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SUFFICIENT CONDITIONS FOR A RIEMANNIAN
MANIFOLD TO BE LOCALLY SYMMETRIC

KOUEI SEKIGAWA AND SHUKICHI TANNO

In a locally symmetric Riemannian manifold the scalar
curvature is constant and each k-th covariant derivative of
the Riemannian curvature tensor vanishes. In this note, we
show that if the covariant derivatives of the Riemannian
curvature tensor satisfy some algebraic conditions at each
point, then the Riemannian manifold is locally symmetric.

Let R be the Riemannian curvature tensor of a Riemannian mani-
fold Mm with a positive-definite metric tensor g. Manifolds and ten-
sors are assumed to be of class C°° unless otherwise stated. We
denote by V the Riemannian connection defined by g. For tangent
vectors X and Y, we consider R{X, Y) as a derivation of the tensor
algebra at each point. A conjecture by K. Nomizu [4] is that
R(X, Y)*R = 0 on a complete and irreducible manifold Mm(m ^ 3)
implies VR = 0, that is, Mm is locally symmetric. Here we consider
some additional conditions.

For an integer k and tangent vectors Vk, , V1 at a point p of
Mm, we adopt a notation:

where V{, etc., are components of Vk, etc., and VeVs ••• VrRlcd a re
components of the k-ih covariant derivative VkR of R in local co-
ordinates.

PROPOSITION 1. Let Mm(m ^ 3 ) be a real analytic Riemannian

manifold. Assume that
(1.0) the restricted holonomy group is irreducible,
(1.1) R(X, Γ) j β - 0,
(1.2) R(X, Y)-(ΨVR) = 0 for k = 1, 2, .
Then Mm is locally symmetric.

Here we note that condition (1.0) means that it holds at some,
hence every, point and condition (1.1), and (1.2), mean that for any
point p and for any tangent vectors X, Y, Vk, , V1 at p9 they hold.

PROPOSITION 2. Let Mm(m ;> 3) be a Riemannian manifold. As-
sume (1.1) and (1.2) and that
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(1.0)' the infinitesimal holonomy group is irreducible at every point.
Then Mm is locally symmetric.

Propositions 1 and 2 are essentially related to the following results.

PROPOSITION 3. Let Mm(m ^ 3) be a Riemannian manifold. As-
sume that the restricted holonomy group H° (the infinitesimal holo-
nomy group H', resp.) is irreducible, and R is invariant by H°
{H\ resp.). Then Mm is locally symmetric.

PROPOSITION 3'. (J. Simons [5], p. 233) Let Mm (m ;> 3) be an
irreducible Riemannian manifold. Assume that R is invariant by
the holonomy group H. Then Mm is locally symmetric.

Proposition 3 is a generalization of a result by A. Lichnerowicz ([2],
p. 11), which contains an assumption of compactness. We remark
here that condition (1.2) is equivalent to

(1.2)' R(X, Y) (VVkVVk_r . VVχR) = 0 for fc = 1, 2, ,

where X, Y, Vk, •••, V1 are vector fields on Mm.
With respect to Nomizu's conjecture and the above propositions

we have

THEOREM 4. Let Mm (m ^ 3) be a Riemannian manifold. As-
sume that

( i ) the scalar curvature S is constant,
(ii) R(X, Y)-R = 0 ,
(iii) R(X, Y) VvR = 0,
(iv) R(X, F) (X, F;V2i2) = 0,
(or (iv)' R(X, Y)-VXVVR = 0 for vector fields).

Then Mm is locally symmetric.

THEOREM 5. Let Mm (m ^ 3 ) be a Riemannian manifold. As-
sume that

( i ) the Ricci curvature tensor Rι is parallel; VRL — 0,
(ii) R(X, Y) R = 0,
(iii) R(X, Y)-VVR = 0.

Then Mm is locally symmetric.

