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HOMOLOGICAL DIMENSION AND SPLITTING
TORSION THEORIES

Mark L. TEPLY

The concept of a torsion theory (7, & ) for left R-
modules has been defined by S. E. Dickson, A torsion theory
is called splitting if it has the property that the torsion
submodule of every left R-module is a direct summand. Under
restrictive hypotheses on the ring R, several specific splitting
theories have previously been examined. This paper continues
the investigation to more general classes of torsion theories,
In the first section, comparisons are made between injective
modules and torsion modules for a splitting theory, and the
following results are obtained: (1) A torsion class .7 is closed
under taking injective envelopes if and only if the maximal
.7 -torsion submodule of an injective module is injective, (2)
If (77, & ) is splitting and R € &, then inj dim (T) <1 for
all Te 9, 3 If (7, ) is splitting and hereditary and
if Re &, then every homomorphic image of a .7 -torsion
injective module is injective., In §2 it is shown that rings R,
for which R has zero singular ideal and Goldie’s torsion theory
is splitting, have the property: 1, gl. dim B < 2, It is shown
that the relative homological dimension arising from a
hereditary torsion theory often gives information about
splitting, especially when this dimension is zero. In the final
sections, the zero-dimensionality of a hereditary torsion theory
is discussed and related to results of J. P, Jans, The rings,
all of whose hereditary torsion theories have dimension zero,
are characterized as direct sums of finitely many right perfect
rings, each of which has a unique maximal ideal,

In this paper, all rings R have identity, and all modules are
unitary left R-modules. The category of left R-modules is denoted
by z A

A torsion theory of modules is a pair (7, %) of subclasses of
= satisfying:

1 T N = {0}

(2) B< A and Ae. 7 implies A/Be 7.

B) B< A and Ac. ¥ implies Be #.

(4) For each Ac, «#, there exists a (necessarily unique) exact
sequence

0 1 A F 0

such that Te 9 and Fe #.
For this definition and the following results, the reader is referred
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to [5].

Let (7, &) be a torsion theory for p_Z Modules in .7~ are
called torsion, and those in # are called torsionfree. Each Ac , #
has a unique maximal torsion submodule, denoted by 7 (4). 7 is
closed under taking direct sums, and & is closed under taking direct
products. 7 = {Te # |Hom, (T, F)=0 for all Fe s}, and
F ={Fep# |Hom, (T, F) =0 for all Te 77}. A subclass & of
a7 18 closed under taking extensions if 4, Be ¥ and 0—A— X—B—0
is exact imply Xe%. Both 7~ and & are closed under taking
extensions. A class & is closed under taking injective envelopes if
Ac % implies E(A) e &, where E(A) denotes the injective envelope
of A. 7 is closed under taking submodules if and only if & is
closed under taking injective envelopes. When (.7, & ) has this
property, then (7, &) is called a hereditary torsion theory. In
this case .7~ is also a class of negligible modules in the sense of
P. Gabriel [10], and hence there is a topologizing and idempotent
filter FI(9") of left ideals associated with .7, For results concerning
these filters, the reader is referred to [10] or [15].

For convenience Ext% (4, B) will be written as Ext" (4, B) through-
out this paper. The following notations concerning homological
dimensions are used for the ring R and the R-module M:

inj dim (M) = inf {n | Ext"** (—, M) = 0}
h. dim (M) = inf {n | Ext*** (M, —) = 0}
l.gl.dim R = inf {h. dim (M) | M e o 7} .

1. Injectives and splitting. Let (.7, & ) be a splitting torsion
theory for p #, i.e., 7 (M) is a summand of each Me , # Since
an injective module is always a summand of any module containing
it, it is natural to wonder how much a module in .2~ must “resemble”
an injective module. The first lemma examines the case of the
maximal torsion submodule of an injective module. It shows that
the splitting of (7, &) implies that .7~ is closed under taking
injective envelopes.

