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THE AMBIENT HOMEOMORPHY OF AN INCOMPLETE
SUBSPACE OF INFINITE-DIMENSIONAL

HILBERT SPACES

JAMES E. WEST

The pair (H, Hf) is studied from a topological point of
view (where H is an infinite-dimensional Hilbert space and Hf
is the linear span in H of an orthonormal basis), and a com-
plete characterization is obtained of the images of Hf under
homeomorphisms of H onto itself. As the characterization is
topological and essentially local in nature, it is applicable in
the context of Hilbert manifolds and provides a characteri-
zation of (if, £Γ/)-manifold pairs (M, N) (with M an iZ-manif old
and N an ϋΓ/-manifold lying in M so that each coordinate
chart f of M may be taken to be a homeomorphism of pairs

(U, UnN) -^ (/(ED, ΛU) n Hf)).
This implies that in the countably infinite Cartesian pro-

duct of H with itself, the infinite (weak) direct sum of Hf
with itself is homeomorphic to Hf (the two form such a pair),
and that if K is a locally finite-dimensional simplicial complex
equipped with the barycentric metric (inducing the Euclidean
metric on each simplex) and if no vertex-star of K contains
more than dim (H) vertices, then (K X H, K X Hf) is an
(H9 £Z/)-manifoId pair.

These results are used in [10] to study H/-manifolds much more
intensively to obtain results previously available only for iϊ-manifolds
or in the case that Hf is separable, i.e., connected i^-manifolds are
homeomorphic to open subsets of Hf, homotopy-equivalent ί//-manifolds
are homeomorphic, and there is an essentially unique completion of
an jff/-manifold into an iϊ-manifold, yielding an (H, i?/)~pair.

It should be remarked that this characterization has already
been achieved for separable Hilbert spaces by R. D. Anderson [1]
and by C. Bessaga and A. Pelczynski [5], and that the observations
concerning (JET, iϊ/)-manifold pairs have been made by T. A. Chapman
[6, 7] in that case. (Chapman then proceeded to obtain most of the
results of [10] in the separable case by methods which seem at the
moment to be limited to separability.)

Throughout the discussion, X will denote some complete metric
space, and J%f(X), the group of all homeomorphisms of X onto itself.
The term "isotopy" ("isotopic") will be understood as an abbreviation
for "invertible, ambient isotopy", that is, a map F: X x [0, 1] -* X
such that the function G: X x [ 0 , l ] - > I x [0, 1] defined from F by
setting G(x, t) = (F(x, t), t) is a homeomorphism. (When an embedding
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/ of a subset of X into X is said to be isotopic to the identity,
then, there will exist an extension g of / to an element of 3ίf(X)
which is invertibly ambient isotopic to the identity.) If ^ is a
collection of open sets of X, a map / of a subset Y of X into X
will be said to be limited by ^ if for each point y of Y such that
V Φ f(y), there is a member of <%S containing both. A homotopy
F: Y x [0, 1] —• X will be said to be limited by <2S if for each point
y of Y such that F({y} x [0, 1]) Φ {y}, there is an element of ^f
containing F({y] x [0, 1]). If £f is a collection of subsets of X then
^ * will denote their union, and S^ will be termed normal whenever
there is an open cover ^ of J^* by mutually disjoint sets with the
property that for each U in ^ , U f) ̂ * e S^. The letter N means
the positive integers. Finally, if A is a subset of X and Sf is a
collection of subsets of X, then st (A, £f) denotes the star of A with
respect to £f, that is, the union of all members of 6^ meeting A,
and st ( ^ ) = {st (S, S^)\Se S^}. Also,

sf (A, SS) = st (st—^A,

and stn(S) = st (&tn~1(^)). All refinements used will be understood
to be composed of open sets, and J7~ is a st%-refinement of 6^ pro-
vided that stTO(^~) refines 6^.

The first lemma is due to Anderson and Bing [2].

LEMMA 1. Let {fn}neN be a sequence of homeomorphisms of the
complete metric space X onto itself, and let ^ be any open cover
of X. // {Un}n=o is a collection of open covers of X such that
st2 (^o) refines <%? and for each n in N c'2/n is a star-refinement of
^n-i of mesh less than l/2%, then {fn° ••• ° fι}neN converges (uni-
formly) to a member of 3$f(X) which is limited by ^ provided
that for each n in N fn+1 is limited by %Sn and mesh

(/Γ1 o . o f-ι(^/n)) < l/2% .

