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LOCALLY COMPACT SPACES AND TWO CLASSES
OF C*-ALGEBRAS

JOHAN F. AARNES, EDWARD G. EFFROS AND OLE A. NIELSEN

Let X be a topologkal space which is second countable,
locally compact, and To. Fell has defined a compact Hausdorff
topology on the collection ^{X) of closed subsets of X. X
may be identified with a subset of ^ ( X ) , and in the first
part of this paper, the original topology on X is related to
that induced from &*(X)Φ The main result is a necessary
and sufficient condition for X to be almost strongly separated.
In the second part, these results are applied to the primitive
ideal space Prim (A) of a separable C*-algebra A, giving in
particular a necessary and sufficient condition for Prim (A)
to be almost separated. Further information concerning ideals
in A which are central as C*-algebras is obtained.

Most of the theorems in the paper were suggested by the results
for simplex spaces recently obtained by Effros [10], Effros and Gleit
[11], Gleit [14], and Taylor [17]. The notion of a simplex space was
introduced by Effros in [9]. If Sϊ is a simplex space, then max SI,
Pi(SI), and EPffi) denote the closed maximal ideals in §t, the bounded
positive linear functionals on SI of norm at most one, and its set of
extreme points, resp., the first set provided with the hull-kernel
topology and the latter two sets with the weak* topology. The
sets max SI and EPffiyiO) are in a natural one-to-one correspondence,
but the topologies do not agree in general. Information about the
simplex space SI can be obtained by comparing these two topologies
(see [11], [141, [17]).

In trying to develop an analogous theory for a C*-algebra Ar

the first problem is to decide on replacements for max SI, Pi(SI), and
JSP^SI). For simplicity, assume that A is separable and has a Tx

structure space. An obvious substitute for max SI is the structure
space of A, Prim (A) (the primitive ideals in A, or in this case the
maximal proper closed two-sided ideals in A, with the hull-kernel
topology). To replace Px(9t) and EPffi) by the corresponding sets of
linear functionals on A does not seem to lead to a fruitful theory.
Instead, P^SI) and EPMH®} are replaced by N(A) and EN(A)-{0},
resp., where N(A) is the compact Hausdorff space of C^semi-norms
on At and EN{A) is the set of "extreme" points of N(A) (see [4;
§ 1. 9. 13], [8], [12]). Then Prim (A) and EN(A)-{Q} are in a natural
one-to-one correspondence which is in general not a homeomorphism.
By identifying these sets, the primitive ideals in A are endowed with
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two topologies. Regarding Prim (A) as a subset of ^(Prim (A)), the
identification of Prim (A) and EN(A)-{0} extends naturally to a homeo-
morphism of ^ (Prim (A)) and N(A). Thus the second topology on
Prim (A) is just its relative topology in ^(Prim (A)). It is therefore
natural to attempt to formulate those theorems about a simplex
space §1 which involve only the two topologies on max 21 in terms of
a locally compact space X and the associated space ^(X).

The paper is organized as follows, §2 contains theorems which
relate the topology of X to that of ^(X). The applications to
C*-algebras are in § 3. Two classes of C*-algebras, called GM- and
GC-algebras, are investigated; they correspond to the GM- and GC-
simplex spaces of [11]. A C*-algebra is a GM-algebra if its structure
space is almost strongly separated, and a GC-algebra if it has a
composition series (Ia) of closed two-sided ideals such that the Ia+JIa

are all central C*-algebras. These algebras were studied by Delaroche
[2], who in particular showed that the GC-algebras are just the GM-
algebras with only modular primitive ideals. A new proof of this
fact (Theorem 3.7) is included. Finally, §4 points out how the GM-
and GC-algebras are related to some of the classes of C*-algebras in
the literature.

2* Locally compact spaces* Throughout this section X is assumed
to be a locally compact topological space satisfying the To separation
axiom. Recall that X is To means that if x, y e X are such that
{x}- = {y}~ (bar indicates closure), then x — y, and that X is locally
compact means that if xeX, then each neighborhood of x contains a
compact neighborhood of x. It is important to remember that although
a closed subset of a compact set must be compact, the converse need
not be true in a non-Hausdorff space. Let X1 denote the closed
points in X, i.e., those x for which {x}~" = {x}. If X = Xly then X
is said to be 2\.

The following construction is due to J. M. G. Fell [13]. Let &(X)
denote the collection of all closed subsets of X. The function λ =
\x: X—>^{X): x~-+{x}~ is one-to-one. If C is a compact subset of
X and if &" is a (possibly empty) finite collection of open subsets
of X, then ^ ( C ; &*) will denote the collection of all those Fe^(X)
such that FnC = 0 and Fΐ\G Φ 0 for each G e ^ Γ The sets
^ ( C ; ^~) form a basis for a compact Hausdorίϊ topology on
<if (X) [13]. It is readily verified that a net (Fa) in i f (X) will
converge to an element F in ^(X) if and only if (1) for each x in
F and neighborhood N of x, eventually Faf] N Φ 0 , and (2) if P is
the complement of a compact set with FaP, then eventually Fa c P.
This topology is metrizable whenever X is second countable [6;
Lemma 2] (see Corollary 2.7 for a partial converse). A simple argu-
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ment will prove

LEMMA 2.1. (1) λ is open onto its image, and (2) X is Hausdorjf
if and only if X: X—>X(X) is a homeomorphism.