LEmMMA 1.1. Suppose (7, F ) is a torsion theory for p_#. Then
7 s closed under ingective envelopes if and only if 7 (A) s
injective for each injective module A e p_#.

Proof. (=): Let A be injective. Then E(Z7 (A)e.7 by hy-
pothesis. But then E(7 (4))/7 (A)e. 9 and

E(7(4)).7(4) S A7 (A) e 7 .
Hence E(7 (A)).9 (A) e .o N . = {0}.
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(=): Let Te. 7. By hypothesis, E(T) = .7 (E(T)) P F, where
Fe . Since 9 (E(T)) + Te.7 1is contained in E(T), then T &
7 (E(T)), and hence F = 0.

The following lemma is clear:

LEMMA 1.2. The following are equivalent for a torsion theory
(7, &) for p.A.

1) (7, &) ts splitting.

@) Ext(F,T)=0 for all Fe 7, Te 7.

THEOREM 1.3. Let (7, & ) be a splitting torsion theory for
att. If Re F, then injdim (T) <1 for all Te 7.

Proof. Since Re.#, every submodule of a free R-module is in
. So for each Me ,_+«, there is an exact sequence

0 K F M 0

with F projective and K, FFe &#. Hence by Lemma 1.2, the exact
sequence

Ext(K, T) — Ext*(M, T) —> Ext*(F, T) = 0
yields Ext* (M, T) = 0 for all Te 7.
Now suppose for induction that Ext" (M, T) = 0 for all Te 7.

If Te 7, then E(T)e.9 by Lemma 1.1, and hence E(T)/Tec 7.
So, by the induction hypothesis, the exact sequence

Ext" (M, E(T)/T) — Ext"** (M, T) — Ext"™ (M, E(T)) = 0

yields Ext*** (M, T) = 0 for all Te 7.
Hence the result follows by induction.

COROLLARY 1.4. Let (7, &) be a splitting torsion theory for
rovZ. Let A be an tnjective module and f a homomorphism of A.
If Re . and if the kernel of f is in 7, then the image of f is
injective.

Proof. Let K Dbe the kernel of f, and let I be the image of f.
‘Then Theorem 1.3 yields the following exact sequence for any M ¢ ,_#"

0=Ext'(M, A) — Ext' (M, I) — Ext* (M, K) =0.
Hence Ext' (M, I) = 0 by exactness, and so [ is injective.

The following result is the special case of Corollary 1.4 for a
hereditary torsion theory.
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COROLLARY 1.5. Let (7, % ) be a splitting hereditary torsion
theory for p. 7. If Re .7 , them every homomorphic image of a
torsion injective module 1s injective.

2. The Goldie theory. A submodule A & M is said to be
essential in M if AN B +# 0 for every nonzero submodule B of M.
The singular submodule of M e ,_# is Z(M) = {x € M| (0: x) is essential
in R}. If Z(M) =0, then M is called nonsingular.

Goldie’s torsion theory (&, _#") is the torsion theory given by
A" ={Nez# |N is nonsingular} and & = {G e ,_# | Z(G) is essential
in G}. (2, #7) is hereditary and has as its filter F(&) ={I|I<
J essential in R, and (I:x) is essential in R for all xeJ}. This is
the smallest topologizing and idempotent filter containing the essential
left ideals. For other results on (&, .#7), the reader is referred to
[1], [11] or [14].

V. Cateforis and F. Sandomierski [4] have studied the splitting
of (¢, .#7) for commutative rings with Z(R) =0. Z(R) =0 if and
only if Z(M) = < (M) for all Me ,_#. Hence saying (&, .#") splits
and Z(R) =0 is equivalent to saying that the singular submodule
always splits off. In [4] it is shown that whenever (&, ") is
splitting, R is commutative, and Z(R) =0, then l.gl.dimR < 1.
‘The results below show that this bound can be kept for modules in
A" (i.e., h. dim(N) <1 for all Ne._#") when the commutative
hypothesis on R is dropped. Moreover, if (&, _#") splits and Z(R) = 0,
then L. gl.dim R < 2.