Proof. Anderson and Bing proved that {fn o . . . o f}neN con-
verges uniformly to a member / of £lf(X). To verify that / is
limited by ^ , it is sufficient to observe that for each x in X and n
in N, there is a U(x, n) in ^/n containing both fn o . . o f(χ) and
fn+i ° * ° fι(χ)i a n ( i there is also a U(x, 0) in ^ 0 containing both x
and f(x) If V(x, n) is an element of ^"Λ_1 containing st (U(x, n), ^n)
for each x and n, then x and fn+ί o . . . o /^a;) lie in

U U(x, m)(zX) U(x, m) U V(x, n)
m=0 m = 0

c U C7(x, m) U V(x, n - 1) c c U(x, 0) U V(x, 1)

C 0),
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so x and f(x) must lie in the closure of st (U(x, 0), ^0)> which is
contained in st2 (U(x, 0), ^/0), which lies in some member of ^/.

LEMMA 2. If ^ is a collection of pairwise disjoint open subsets
of X, then there is an open cover T^ of %f*, refining <%S9 with the
property that if for each Ue^ fΌ is a homeomorphism of U onto
itself which is limited by %" then the function f defined by f(x) =
fu{x)i if X&U, and f(x) = x, if x^^*, is a homeomorphism of X
onto itself.

Proof. Let T = {V(x) = {yeX\d(y, x) < d(z, x)/2 for each z in
X\U} \xe U£<%/}, where ώ( , •) is the metric for X. Then for any
points z of X\U*, and y of X, d(z, f{y)) fS 3eZ(2,2/), which establishes
continuity. As / must be one-to-one and onto, and the same argu-
ment establishes the continuity of f~\ f is a homeomorphism.

Let J%Γ be an hereditary collection of closed subsets of X which
is invariant under the action of 3ίf(X), that is, each closed subset
of a member of J T is in 3Γ and f(K) e ST if Ke 3T and fe ^T(X).
A set A in X will be termed JϊΓ-absorptive if for each open cover
<%S of a member if of < ^ and each member Kr of ^ ~ contained in
K Γi A, there is a homeomorphism / in <% (̂X) which is limited by
^ , is the identity on iΓ', and carries K into A. If / may always
be chosen so that there is an isotopy from it to the identity which
is limited by ^ , then A will be called strongly 3>t'-absorptive.

LEMMA 3. If A is St^-absorptive (strongly JsίΓ-absorptive), L is
an open subset of a member of ^t] and U is an open cover of L in
X, then there is a member f of ^f{X) carrying L into A which is
limited by ^ (is isotopic to the identity by an isotopy limited by C2

Proof. As ^ * is an open subset of the complete metric space
X, it may be given an equivalent metric under which it is itself
complete, so Lemma 1 holds under the new metric. Let {Vn}neN be
a sequence of open sets in X such that each contains its successor
and f)neN Vn = X\U*, and let <%?" be a refinement of ^ which
covers ^ * and has the property that any member of <%^(^*) which
is limited by W~ extends to an element of έ%f(X) which is also
limited by <W. If J%Γ' is the collection of all members of 3Γ which
lie in ^ * , then from the definition of (strong) ^^absorptivity it is
immediate that as a subset of ^ * , A Π E7* is (strongly) 3ίΓf-
absorptive. Using Lemma 1 and the fact that L\Vn+ι contains L\Vn

for all n in N and that both are in 3ίΓ\ select a sequence {fΛ}neN

of members of Jg^(^*) with {fn o . . . o fλ}neN converging to a member
of 3lf(<Zf*) which is limited by W" and such that for each n, fn
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carries fn_, © . . . o/^Z^yj into i f l ^ * and is the identity on

This may be done because each of the functions fn° o /x may be
kept limited by W^, which ensures that they permute the elements
of 3fΓ'. Extending the limit homeomorphism to all of X so that it
is the identity off ^"* produces the desired member of £ίf(X). (In
the case that an isotopy is desired, and that A is strongly ^^absorp-
tive, consider the cover c%Γf = {W x [0, 1] 1 We 3^} of ^ * x [0, 1]
and construct a level-preserving homeomorphism of ^ * which is
limited by W\ is the identity on ^ * x {0}, and carried L x {1}
into A x {1}. The associated isotopy extends to X.)

