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APPROXIMATION OF WIENER INTEGRALS OF
FUNCTIONALS CONTINUOUS IN THE

UNIFORM TOPOLOGY

H. C. FlNLAYSON

The result obtained in this paper is a technique for the
approximation and estimation of error of Wiener integrals of
suitable functionals continuous in the uniform topology. For
a certain class of functionals called third degree polynomials
exact results occur at the first as well as each subsequent
stage of approximation.

Similar results for functionals continuous in the Hubert topology
are given in [1], [4], [5], [6] and [7]. In each of these papers the
functions x(s) of Wiener space are approximated by linear combinations
of the first n indefinite integrals {&(£)} of a certain complete set of
orthonormal functions {#<(*)}. The approximation for x(t) turns out
to be Σί=ιci(χ)βi(t) where the <?<(#)'s are Stieltjes integrals of x(s)
with respect to the α's. When x(t) is replaced by this approximation
in F[x(')] a standard Wiener integration formula can be applied. If
F is required to be continuous in the Hubert topology, [4] and [5]
show there is (as might be expected) considerable choice in the C.O.N.
set. However the uniform topology seems more natural to use in
Wiener space and when continuity in this topology is required it may
be there is not so large a choice. The Haar functions seem a reasonable
choice to try and it is these the author has used.

Let C be the space of real functions continuous on [0, 1] and
which vanish at zero. Let {hn(s)} be the Haar functions normalized
to be right continuous and to vanish at s = 1. The approximation
of this paper applies to F[x] if

F[x0 + x]=^ F[x0]

+ Σ \(i)\ Φi) ' xisJdwKiiXolSv , Si) + Q[xQ, x]
* = 1 JO JO

where, with \\x\\ - maxf \x{t)\, \Q[x0, x]\ ^ A||a?||DexpB(||a?0||
2 + IN!2)

with B < 1/12 and D > 0.

Notation. Let {hn(s)} be the Haar functions on [0, 1] normalized
to be right continuous and so hn(l) = 0.

Let, for n = 1, 2, 3, ,

cn(x) = - 1 x(s)dhn(s) ,
Jo
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*"(ί) = Σ
•=i

«(£, *) = Σ

en(ξ) =

(This is the kernel commonly used now whereas that used in [1], [4]
and [5] was 7Γ~w/2exp (-f2. - . . . - ξl) )

Finally let

||g|| = sup \x(t)\
ίe[0, i]

for xeC and let

p(s, t) = (23'2/π)Σ sin (k - i)πthk(s)/(2k - 1)

(that this last series converges for (s, t) e [0, 1] x [0, 1] and is, for
fixed s, continuous in t will be seen in Theorem 1. Also p(s, 0) = 0
and so, for fixed s, p(s, t) is in C and pn(s, t) can be computed).

In connection with Radon integrals the symbol \ will be used
Jo

rather than 1 (w)l and d subscripted with n subscripted s's will be re-
Jo Jo

placed by d{n). Another abbreviation is given by the following equation:

G(f(ξ), n)dμm - Γ ( Λ ) Γ en(ζ)G(f(ξ),
o J—oo J—oo

If F[x] is defined on C we define In(F) and /.(JF') by the follow-
ing equations provided the right hand sides have meaning.

ζ, )]dμn ,

= if" [{F[f„(£, •) + ^(s, •) - p"(s,

ξ, •) - |0(β, •) + p*(8, )]}dsdμn .

2. The principal theorem* The following theorem and corollary
are the main results of the paper.

THEOREM 6. Let F[x] be integrable on C and such that Jn(F):
n — 1, 2, 3, exists as a finite quantity. For each xoeC let:

Kifaolsu •••> s»)» i = It 2, 3, be right continuous and of bounded
variation in any j(j <̂  i) of the variables for the other i — j variables
fixed. For each pair [xQ, x]eC x C
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3 ri

let P[xQ, x] = F[x0] + Σ Φ i ) x(8i)d{i)K(x0\s19 , s<) .
i = l JO

F[x0 + x] = P[#o, #] + Q[#o> #] define Q[x0, x]. Then if \Q[x0, x] | ^
A\\x\\DexvB[\\x0\\2 + pll 8], where B < 1/12, and D > 0 αwd i/ αe(0,
1/2) ίfcere follows

Jn(F) - [ F[x]dx = o(^-αI)) α β ί i - o o .