THEOREM 2.1. If (&, .+") splits and Re 4+, then h. dim(N) <1
for all Ne_#7

Proof. Let N, Fe_4. Then E(N)/Ne<Z, so that
Ext (F, E(N)/N) =0
by Lemma 1.2. Then the exact sequence
0 = Ext' (F, E(N)/N) — Ext* (F, N) — Ext* (I, E(N)) =0
yields Ext*(F, N) = 0 for all F, Ne_#. By Theorem 1.3,
Ext" (F, E(N)/N) =0
for all » = 2. So the exact sequence
0 = Ext* (F, E(N)/N) — Ext"*' (F, N) — Ext"*' (F, E(N)) = 0

yields Ext*** (F, N) = 0 for all F, Ne _+" and all n = 2.
Let Me #. By splitting M = (M) @ M/ (M). Hence
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Ext* (F, M) = Ext" (F, £ (M)) @ Ext" (F, M/ (M)) = 0

for all n =2 and all Fe_#] by Theorem 1.3 and the first part of
the proof.

THEOREM 2.2. If (&, +") splits and Re _+7 then 1. gl. dim R< 2.

Proof. Let Fe_y~ and M€ #. By Theorem 1.3 there is an
exact sequence

0 = Ext" (M, E(F")/F) — Ext* (M, F') — Ext" (M, E(F')) = 0

for all » = 3. Thus Ext* (M, F') = 0 for all » = 3.
Let M, M,c .. By splitting M, = & (M,)P M,/Z (M,). Hence,
for n = 3,

Ext" (M, Ml) = Ext" (M, g(Ml)) D Ext” (Mx Ml/g(Mi)) =0
by Theorem 1.3 and the first part of the proof. Hence 1. gl. dim R < 2.

3. Relative homological algebra. In [6] the right derived
functors of a torsion subfunctor of the identity were calculated. This
leads to a relativized injective dimension of modules for each hereditary
torsion theory, and hence to a global dimension of . # depending
on the hereditary torsion theory (.7, % ) chosen. This global dimen-
sion is denoted by .7 gl. dim. R.

In [1] it is shown that if & gl.dim. R = 0, then (&, _#") splits.
S. E. Dickson has conjectured [7] that the simple theory (<& &)
(i.e., the torsion theory whose torsion class is the smallest torsion
class containing the simple R-modules) splits if and only if & = ,_#.
In this section it is shown that & = ,_# if and only if .7 gl.dim. R =
0. Moreover, for any hereditary torsion theory (.7, %), Theorem 3.1
below shows that .7 gl.dim. R = 0 if and only if & is a TTF class
in the sense of [13], i.e., a class closed under taking submodules,
factor modules, direct products, and extensions.

The first right derived functor of Ae, # relative to the
hereditary torsion theory (7, &) is

R (4) = 7B ZED A

Then .7 gl.dim. R = 0 if and only if R(A) =0 for all Aec , #

Following [1], a module F'e # called .7-absolutely pure (relative
to the hereditary torsion theory (7, %)) if L2 F and Le 5
imply L/F e #. [1], Proposition 1.4 states that F'e & is .7-absolutely
pure if and only if E(F)/Fe Z.
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THEOREM 3.1. For a hereditary torstom theory (7, F ), the
Jollowing are equivalent:

1 T-M— 7 (M) VMe o # s an exact functor.

(2) Ewery Fe. 7 s Z-absolutely pure.

(3) F 1s closed under taking homomorphic images.

4) 7 gl.dim. R = 0.

Proof. (1)=(2): Let F,Le.s and L2F. Then apply the
exact funetor T to the exact sequence 0 - F — L — L/FF—0 to get
0— 9 F)—> 9 (L)— 7 (L/F)—0. Since Le &, then .9 (L/F) =0
by exactness, and hence L/F e #. Thus F is .Z-absolutely pure.