A collection s^f of members of K will be called a Jsf~-complex if
it may be expressed as a countable union U ϊ = o X of subsets of
itself such that s^n = Ul=o J ^ ί is closed for each w and s^[n] =

l i e j / J is normal for all w. (Here, j ^ " 1 = 0 . ) The set
* will be said to admit the structure of a S£~-complex. If J ^ *

is (strongly) ..^absorptive, then it will be referred to as a (strong)
3^-absorption base.

THEOREM 1. If <%s is an open cover of X and A* and J3* are
two (strong) J3t~-absorption bases in X, there is a homeomorphism f
of X onto itself (an isotopy F of X), limited by ^ , such that
/(A*) = J9*(F(A* x {1}) = B*).

Proof. Let s*f = U?=o JK and & = \J~=Q ̂ n be .^complex
structures for A* and 5* respectively. As the construction of an
isotopy in the strong case may be handled from the construction of
a homeomorphism in the other case as was done in the previous
proof, only the latter construction will be made here. It is quite;
simple. Since J ^ is invariant under the action of §ίf(X), so is the
collection of (strong) .^absorption bases. A sequence f19 gί9 f2, g2,
of members of 3ίf(X) is to be chosen with {g~x ofno . . . o g~ι ofι}neN

converging to an element / of 3ίf(X) which is limited by %?. Further-
more, fn(gn~i ° °f(^fn)) is to be a subset of ^ * , gn(&n) is to be a
subset of fn o gζLt o . . . o g-ι o /L( j ^ * ) , fn is to be the identity on
9n-i ° Λ-i ° ° QT1 ° fA^f^1) U ̂ n~\ and gn is to be the identity on
fn ° Qn-i ° ° 971 ° fr(^fn) U ̂ n~x. Then the limit homeomorphism
/ is limited by %f and /(J^*) = ^ * . The selection of these homeomor-
phisms may be made inductively so as to satisfy the convergence
criterion of Lemma 1 because for each n, J^[n] and &\n\ are normal
and s/n~γ and &n~l are closed, so Lemmas 2 and 3 may be applied
and the homeomorphisms constructed piecemeal on collections of pair-
wise disjoint open sets in X.
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THEOREM 2. // U is an open subset of X, A* is a (strong)
J%Γ~absorption base for X, and <5ίΓf is the set of all members of
J2Γ contained in U, then A* f] U is a (strong) 3ίΓ'-absorption base
for U.

Proof. It has already been remarked that A* Π U is (strongly)
Jϊ^'-absorptive, so all that is necessary is to demonstrate that it
admits the structure of a _$r*'-complex. If A* Π U= 0 , then J2Γ'=
{0}, and A* n U is a strong .^'-absorption base for U. Otherwise,
let {Vn}neN be a collection of open sets with X\Ud F u + 1 c F u + 1 c Vn

for each n, and with ΠneN Vn = X\U. Now, let

^ £ = U {A\Viln-m+ι) I A
0

and ^ + 1 - Umto{-4\F2U_m+l3+1i 4 e X } . If UΓ=o ̂  is denoted by
^ , it is apparent that ^ n is closed for each n. To see that ^?\n\
is normal for each n, let {^}w e^ be a collection of sets of mutually
disjoint open sets of X with the property that ffcς* contains s*f[n]*
and that for each Ujn <%fn, Uf] sf\ri[* e J*f[n). Then define W~2n =
U { ^ F \ F 1 CΓ m ) a n d

F 2 U _ m + 1 ) \ F 2 ( M + 2 ) I C7G

for each n — 0, 1, The collections 5 ^ are composed of pairwise
disjoint open sets separating members of ^[n], so & is a J^~'-
complex. Since .̂ f* = j y * Π ί7, the proof is complete.

If {Yn}neN is a collection of spaces, then Π^e^ Yn will denote
their Cartesian product. If, for each n,yneYn, then Π ^ e ^ ί ^ ^ ^ )
will denote that subset of ΓLe;\r i ^ composed of those points with
w-th coordinate differing from yn for at most finitely many n. Also,
let <& be a class of spaces which is closed under the operations of
taking closed subsets and of taking finite products, and for each
space F, let ^(Y) denote the collection of images of members of <&
under closed embeddings in Y.