Furthermore, if Q = 0 ίfee^

dα; /or eαc/z, w .= 1

COROLLARY. Under the conditions of the above theorem a specific
estimate of error is given by

JJF) - \ F[x]dx
Jc

^ A{M2l3[2a+1/na]D[2/Vl - 12B]1I&

+ [2/i/l - 4B][31/τ/5ί]1>exp [ZVB/n]

where M is the constant given in Lemma 2 with P replaced by 3D/2.

The following theorems (except Theorem 2) and two lemmas are
the main results used in the proof of Theorem 6. These theorems
are analogous to correspondingly numbered theorems in [4]. In fact
Theorems 3 and 5 are identical to those of [4] and so proofs for them
will not be given.

THEOREM 1. (i) The p(s, t) series converges, the convergence being
uniform in (s, t) e [0, 1] x [0, 1].

(ii) p(s, t) is continuous in t for each fixed s.
(iii) \\p(s, •) — pn(s, ) | | is measurable in s.
(iv) \\p(8, )-^(s, .)ll^31/n^.

(v) //, for xeC,F[x]=K0 + Σ [φi) xis^d^K^ , s,) in
i=i Jo

which the K{'s are right continuous and of bounded variation in any
j(j ^ i) of the variables for the other i — j variables fixed then

(2.1)

(The reason V2 does not appear under the p's as in Theorem 1

of [4] is the change in kernel which results in I x(s)x{t)dx being
Jc

i min (s, ί) rather than min (s, t).)
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LEMMA 1. (Ciesielski [2]). For each xeC, the graph of xn(t) is
an inscribed polygon of the graph of x(t). The graph of xn+1(t) has
at least the same vertices as that of xn(t) and {xn(t)} converges uni-
formly to x(t).

Some notation, now to be given, is used in Lemma 2 below. For
fixed xeC and ae(0, £) let φa[x] be the infimum of h > 0 such that
\x(f) - x{t")\ ^h\f - t"\a for t' and t " in [0, 1]. (that such h exists
for almost all xeC has been shown by N. Wiener [10]).

LEMMA 2. (Yeh [8]). For every a e (0, 1/2) and P > 0, the func-

tional {φa[x]}p is Wiener integrable i.e., I {φα[#]}pώ; < ©o.

In fact for any N> i max {(1 + 2a)/(ί - 2a), P},

( {φa[x]}Pdx ^ M
Jc

where

M = (2N)Ne~N{l - 21'£+β-*<1-2α)}-1Σ (m + 1)7(2ΛΓ + 1 ) < oo .

THEOREM 2. 7/ i*7^] is continuous in the uniform topology on
C and if either

( i ) F[x] is bounded
or

(ii) there exist nondecreasing G^u) and G2(u) defined on [0, oo)
such that (^[maXίeco,!]^)] and G2[m&xte{0Λ]{ — x(t)}] are Wiener integrable
and such that

K*)] + G2[max {-&
ίe[o,ι] ίe[0,i]

then

(2.2) MmJn(F) = ( F[x]dx .

Particular suitable choices for Gt and G2 are

(2.3) GL(u) = G2(^) = ikΓexp {hup} for p e [0, 2) cmd arbitrary real

M and h.

(2.4) Gx{u) — G2(u) = M exp {/m2} /or fc < \ and arbitrary real M.

THEOREM 3. If F[x] e L^C) then

\ F[x]dx - \~ \ F[x( ) - a? ( ) + φn(ξ, )]dxdμn .
JC J—ooJc
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THEOREM 4. For a e (0, 1/2) and P ^ 0,

\x - x%\\pdx ^ ikf[2α+1/^α]p

where M is as in Lemma 2.

THEOREM 5. For fixed i e {1, 2, 3}, let H(tίy , U) be right con-
tinuous and of bounded variation in any j(j <^ i) of its variables for
the other i — j variables fixed. Then there exists Nis^ , s{) of
bounded variation and right continuous such that for all xeC,

is of the form

S i

αfo) x(8i)dwN(8ιt , Si) .
0

The proof of Theorem 6 and its corollary follows. Let

e. = ί F[x]dx - Jn(F)

= ί F[x]dx

- Γ i\l{F[ir.(ξ, •) + P(S, •) - ^(β, •)]
J-oo JO

+ F[ψn(ξ, •) - p(s, •) + p*(8, -)]}dsdμn .

If now F is replaced by P + Q the integrals can be combined and,
because of Theorems 1, 3 and 5, the part involving P disappears.
(The detailed argument is exactly the same as that in [4, pp. 64-65]
where all symbols and theorems used there are to be replaced by the
corresponding ones of this paper. See also the note after (2.1))»
What is left is

\~{\ξ> •), *(•) - x*(-)]dx

£, •), Pis, •) - ρn(s, •)]

If

then
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+ [\\p(s, •) - p*(8, )\\Dex
Jo

+ \\P(S, )-pn(s, )\\2]ds}dμn.