(2) = (3): Let f: F— M be an epimorphism of F'e &, and let K
be the kernel of f. Since & is closed under taking submodules,
Ke .7, and hence M = F/Ke. & by (2).

(3) = (4): For any M e , 7, the exact sequence

0— g M)— M— M/ (M) —0
induces the exact sequence
RA(7(M))— R.-(M)— R (M|7(M)) .

By [6], Lemma 2, R (< (M)) = 0. Hence it is sufficient to show
that R(F') =0 for all Fe #. Since & is closed under injective
envelopes, .7 (E(F')) =0 for all FFe .# . Hence the formula for R _(F")
reduces to .7 (E(F')/F') whenever Fle #. But (3) and E(F)e &
imply E(F)/Fe.# , and hence R_-(F) = .7 (E(F)/F) = 0.

(4) = (1): This is clear since T is always left exact.

The simple torsion theory (<] &) has .&” defined [5] by Te.&”
if and only if every nonzero homomorphic image of 7 has nonzero
socle. Then & corresponding to .&” is the class of modules with
zero socle.

COROLLARY 3.2. The following are equivalent:
(1) <~ gl.dimR = 0.
(2) Nonzero modules have monzero socles.

Proof. (1) = (2): Suppose R ¢ .&% so that .&“(R) is a proper ideal
of R. Let M be a maximal left ideal of R containing .”(R). Then
R/Me &” is a homomorphic image of R/’ (R)e 5. But (1) and
Theorem 3.1 (3) yield R/Me ., which contradicts & N . =0.
Hence Re &, and so .&¥ = ,_#, i.e., (2) holds.

2)=@Q): By 2), & = . and hence & = {0}. Thus & is
trivially closed under homomorphic images, and hence (1) follows
from Theorem 3.1.
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Let .7 denote the smallest torsion class containing the simple
R-module S. If each Te.%” < . # can be written as

T=03 73T,

where & is a set of nonisomorphic simple R-modules, then R is said
to have primary decomposition (PD) for .. For further results on
(PD), the reader is referred to [5] and [9].

In order to characterize rings for which every hereditary torsion
theory has dimension zero, the following result of H. Bass [2] is
needed:

THEOREM P. The following are equivalent:

(1) R is right perfect.

(2) R/J(R) is semi-simple Artinian and J(R) is right T-nilpotent,
where J(R) denotes the Jacobson radical of R.

(3) R contains mo infinite sets of orthogonal idempotents and
nonzero left modules have nonzero socles.

THEOREM 3.3. FEvery hereditary torsion theory (9, F# ) for
2 has 7 gl.dimR =0 if and only if R is the direct sum of
finitely many right perfect rings, each of which has a unique
maximal twosided ideal.

Proof. (=): By S gl.dimR =0 and Corollary 3.2, nonzero
modules have nonzero socles. From .75gl.dim R = 0, Theorem 3.1,
and [5], Theorem 5.3, it follows that R has (PD). Since each 74(R)
is a two sided ideal, then R =R, + R, + --- 4 R, (ring direct sum),
where each R; = .73(R) for some simple module S. Then nonzero
left R,-modules have nonzero socles, and hence J(R;), the Jacobson
radical of R, is right T-nilpotent by an argument of H. Bass [2].