THEOREM 3. // {Xn}neN is a sequence of complete metric spaces
and if, for each n, Ssf(n) is a ^(Xn)-complex, and xn is a point of
J*f(ri)*, then UneA^fa)** %n) admits the structure of a ^ ( Π ^ e ^ ^ ) -
complex.

Proof. For each finite subset S of N, let / denote the natural
injection of ΐ[nesXn into line* CX»» #n) Now, for each ordered
^-tuple (mίy , mn) of nonnegative integers, each of which is no
greater than n, let ^?(n; m19 , mn) = {/(Π?=i Λ) I A< e J^(i)w <}. Order
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the set of all these collections in such a manner that

&(n\ mlf , mn) :> &(n'; mi, , m'n,)

if n >̂ nf or if n — nf and mf ^ m̂  for all y. The order selected
will be isomorphic to the nonnegative integers, so index the ^ ' s by
them in a manner consistent with the above requirements. Let
& — U~=o ̂  For each n, <^?n* is closed, so &n is, also. Thusr

in order to check that & is a ^(Y[neN Xn)-comp\ex, it is only
necessary to verify that ^\i\ is normal for each i. However, for n
and (m1( , mn) such that ^ ^ — &?(n\ mlf , m j , and for B in
^ , ^ ^ c ί ^ d l H J / ί i ) ^ " 1 ) , so if for each w in N and each
nonnegative integer m, ^ * is an open cover of j/(%)[m]* in Xn by
pairwise disjoint open sets U with the property that

Uf] jV(n)[m]* e s*f{ri)\m\ ,

then ψ\ - {Π?-i U5 x ΠΓ-*+i X i I Ui e ^ for i = 1, , }̂ is a cover
of ^ [ ί ] by mutually disjoint open sets of JlnBNXn with the property
that the intersection of each with &[i\* is a member of ,^[ϊ\.
Thus, each ^\i\ is normal and & is a ^(ΠWeiv^)-complex. As it
is immediate that ^ * = TίneA^(n)*<, %n), the theorem has been
proved.

REMARK. It was tacitly assumed above that there were infinitely
many X^s. Of course, the same proof works for a finite collection.

COROLLARY 1. //, in the above, n«ejv(*^(w)*, xn) is (strongly)
neN Xn)-absorptive, then it is a (strong) (^'(Y[neN Xn)-absorption

base.

REMARK. It is clear from the definitions that if X and Y are
homeomorphic, then any homeomorphism between them carries the
^(X)-complexes to the ^(F)-complexes and the (strong) ^(X)-
absorption bases to the (strong) ^(Y^-absorption bases.

From now on, ^ will denote the class of all finite-dimensional
compact metric spaces. The next lemma is an extension of Proposi-
tion 4.5 of [5] to the nonseparable case and to isotopies. It consists
of combining Theorem 4.2 of [3] with the Bartle-Graves Theorem.

LEMMA 4. If X is an infinite-dimensional Frechet space and
K is a compact subset of X, then for each open cover ^ of K
there is a second, ^ such that any embedding of K in X which is
limited by Y* is (invertibly ambient) isotopic to the identity by an
isotopy which is limited by %S.
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Proof. For a real number (positive) r and a point x in a metric
space, N(x, r) will denote the open ball centered at x with radius r.

Let λ be a Lebesgue number of fS with respect to K, let
5^ = {iV(α5, λ/36) | αeJBΓ}, and, inductively, for n > 1, let

Now, let 3^ = \JneN jr. If / embeds K in X and is limited by 5 ,̂
let Y be the closed linear span in X of the image of F: Kx [0, 1]—>X
defined by i*7^, ί) = (1 - t)x + tf(x). Let pγ: X-+X/Y be the canoni-
cal projection, and let qγ: X/Y—+X be a right inverse for pF sending
0 to 0. (This is by the Bartle-Graves Theorem. For a proof see
[11].) Now, the function hf: X/Y x Y —>X defined by hf — qγp1 + p2

is a homeomorphism, where pι and p% denote the projections onto the
first and second factors, respectively.

From the definition of 5̂ 7 it follows that for each element V of
st4 (3O, V + N(0, λ/3) is contained in some member of ^ , where
here " + " denotes the set of all sums of pairs of elements, one from
the first set and one from the second. Letting W be a neighborhood
of the origin in X/Y which qγ carries into N(0, λ/3), one sees that
hf(Wx {T* n Y)) lies in ̂ * and, indeed, that {hf(Wx V)\Ve st*(T \ Y)}
refines ^ . (Here, T \ F = {Vf] Y \ V e T}.)