In Theorems 4 and 5, if m = 2, then VR, = 0 implies VR = 0.
In Theorem 5, if Mm is compact, (iii) can be dropped (A. Lich-

nerowicz [2], or K. Yano [6], p. 222).
In § 2 we reduce proofs of Propositions 1 and 2 to that of Proposi-
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tion 3, and next we reduce proofs of Propositions 3 and 3' to that of
Theorem 4. In §3 we prove Theorems 4 and 5.

2. Holortomy algebras. Conditions (1.1) and (1.2) imply that

[R(X, Y), {V*R)(A, B)] = {VIR)(R{X, Y)A, B)

+ (Vk

rR)(A, R(X, Y)B)

for k — 0, 1, , where V°β means R, and [ T, T'\ for linear trans-
formations T, T means TT - T'T.

Now we show

LEMMA 2.1. The condition (2.1) implies

Y), (VkvR)(A, B)\ = (VkR){(V'wR)(X, Y)A, B)ί(V
( ' ' + ΦkR){A, {ΨWR)(X, Y)B)

for j, k = 0, 1, 2, . And (2.1) is equivalent to

[(V(vR)(X, Y), R(A, B)] = R((V>WR)(X, Y)A, B)
{ ' ' + R(A, (nmx
for j = 0,1,2, ••-.

Proof. We prove (2.2) by induction in j and by tensor calculus
in local coordinates. By (2.1), (2.2) holds for (j, k) = (0, k), k = 0,
1, 2, . Assume that (2.2) holds for (j - 1, k), (j - 2, k), , (0, k),
k - 0, 1, 2, . Then, denoting by VίV, VrRζxy the i-th covariant
derivative of R and by V/ VeR%ai the k-th covariant derivative of

R,

(2.

In

we show

4) V ' V *

= v, • V.22J,

fact, we have

VtVs VrRζxyVf

= Vt(V. VrRζ

- V. VrRζx

V/ V:7R~
v , . veJ

j, + V/

• v δ R«b

tV. V r i^,

- v.ίVy- v.J2;.»v. . vri??%)

+ VtV/ . V.JβJ.iV. VrR^y

= Vt(V, VJ8jrtV. VrRlxy + V, V^ΪJ.,V.

- V. V ^ ^ . V / V e iO (by (2.2) for (j - 1, k))

+ VtV, . . VJ2ί.,V. V^βJ.,

= V, VjBfrtV.V. VrBL, + V, V^.V.V. VrR°bxy
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+ (VtV, VMalN* VrR^y - V. V rRζxyV tV f

+ (V«V, . . Vβi^V 8 . . . VrRlxy + VίV/ . . . VJRJ..V.

The second and third terms vanish by (2.2) for (j — 1, k + 1). There-
fore we have (2.4).

Similarly we can show that (2.3) implies (2.2), including (2.1).

By the theory of holonomy groups (cf. A. Nijenhuis [3]), the set
of linear transformations

(2.5) R(X, Y), (VWR)(X, Y), (V-β)(X, Y),

for X, Y, Wlf 6 Mpf the tangent space to M at p of M, spans a
Lie algebra h'p called the infinitesimal holonomy algebra at p. h'p
generates the infinitesimal holonomy group H'p which is a subgroup
of the local holonomy group i ϊ* = H°P(U). Clearly ΈLP is a subgroup
of the restricted holonomy group H°p. If a Riemannian manifold is
real analytic we have Hf = H* = H°.

The condition (2.3) implies that

(2.6) [T, R(A, B)\ = R(TA, B) + R(A, TB)

for any Teh'p. This says that R is invariant by T. Therefore, for
any element a e H'p we have

(2.7) aR(A, B)C - R(aA, aB)aC for A, B, C e Mp .

Thus, we have reduced proofs of Propositions 1 and 2 to proof of
Proposition 3.

Since (2.7) or (2.6) is equivalent to (2.1), condition (2.7) implies
conditions (ii), (iii) and (iv) of Theorem 4. Consequently, if we show
that, under the conditions in Proposition 3 (3', resp.), the scalar curva-
ture S is constant, then Proposition 3 (3', resp.) will follow from
Theorem 4.