N o w s teps a lmost identical to those of [4, p p . 66-67] w i t h \\x\

replacing [[x(s)]2ds and a2 + b2 = [(a + b)2 + (a - b)2]/2 replaced by
Jo

(2.5)

and

π
\\x\\> +

I 11 Ju — JL

VII

\ \ y \ \ 2 ^

,|rexp.

\x - xn\\

ll» + y\\2 + P

B[ | | f . ( f , OII2-f

-12/3Γ p
3 D / 2dxJ Π exp

- 2 / I I 2

• I I * -

65||a?|

yield

*nii2]ίί*W

| 2 ^ ] 1 / 3

Γ
J-o

(2.6) exp^H^s, .) - p*(s, )\\2ds ^ ί

\)\P(8, •) - Pn{s, O i r e x p ^ H ^ , •) ~ p*(8, )\\2]ds .
Jo

Finally one notes that

11 $| | = max {max x(t), max [ — x(t)]}
ίe[θ,ij ίe[0,i]

so that for Ke(0, 1)

exp (K\\x\\2) ^ exp (if {max x(t)}2) + exp (j£{max [-x(t)]}2)

and

( exp (K\\x\\2)dx ^ 2[ exp (K{maxx(t)}2)dx
(2.7) i c ] G _

- 4 exp [-(1 - 2iΓ)π2/2]^/v/(2τr) = 2/i/l - 2K.
Jo

(for the distribution of maxx(t) see [3]).

The estimate (2.7) used first with Theorem 4 and then with
Theorem 1 (iv) provides the estimates of the right sides of (2.5) and
(2.6). The estimate given in the corollary follows at once as does
also the order estimate of the theorem.

3* Proof of Theorems 1, 2 and 4* As noted in §2 after the
statement of Theorem 6, only Theorems 1, 2, and 4 remain to be
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proved. Yeh's lemma [8] and Ciesielski's lemma [2] provide a proof
for Theorem 4. The lemma due to Ciesielski will be used in the
proofs of Theorems 1 and 2. An outline of the proof of this lemma
will follow. First there will be noted that there is a natural double
indexing of the Haar functions:

a{oo)(s) ,

a{

n

k)(8): n = 0, 1, 2, ., k - 1, 2, . . . , 2n .

A corresponding double indexing applies to the β's. It will be con-
venient to speak of "the nth cycle of a's (β'&): n *> 0" by which will
be meant {a{

n

k): k = 1, 2, , 2n} (or similar for /3's). Note that a{

Q

0) is
not in a cycle. Now it is fairly easy to prove by induction than any
partial sum of the cβ-series to at least the end of the (N — l ) t h cycle
gives the value of x(t) for all t of the form l/2N: I — 1, 2, , 2N and
that the graph of this partial sum is polygonal with vertices precisely
those points where the graph of the partial sum agrees with the graph
of x{t). The conclusions of the lemma are thus obtained.

The proof of Theorem 2 follows:

First there is noted that a functional continuous in the uniform
topology is Wiener measurable. Lemma 1 together with Lebesgue's
bounded or dominated convergence theorem completes the proof of (i)
or (ii) respectively. That (2.3) or (2.4) provide suitable choices for
the G's follows from the formula for the integral of a functional of

(£) which yields

t GJmax x(t)]dx — \ Gx[max — {x(t)}]dx
Jc Jc

and the last integral clearly converges for the conditions given on p
and h in (2.3) and (2.4).

Next is given the proof of Theorem 1.

( i ) For any fixed s there is a most one hk(s) in "the nth cycle
of Haar Functions" (for this notion c.f. beginning of outline of proof
of the lemma) which is not zero and | hk(s) | <; τ/2\ But the k for
that hk(s) satisfies & ^ l + l + 2 + 4 + ••• + 2*-1 = 2\ A comparison
of the series, after terms of value zero have been deleted, of

Σ | s i n ( f c - i)πthk(8)/(2k - 1)|
k l
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with the series

which converges, yields the conclusion of (i).
(ii) That ρ(s, t) is continuous in t for each fixed s follows at

once from uniform convergence of a series of continuous functions.
(iii) To show that \\ρ(s9 •) - p*(s, )ll is measurable in s, ρn(s, ί)

will first be calculated.