Select a map g: X/Y-+[0,1] such that ^ ( 0 ) z> (X/Y)\W and
Oeg-'iΐ). Since Y is separable and T* Π Y is open in Y, [3] yields
an isotopy G: (T* Π Y) x [0, l ] - > ^ * n F from the identity homeomor-
phism at t = 0 to an extension to 5^* Π Y of / at t = 1 which is
limited by st4 (3^ | Y). Then ί ί : I x [0, 1]-+X given by

is the desired isotopy.
Let H be an infinite-dimensional (real) Hubert space, let E be a

complete, orthonormal basis for H, and denote by Hf the collection
of all (finite) linear combinations of members of E.

THEOREM 4. Hf is a strong ^{H)-absorption base.

Proof. Two things must be shown, namely, that Hf admits the
structure of a ^(ϋO-complex and that it is strongly ^(JϊJ-adsorp-
tive. To see the first, let j^J be the set of all integral linear
combinations of members of E. For n > 0, let

&n = \Qn = { J ^ β m I *» β [0, 1], m = 1, ,

are n distinct elements of E>,



264 JAMES E. WEST

and let j^ς = {A == Qn + x \ Qn e &n, x e j^fQ}. It is readily seen that
•S& = U~=o J^» is a ^(iϊ)-complex with J ^ * = Hf.

By Lemma 4, in order to demonstrate that Hf is strongly ^(H)-
absorptive one must only show that for each member K of C^(H),
each open cover ^ of K, and for each closed subset K' of K Π fl/,
there is an embedding / of K in i?/, limited by ^ , which is the
identity on K\ Since K is compact, there exists a Lebesgue number
λ for <%S with respect to if, so one must only find an embedding /
of K in Hf which moves no point as much as λ and is the identity
on Kf. However, the total boundedness of K and the denseness in
H of Hf lead to the existence of a sequence {e^ieN in E and a
sequence {n(i)}ieN in N such that if pt is the orthogonal projection of
H onto the span of {es}]^n^l)+if then || ΣΓ=i2><(α) - α II < 2~m-2λ for
each meN and a?eif. Also, since iΓ is finite-dimensional, for each
set S of 2dim (K) + 2 distinct elements of i?, there is an embedding
of K in the unit sphere ( = elements of norm one) of the subspace
spanned by S. Assume that for each i, n{i) — n(i — 1) >̂ 2dim (K) + 2,
and let /< be an embedding of K in the unit sphere of the span of
K ^ U - D + I . Now, let g map K into [0, 1] such that K' = flr^O), and
for each i let h, map [0, 1] into [0, 1] such that hτι(0) = [0, l/n(Z)]
and hτ\l) = [1M(2), 1] and for ΐ > 1,

ΛΓi(0) - [l/n(i - 1), 1] U [0, l/n(i + 2)]

and hτ\l) = [l/w(i + 1), l/w(ΐ)]. Finally, set

/(a?) - Σ (max {hd o ̂ (^)})^(α;) + Σ 2-^λ A, o g(x)fM(x) .
ieN j^i ieN

This is the desired embedding.

COROLLARY 2. If % is any collection of open sets of H and Y
is any ^(^^-absorption base in &*, then there is an ambient,
invertible isotopy of H onto itself which is limited by ^ , is the
identity at t = 0, and at t = 1 is a homeomorphism hx such that
hx{Y) = ^*f)Hf.

Proof. Lemma 4 shows the equivalence of the concepts of
absorption base and strong ^(^*)-absorption base, Theorem 4 com-
bined with Theorem 2 gives that ^ * Π Hf is also a strong ^(<g/*)-
absorption base, and Theorem 1 supplies the isotopy on f̂* limited
by an open cover given by Lemma 2 which refines ^ and has the
property that any isotopy limited by it may be extended trivially to
one on H.
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COROLLARY 3. Let {Hn}nBN be an indexed, countably infinite
collection of copies of H, and let Y be the subspace of Πnβ -̂ff*
consisting of all points with at most finitely many nonzero co-
ordinates, each of which lies in the appropriate copy of Hf. Then
Y is homeomorphic to Hf.