It remains to show that R,/J(R;) is a simple Artinian ring; for
then the required properties of R, follow from Theorem P. Let B
be the inverse image in R; of Soc (R,/J(R;); then B is a two-sided
ideal of R,. If B+ R, and M is any maximal left ideal of R, con-
taining B, then the following property holds: R,/M = R,/M’' implies
M’ 2 B. Since nonzero R;-modules have nonzero socles, then B == J(R,).
So since J(R;) is the intersection of maximal left ideals of R, it
follows that there exists a maximal left ideal M, such that M, 2 B
and hence R;/M # R,/M,. This contradicts the fact that R; has only
one simple R,module (up to isomorphism). Hence B = R, Ii.e.,
R;/J(R;) = Soc (R;/J(R;)). Hence R;/J(R;) is semi-simple Artinian. Since
R; has only one simple R;-module up to isomorphism, then R;/J(R;)
is a simple ring.
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(=): Let R=R, 4+ R, + --- + R, (ring direct sum), where each
R; is a right perfect ring with a unique maximal ideal. Then from
Theorem P it follows that nonzero modules have nonzero socles. So
for any hereditary torsion theory (.77, & ) either R;e 9 or R;e &
for t=1,2, .-+, n. Then it is not hard to see that & is closed
under homomorphic images, and hence .7~ gl. dim R =0 by Theorem 3.1.

A torsion theory (7, &) for .# 1is said to be of simple type
if it is hereditary and nonzero modules in .~ have nonzero socles.
Then (7, &) is of simple type if and only if .~ is the smallest
torsion class containing a given set of simple modules.

COROLLARY 3.4. Suppose every hereditary torsion theory (.7, F )
Jor x. o has 7 gl.dim R = 0. Then the following are equivalent:

(1) Every torsion theory for r.# s of stmple type.

(2) J(R) is left T-milpotent.

(8) Nomzero left R-modules have maximal submodules.

Proof. (2) = (3) is immediate from [12], Lemma 1 and Theorem 3.3.

1)=3): Let 0 A€~ be a module with no maximal sub-
module. Define . # by & = {Xe€, # |Hom (4, X) = 0}. Itis easily
checked that & is closed under taking submodules, extensions, and
direct products; hence .# is a torsionfree class by [5], Theorem 2.3.
Since all the simple left R-modules are in &, this contradicts (1).

(8) = (1): From Theorem 3.3 it follows that nonzero left modules
have nonzero socles. Let (9, & ) be a torsion theory. It is
sufficient to prove that for each Me 9, Soc(M)e 7. If S is a
simple submodule of M e 7, then choose N maximal in the properties
N M and NN S =0. Then S is isomorphic to an essential sub-
module of M/Ne. 7. Since R has (PD), it follows that M/Ne 77,
where .75 is the smallest torsion class containing S. Thus every
maximal submodule T/N of M/N has the property (M/N)/(T/N) = S.
(Such maximal submodules exist by (3).) Thus M/Ne. 7 implies
Se 7.

COROLLARY 3.5. Let R be commutative. Then the following are
equivalent:

(1) Ewery hereditary torsion theory (.7, & ) has .7 gl.dim. R=0.

(2) R is a direct sum of finitely many local perfect rings.

B) h.dim (M) =0 or « for each Me _+#.

(4) Ewvery torsion theory for p.# 1is splitting.

(5) R has (PD) and (& &) is splitting.

Proof. (1) = (2) is Theorem 3.3; (2)=(3) is a result of I.
Kaplansky (see [2]); and (2) = (5) is [9], Theorem 5.4.
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(1) and (2) = (4): By Corollary 3.4, every torsion theory is of
simple type. (PD) follows from (2), and hence every torsion theory
splits.

(4) = (5): Suppose (PD) does not hold. Then there exists non-
zero Me ,. such that (M) #= PDiscs Ts(M), where A is a re-
presentative set of nonisomorphic simple modules. Let

' =N| 5 7500 M| 5 7500

The . F,-torsion part of N is .75 (M), by splitting N = 75.(M) P K
and 74(K) = KN 9s(M) = Ts(M). Since K = Siscs Ts(M), then

S'SK/ S (M) .
SeA—{S’}

Since the smallest torsion theory containing the set A — {S'} splits,
then
k=[ = 7an]es,

SeAd—(S’

which is a contradiction to KN 5 (M) = 0.