P*(s, ί) = - Σ

(the Stieltjes integrals exist since p(s, u) is continuous in v)

; sin(Λ - i)πuhk(s)/(2k -
i

)Σ Σ Γsin(fc -
i=l fc=i Jo

(because of uniform convergence of a series of continuous functions).
Thus pn(sy t) is measurable in s for each fixed t and so of course is
p(s, t). Since pn(s, t) — ρ(s, t) is continuous in ί, |i^%(s, •) — /o(s, )ll
is determined by a countable number of t values and so is measurable
in s.

(iv) That

\\p(s, )-p«(s, Oll^βl/n1"

uniformly in s is seen as follows. Let k be such that

1 + 1 + 2 + 4 . . . + 2*-1( = 2w) ^ k

^ 1 + 1 + 2 + 4 + . . . + 2n( = 2n+1) .

Note that n <* log2 Λ ^ ^ + 1.
Now

8, ί) - pk(8, ί)| - (2^/) Σ [
*=i L

Iπ) Σ [sin (i - |)τrί
*=i L

+ Σ Γsin (i - i)πudhJ(u)βJ(t)\ht(8)/(2i - 1)
3=1 JO J

Since sin (i — i)πt e C, there follows from Lemma 1 that

(3.1) Σ Γsin (i - ί)7r%^.(w)/5,(.)|| ^ 11 sin (i - i)π || = 1
i=ijo II

for all i. Now let the series (in i) for p(s, t) — pk(s, t) be split into
two parts, viz. a finite sum from i = 1 to i = fc and the remainder
of the series from i = k + 1 onward. The second of these two parts*
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is estimated as follows:

69

(23 / 2/ττ)
i=k+l

(because of (3.1), the comparison series mentioned in the proof of
Theorem l(i), and the relation between k and n)

= 2δl2(ljV2)n/[π(l - l/τ/2)] ^ 32/(πk112) .

To estimate the first part it will be noted that, for any i, the maximum
difference between the graph of sin (i — i)πt and the kth polygonal
approximation, viz. (sin (i — i)πt)k, is no greater than the maximum
slope of this sine curve multiplied by 1/2*. Thus

sin (i -

and therefore

i=i Jo

k

Σ

^ (i - i)π/2n ^ iπ/2n

(2sl2/π)\π/2n

L

{because, for given s, the one function in the j t h cycle of Haar func-
tions which is not zero has index no greater than 2j+1: the π/2n before
the summation is due to a{

0

0) which is not in a cycle)

^ 20/k112 ,
j=0

and addition of the estimates completes the proof.
To prove (v) there is noted that the Fubini theorem for mixed

•Stieltjes and Wiener integrals will yield the required result if (2.1)
can be shown to hold for F[x] any one of the forms iΓ0, xfa), xisjxis^
and xis^xis^xfa). But (2.1) clearly does hold for KQ (yielding Ko) and
for x(st) and x(sL)x(s2)x(sB) (yielding 0). That (2.1) holds for ίφO^fe)
is seen from the computation

\ p(u, sjpiu, s2)du
Jo

= (27π2)Σ sin (A; - i)πsλ sin (k - i)πs2/(2k - I)2 = min (slt s2)

<by Mercer's theorem for the integral equation

Φn(s) = λn\ min (s, t)φn(t)dt .
Jo

f9, p. 136] or [7, p. 464]) and the proof is complete.

Finally there follows the proof of Theorem 4. Let k be such that
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1 + 1 + 2 + 4 + . . . + 2n-\ = 2n) ^ k

^ 1 + 1 + 2 + 4 + . . . + 2n( = 2n+1)

and let t e [0, 1] be such that

r/2n ^ t ^ ( r + 1)2": 0 g r ^ 2n - 1 .

N o w ( s e e n o t a t i o n i n Y e h ' s l e m m a ) f o r a l m o s t a l l xeC

( 3 . 2 ) \x(t) - x(r/2n)\ ^ φa[x]/2an. Also

(3.3) \xk(r/2n) - xk(t)\ ^ \xk(r/2n) - xk([r

(because the graph of xk is a chord of the graph of x on [r/2n, (r +
according to the Ciesielski lemma).

= \x(r/2*) -x([r + 1J/2 ) |

(since, from the Ciesielski lemma, x and xk agree at r/2n and [r + 1J/271}

for almost all x.
Thus

= \x(t) - x(r/2n) + x(r/2n) - xk{t)\

= |a?(t) - a;(r/2*) + ^(r/2 % ) - xk{t)\

^ 2φΆ\x\\2an

(because of the Schwarz inequality and inequalities (3.2) and (3.3)).
From the fact that n ^ log2 k — 1 there then follows for almost all x

and an application of Yeh's lemma completes the proof.
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