. Proof of Theorem 1. (I) |F,| — effectiveness: We have
nA,(x) = &Szgﬁ(t)—d— sin ntdt
T Jo di
and
oy — | © d
oL @) = | p)-Sgm, tdt

As in ([1], proof of Theorem 1), on integration by parts, we get
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OUL@) = P@In, 7) = 5w Vi, ) + | Vin, widpw)
Thus, by Lemma 3
OUL @) = 0n) = g Vin, ) + | Vin, wids.(u) -

If in particular, we suppose ¢(f) = 1 for all ¢, in which case ¢.(t) =1
for all ¢ and 0,(L°(x)) = 0 for every n, we obtain

0 = O(n?) — gu(m) V(n, 7)

and therefore

o.(LAx)) = O(n) + S:vm, w)dg. () .

Thus,
i L | 0. (L)) |
»=1nP,
<g3> 1 +KS§ L yn, wy| | deo(w)| < K ,
=% 2 p, o 2P, =

since by hypothesis S:Id%(%)l < K and by Lemma 4,

S L Vi w)| < Kut S, met + K{L + wPy) S —L— <IK,

=1 nP, nEilu 251w '~ P, =t

by virtue of the hypothesis that {p,} e M,.

This completes the proof of |F,| — effective part of Theorem 1,
when one appeals to Lemma 1.

(II) |F,| — effectiveness: We have

2

nB, (@) = ——

= d
r(t)—— tdt
Sov( ) 7 cos
and therefore
o L) = = | (t)-Lgn, Dyt
As in ([2], proof of Theorem 2), we have

. (L))

- L, t){F(l%CY)S:(t — uyedv ()t

- __ 1 e d
- ra- a)godwaW)L(t ) T g(n, t)dt

- —SZ,T(n, WA () .
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| F', | — effectiveness of the (N, p) mean now follows from Lemma
1 and the hypothesis that S‘u““l d¥ . (u)| £ K, when we observe that
uniformly in 0 <u <=

ua a—-l + Ku P
=1 nP, - n=1lu el Eu ’)’Ll—o‘P

<K,

by virtue of Lemma 3 and the hypothesis that {p,} € M,.
(III) | F«| — effectiveness: Integrating by parts, we have

N A () = ES}(t)naH cos ntdt = —?_g”na sin ntdg(t) .
T Jo T Jo
Thus
“(a))| < 1 « i dé(t) | -
3 oL@ = [ {5 | Sypike sin ke | o)

| F*| — effectiveness, of the (N, p) mean now follows from Lemma
1 and the hypothesis that S“t*“l dé(t)| < K, when one observes that
0
uniformly in 0 < t < 7w

o> = 2 Dn_ik® sin kt ’
n=1 nP
= Kt 3 n + Kt 3, — max Epk sin (v — k)t
n=ift n>1/t 1 _“Pﬂ 0<vsn | k=0

<K,
l—aP -

<K+KtP[1/t]Z

by Abel’s lemma, Lemma 2 and the hypothesis that {p,} e M,.
(IV) | F=*| — effectiveness: Integrating by parts and observing
that +(+0) = 0, we have
n*B,(x) = ESﬁqu(t)n"+1 sin ntdt
T Jo
2 ,,, 27 .
= — A (T)n® cos nw + —S n® cos ntdy(t) .
T T Jo

Thus

= [yr(x) | 2 —Li Zilpn_kk“ cos kﬂ}

(s

| F=| — effectiveness now follows from Lemma 1 and the hypothesis

e cos kt ’ }| Ay (t) | .
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that S“t—“| d(t)| £ K, when one observes that uniformly in 0<t<=x
0

i Z Dk COS ktl
=1 nP
=K Z 4 Kttt Y L nax Z D, cos (n — k)t
w1/ w51t P, osvsa | k=0
<K+KtanZ =K,

L—aP -

by Lemma 2 and the hypothesis that {p,} c M,.

(V) |F*|— effectiveness: This follows from the result of Theorem 3,
when one observes that {p,} € M,, « <0, implies {p,} e M,.

This completes the proof of Theorem 1.

6. Proof of Theorem 2. It may be observed that the proof
of | F*| — effectiveness, given in the preceeding section remains valid
even for the case « = 0 and therefore the (N, p) method is | F°| or
equivalently | F,| — effective.

In order to prove fF’0| — effectiveness, we observe that on integra-
tion by parts we get

B,(x) = ES’}u(t) sin nidt = —
T Jo

___ggﬁcosntdwt%
Tl m

Eg”l - cosntdw(t)
T Jo n

since (7) = (0) = 0.
Thus, we have (cf. [13])

— H 3, paull — cos kt)}d«/r(t) ,
%an(ff’(x)) = <or
S;{g’ Dp_r COS kt}da/r(t) s

and

W(Lo@)) |

a=1 N, n

= lav

(1 — cos lct)] +

kcoskt’}

It

|/l dw) (=, + =)

say. |F,| — effectiveness of the (N, p) method now follows from
Lemma 1 and the hypothesis that ! |dy(t)| < K, when one observes
that uniformly in 0 <t~
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3<KfSn<KkK,

n=1/t

since |1 — coskt| < k*t* and

22 é KP[l/t]

a>1[t N, 2

by virtue of Lemma 2 and the hypothesis that {p,} e M,
This completes the proof of Theorem 2 (cf. [7]).

7. Proof of Theorem 3. We have ([14], §13.2)

nAk(x) = —S o* (t){sm <n + )t/sm —-t}dt

Thus
Sl oL @)
= | g | oesin (b4 D e,

sin —t¢
2

| F'*| — effectiveness of the (N, ») method now follows from
Lemma 1 and the hypothesis that S“t—l | ¢*(t) | dt < K, when we observe
that uniformly in 0 <t <=«

(== n . 1

S op | S pesin <k + 5 t{
=K KP4 L <x ,
- w>1/t nPn -

by virtue of Lemma 2 and the hypothesis that {p,} e M,.
This completes the proof of Theorem 3.

8. Remarks. Corresponding to our Theorem 2, we have an
earlier result of Hille and Tamarkin ([8], Th. II) for ordinary (N, p)
summability of L°(x) which states that under certain condition on
&(t) the hypothesis

}B
k+1

is both necessary and sufficient for (N, p) summability of L°(z), if
{p,} is a positive monotonic nonincreasing sequence. The intrinsic
character of the hypothesis {p,} € M, of Theorem 2, emerges from

(8.1) {
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the above result when one observes that the condition (8.1) implies
that

This follows from a recent paper of the author ([4], p. 168).
The claim that the corresponding (C) method results, reduce to
special cases of our theorems, follows when we observe that

(WS
5 —1
and appeal to a well known inclusion relation for the absolute

(C)-method.
Recently | F,| — effectiveness of (N, p)(C,1) and (C, 1)(N, p)
methods have been proved by the present author.

)}eMa,lzB>agO,
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