4. Central splitting. A pair of torsion theories (&, 9),
(7, &) is called a torsion-torsionfree (TTF) theory. In this case
7" is both a torsion and a torsionfree class, and hence .7~ is called
a TTF class as in [13]. In § 3 it was pointed out that TTF theories
are related to & gl. dim. R = 0, whenever (&, .77) is hereditary. The
splitting of TTF theories is studied in [13], and the following is the
main result obtained:

THEOREM 4.1. ([13], Th. 2.4). Suppose that (&, 7), (7, F )
s a TTF theory. Then the following are equivalent:

Q) For all Me g #, M = (M)PD .7 (M).

2) R=%(R)+ 7 (R) (ring direct sum).

3B ¥ =<

4 TEM)=0and ©M|T (M))=M|F7 (M) for all M e ,_+#.

The following questions concerning a TTF theory (&, .9), (7, &)
were raised in a conversation between R. L. Bernhardt and the
author: (1) If (.7, &) is splitting, is (¥, 97) also splitting? (2) In
case (&, .77) is splitting, when does (&, .7 ) have the special type
of splitting described in Theorem 4.17

Examples are given to show that either one of (¥, 97) or (9, &)
may be splitting without the other splitting. Conditions under which
the splitting of one implies the splitting of the other are discussed.
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If (&, 97) satisfies the condition described in Theorem 4.1 (1), then
(&, 77) will be called central splitting (as in [3]). The following
result ([13], Th. 2.1) may be useful to the reader in the sequel: A
hereditary torsion theory (7, # ) for p.# has the property that
7 is closed under taking direct products if and only if the filter
F(7)={K|R/Ke.7, K is a left ideal of R} has a smallest element
I. In this case I = &’ (R), where (&, .7 ) is a torsion theory.

ExAMPLE 4.2. & is a TTF class and (&, .#7) is splitting, but
(&, &) is not splitting. Let K be a field and 4 a countably infinite
index set. Let @ = [[... K9, where K = K. Then let

R=>K*“+K-12@Q,

a€A

where 1e€Q. It is shown in [4] that the Goldie torsion theory
(&, ") is splitting. Since Z(R) =0, then F(Z) = (R, ... K},
and hence % is closed under products. Finally, (&, &) is not
splitting since Z(R) = D4 K is not a summand of R.

Before stating the first sufficient condition for the splitting of
(7, &) to imply the splitting of (&, .97), a lemma due to S. E.
Dickson is needed. [7], Proposition 1 is a weaker form of this lemma,
however, the proofs are almost identical.

LEMMA 4.3. Let I = >, m;R be a finitely generated right ideal
of R. Then the class & = {De z.# | ID = D} s closed under direct
products.

Proof. Let D,e &(@eB). If xe[lsesz D, then for each aec B
there are x*, x{®, ..., 2! ¢ D, such that

T, = M + mai® + oo0 + mal .
Hence, if x, 2, +--, 2, are defined in the natural way, then
T =M, + M, + e + mnxneI(HaeB Da) .

Hence <7 is closed under direct products.

THEOREM 4.4. Let (&, ), (7, F ) be a TTF theory such that
(7, F) 1s splitting. Suppose the minimal ideal I in the filter F(77)
contains mo monzero wmilpotent left ideals of R. Then (&, . 77) s
central splitting +f and only if I is finitely generated as a right
ideal.

Proof. (=): Since (7, &) is splitting, R= .7 (R)@P F with
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Fe . Then R/F e .7, and hence F 2 I by the definition of I. By
Lemma 4.3 the class & ={D e .« | ID = D} is closed under products.

Claim 2 = 2. Suppose De & and ¢: D — Te 7. Then ¢p(D) =
@(ID) =I-p(D) < I-T = 0 and so it follows that Hom (D, T) = 0 for
all Te 9. Thus & € &. Conversely, let Ac% and observe that
A/IAe 7 by the fact that 9 = {Me, # |IM = 0}. Since ¥ is
closed under homomorphic images and € N .7 =0, it follows that
IA =A. Thus ¢ < <.