Let Ei9 1 ̂  i S m, be an orthonormal basis at p. Then the RiccI
curvature tensor Rt is given by

RAX, Y) - Σg(R(X, EJY, E{).
i

Since R is invariant by H' or H° or H, we have R,(X, Y) = R^aX, aY)
for any aeH', or H° or H. Since Hf or H° or H is irreducible, we
have some real number λ so that Rλ — Xg at p. Because p is an
arbitrary point of M and m ^ 3, λ is constant on Λf, and hence S =
mλ is constant.

3* Proofs of Theorems 4 and 5* To prove theorems it suf-
fices to show two propositions below.
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PROPOSITION 3.1. On Mm (m :> 3) assume that
( i ) the scalar curvature S is constant,
(ii) (R(X, Y).R)(X, V) = 0,
(iii) (R(X, Y) VrR)(X, Y)V=0,
(iv) (R(X, Y)'VrRMV, X) = 0,
(v) (R(X, Y) (X, V; V'RMV, Y) = 0,
(or (v)' (R(X, Y) VxVrRί)(V, Y) = 0 for vector fields).

Then we have Vi? = 0.

Proof. Let {Ey be an orthonormal basis at p of M. Put X — Ex,
Y — Ey, V — Ev in (iii) and take a sum on x, y, v. Then we have

RirxyVvRr\y - R™*VvR\xy - Rrx

xyVvR
ivry - Rry

xyVvR
iv\ = 0 .

The third and fourth terms vanish. We apply the second Bianchi
identity to the first two terms;

Ri^(-VxR/yv - VyR/vx) - -

-Rr">(-VJtrv,v - VrRvixy) - IT 'VίB,,., +

= R^ViR^ +
Therefore, we have

(3.1) -ABT-Vjtr. + Rr""V{Rmy = 0 .

Likewise, (iv) implies that

(3.2) Rn\VυRrx + Rrx

xsVvRl = 0 .

And (v) implies that

(3.3) Rr»*«VxVvRry + Rr

y*«VxVjlv

r = 0 .

For (v)' we assume that Et are local vector fields such that (VEt), = 0
and {Ei} forms an orthonormal basis at p. Then we have the same
(3.3).

Since VυR; = (l/2)VrS = 0, by (3.1), (3.2) and (3.3), we have

ry = 0 ,

Br-vjtnm, = o.

On the other hand, in a Riemannian manifold generally we have

where Bi

ikι,atXΎh are components of R(X, Y) R (A. Lichnerowicz [2],
p. 10). Since (ii) is equivalent to B%lthi = 0, we have VhRim - 0.

PROPOSITION 3.2. On Mm (m ^ 3) assume that



162 KOUEI SEKIGAWA AND SHUKICHI TANNO

( i )
(ii)
(iii) (R(X,Y).VrR)(X,Y) = 0.

Then we have Vi? = 0.

Proof. We have (3.1) by (iii). Then we have Vh(RijklR
ίjkl) = 0.

Therefore, (ii) and (3.4) show VR = 0.

REFERENCES

1. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, Wiley-
Interscience, New York, 1963.
2. A. Lichnerowicz, Geometrie des groupes de transformations, Dunod, Paris, 1958.
3. A. Nijenhuis, On the holonomy groups of linear connections IA, IB, Proc. Kon.
Ned. Akad. Amsterdam 15 (1953), 233-249.
4. K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor,
Tόhoku Math. J. 20 (1968), 46-59.
5. J. Simons, On the transitivity of holonomy systems, Ann. of Math. 76 (1962), 213-
234.
6. K. Yano, The theory of Lie derivatives and its applications, Amsterdam, North
Holland Pub. Co., 1957.

Received October 6, 1969.

NIIGATA UNIVERSITY

NIIGATA, JAPAN

TOHOKU UNIVERSITY

SENDAI, JAPAN