Proof. It is easy to modify the proof of Theorem 4 to show-
that Y is ^(Π^etfίU-absorptive. If the copy of Hf in Hn is
denoted by (Hf)n, then Y — T[neN ((#/)»> 0), so Corollary 1 applies to
show that Y is a ^(Π^e^ί^J-absorption base. However, J[neNHnis
homeomorphic to H by a theorem of Bessaga and Pelczynski [4], so
by the remark following Corollary 1, Y may be embedded in H as a
^(ίO-absorption base. Corollary 2 now applies to finish the proof.

The above result is crucial to [10]. The next two results identify
some simplicial complexes whose products with Hf are jfiΓf-manifolds.

THEOREM 5. If K is a metric simplicial complex and K x H
is an H-manifold, then K x Hf is an Hrmanifold.

Proof. By Theorem 3 (the remark after Theorem 3), K x Hf is
a ^(K x ϋf)-complex, since K is by definition a ^(iO-complex. The
strategy of the proof is to show that K x Hf is a ^{K x if ^absorp-
tion base, to embed K x H component-wise in H as open subsets
(using a theorem of Henderson [8]) and then to use Corollary 2 to
find a homeomorphism of the open subsets in question onto themselves
throwing the images of K x Hf onto Hf Π (the open subsets). Thus,
all that is necessary is to establish the ^{K x if)-absorptivity of
K x Hf. In fact, since for each vertex v of K, st° (v, K)— the open
star of v in K— is a contractible open set, st° (v, K) x H will be
homeomorphic to H by [9], so all that is needed is to show that
st° (v, K) x Hf is <Sf (st° (v, K) x iϊ>absorptive. Therefore, let X be
a finite-dimensional compactum of st° (v, K) x H, let ^ be an open
cover of X in st° (v, K) x H and let X' be a closed subset of
Xfl (st° (v, K) x Hf). Lemma 4 together with the fact that st° (v, K)xH
is homeomorphic to H establishes that it is sufficient to find an
embedding of X in st° (v, K) x Hf which is limited by ^ , and is the
identity on X'. Let λ be a Lebesgue number for ^f with respect
to X, and let pH denote the projection of K x H onto H. As noted
in the proof of Theorem 4, there exists a sequence {ei}ieN in E and
another sequence {n(i)}ieN in N such that n(i) — n(i — 1) ̂ > 2dim (X) + 2
for each i and ||Σ&*Pi ° PH(®) — PH(X) II < 2~m~2λ for each meN and
α? e X, the rest of the notation being as in the proof of Theorem 4.
Constructing fo:X—>Hf by the same method as used in Theorem 4,
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except for the substitution of pζ o pH for pif and setting / = (pκ, f0)
produces the desired embedding, if pκ denotes the projection of
KxH onto K.

COROLLARY 4. If K is a metric, locally finite-dimensional,
simplicial complex such that no vertex-star contains more vertices
than dim (H), then K x Hf is an Hf-manifold.

Proof. By Theorem 4 of [12], KxH is an if-manifold, so
Theorem 5 applies. (This metric is assumed that in the abstract.)

Actually, if a pair (X, Y) of spaces, F c l , is called a (H, Hf)~
manifold pair provided that X is a paracompact iϊ-manifold and
there is an open cover ^ of J by sets U for which there are open
embeddings fv: U-+H such that fπ(U\J Y) = MU) Π Hf9 then the
following have been established.

THEOREM 6. The pair (X, Y) is a (H, Hf)-manifold pair if
and only if Y is a r^(X)-complex, X is an H~manifold, and the
following weak c^'(X)-absorptivity condition is satisfied: For each
finite-dimensional compactum C of X, each open cover <%f of C, and
each compact subset C" of C Π Y, there is an embedding of C in Y
which is limited by ^ and extends the inclusion of C". If (X, Z)
is another (H, Hf)-manifold pair and "T is an open cover of X,
then there is an isotopy of X, limited by 5̂ 7 from the identity to
a pair homeomorphism of (X, Y) onto (X, Z).

COROLLARY 5. // (X, Y) and (X', Yf) are (H, Hf)-manifold pairs,
then (X x Xr, Y x Y') is an (H, Hf)-manifold pair.

COROLLARY 6. // (X, Y) is an (H, Hf)-manifold pair and K is
a metric, locally finite-dimensional, simplicial complex such that no
vertex-star contains more than dim (H) vertices, then (X x K, Y x K)
is an (H, Hf)-manifold pair.
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