Next observe I is essential in F. For if K is a left ideal of R
contained in F and KNI=0, then IK=0. Thus K& 7 (R)NF=0.

Claim I+ 0 for all 0%x¢cF. For if not, let yI =0 for
0+ yeF. Then Ryn I+ 0 since Iisessentialin F. But (RyN I}’ <
RyI = 0, which contradicts the hypothesis that I contains no nonzero
nilpotent left ideals.

Hence F' can be embedded as a left R-module in a product of
copies of I in the usual way. Moreover, [l,..l.€<= (where I, =1
and A is any index set) by Lemma 4.3 and the fact that I* = 1.
Since (7, &) splits, .7~ is closed under taking injective envelopes
by Lemma 1.1. So [5], Theorem 2.9, gives & = <& is closed under
submodules; in particular, FFe% and F =1I1F =1 But I=%(R),
and hence R = 7 (R) D F = 7 (R) + € (R) (ring direct sum). Hence,
(&, Z7) is central splitting by Theorem 4.1.

(=): By Theorem 4.1, R = € (R) + .7 (R) (ring direct sum) and
hence I = &’(R) is a principal right ideal.

PROPOSITION 4.5. Let (&, .7 ), (9, % ) be a TTF theory such
that (7, &) splits. Then the following are equivalent:

1) (&, ) is central splitting.

@) (&, ) is splitting.

(8) & s closed under taking injective envelopes.

4 =27

Proof. (1) = (2) is trivial, and (2) = (3) follows from Lemma 1.1.

(8)=(4): By (7, &) is splitting, Lemma 1.1, and [5], Theorem
2.9, ¥ 1is closed under taking submodules. Let Fe.&# and note
G F) S F S E(&(F)): For if not, then there exists 0 = T'e 7 such
that T < F, which leads to a contradiction of .9~ N % = 0. But (3)
and & closed under submodules then yield F' ¢ &, and hence & 2 & .

(4) = (1): Since (.7, %) is splitting, write R = .7 (R) @ F with
Fe . Since R/Fe 7, then F2 % (R). But Fe® by (4), so
F =%(R). Hence R= .7 (R) + € (R) (ring direct sum), so that
(%, Z7) is central splitting by Theorem 4.1.

ExAMPLE 4.6. 7 is a TTF class and (&, .77) is splitting, but
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not central splitting. Let R be the ring of all 2 x 2 upper triangular

matrices over the field @ of rational numbers. Let I = {(8 ;’;) l X, Y€e Q},
so that I is a two-sided idempotent ideal of R. Define:

T ={Me#|IM = 0}
F ={Mep# |Hom (T, M) =0 for all Te 77}
& ={Mecp# |Hom (M, T) =0 for all Te 97}.

Then 7~ is a TTF class, and (&, 97) and (7, &) are torsion
theories. Since R/I is a projective simple R-module, it follows that
all modules in .9~ are projective. Hence (&, .7) is splitting. But

7 (R) = {(g g) ] x, yeQ} is not a direct summand of R; so (.7, &)
is not splitting.

ProPOSITION 4.7. Let .7 be a TTF class, and let (&, .7 ) be a
splitting torsion theory. Then the following are equivalent:

1) (&, ) is central splitting

2) (&, ) is hereditary

B ZRNITR =0

4) Z(R)N 7 (R) contains no nonzero nilpotent left ideals of R.

Proof. (1) = (2) is immediate from Theorem 4.1 (3).

If (2) holds, then Z2(R) N .7 (R) e € N .2~ = 0, and hence (2) = (3).

(3) = (4) is trivial.

Suppose (4) holds. Since (&, 77) is splitting, R=FR)P T
with Te 7. Hence 7 (R) 2 T. But then

[ZE)nN TR ZR)-7T(R) =0

implies (R)N .7 (R) =0 by (4). Hence T = 7 (R), and thus (1)
holds by Theorem 4.1 (2).
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