The first object is to find sets on which λ restricts to a home-
omorphism. A set ^ a^(X) will be called dilated if xeF for
some Fe^~ implies that X{x)e^~. In particular, if J P 6 ^ ( I ) , the
.set F1 = {Ee<tf(X):E aF} is compact and dilated.

LEMMA 2.2. If J7~ is a compact and dilated subset of
then X~l{^~) is closed.

Proof. Suppose that xQeX and x^X"\^~). Say Fe^~. As
is dilated, xQ&F, and so there is a compact neighborhood C(F)

of x0 which is disjoint from F. The sets %f(C(F); 0), Fe^~, form
an open covering for ^ T hence there are sets Fί9 , Fne ά?~ such
that

Suppose xeC = n t i C ( ^ ) and X(x) ej^7 Then X(x) n C(^) = 0 for
some i, hence α? g C ^ ) , a contradiction. This shows that C is a
neighborhood of x0 which is disjoint from \~x

If T is a subset of X1? then X(T) is dilated; hence

COROLLARY 2.3. If T is a subset of Xx for which X(T) is com-
pact, then X restricts to a homeomorphism of T onto X(T).

The following shows that convergence in X is closely related to
that in <^(X). The trick employed in the proof of (ii) was used by
both Gleit [14] and Taylor [17].

THEOREM 2.4. ( i ) Let (xa) be a net in X such that X(xa) -* F
for some Fe ^(X). Then xa—>x for any xeF.

(ii) Let (xn) be a sequence in Xx such that X(xn) —> F for some
Fe ^(X). Then the limit points of the set {xn: x ^ 1} lie in F.

Proof. ( i ) Say xeF, and let G be an open set containing x.
Then since F Π G Φ 0 , eventually X(xa) f]G Φ 0 , hence xa e G.

(ii) For each m the set {X(xn): n ^ m] U F1 is both closed and
dilated, hence its inverse image Fm = {xn: n ^ m) U F is closed. If x
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is a limit point of {xn: n ^ 1}, it must lie in each of the sets Fm, and
thus is an element of F.

COROLLARY 2.5. Suppose that X is second countable. If
0 G λ(Xi)~, then neither X1 nor X can be compact.

Proof. ^(X) is metrizable, hence there is a sequence (xn) in Xh

with X(xn) —• 0 . It follows from Theorem 2.4 (ii) that no subsequence
of (xn) can converge to a point in X.

COROLLARY 2.6. Suppose that X(X)~ is first countable (this is-
the case if X is second countable), and that T is a compact subset
of X,. If Fe^(X) and Tf]F= 0 , then X(T)~ n F1 = 0 .

Proof. If BeXfTj-dF 1 , there is a sequence (a?w) in T with
) ~~* ^ Since T is compact, the set {xn: n *> 1} has a limit point a?

in T. Then a e-E from Theorem 2.4 (ii), and since EeF1, xeF..
But this is a contradiction.

COROLLARY 2.7. Suppose that X is locally compact and Tt. If
X(X)~ is second countable, then so is X.

Proof. Let ^7, <_̂ >, be a basis of open sets for the topology of
λ(X)~; with no loss in generality, the sets &~% may be assumed to*
be closed under finite unions. Suppose that an x e X and an F e
with x $ F are given. It is sufficient to show that for some n, X~~ι{
contains x in its interior and is disjoint from F. Using the local
compactness of X, choose a compact neighborhood C of x disjoint
from F. Corollary 2.6 and the fact that F1 is closed give

for suitable integers nk. As λ(C)~ is compact and as the ̂ ~n are
closed under finite unions, there is an n for which ^l Π F1 = 0 and
λ(C) c ^ . This completes the proof.

The following will be useful in § 3.

COROLLARY 2.8. Suppose that X is second countable and that
f: ^(X) —»[0, oo) is continuous and monotone in the sense that E,
Fe^(X) and EcF imply f(E)£f(F). Suppose further that
f(X(x)) > 0 for all x in some compact subset T of Xt. Then there
is an a > 0 such that f(\(x)) ^ cc for all xe T.
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Proof. If there is no such a, choose a sequence (xn) in T such
that /(λ(&»)) —* 0. Using first the compactness of ^{X) and then
that of T, it may be assumed that X(xn) —> F for some F e ^(X)
and that xn —>x for some xe T. From Lemma 2.4 (ii), it follows that
x e F. Consequently, 0 < f(X(x)) ^ f(F) and /(F) = 0, a contradiction.

For simplex spaces, the following result is due to P. D. Taylor.

COROLLARY 2.9. Suppose that X is second countable and that f
is a continuous complex-valued function on X(Xι)". For each xeXu

let c(x) denote the set of all those F e λ(JCi)~ which contain x. Then
fo\ is continuous on Xt if and only if f is constant on the sets
c(x), xeXίm

Proof. Notice that X(x) e c(x) for each x e Xιm Suppose that /oλ
is continuous on X19 Say x e Xx and Fe c(x). Then there is a sequence
(xn) in Xx such that X(xn) —• F. From Theorem 2.4 (i), xn —• x, and

f(F) = \imf(\(x%))=f(\(x)).

Conversely, suppose that / is constant on the c(x), x e X19 Let (xn)
be a sequence in Xί converging to an xeX19 To show that

it is sufficient (since /(λ(Xi)) lies in the compact set f(\(XJ~)) to show
that every convergent subsequence of f(X(xn)) converges to f(X(x)).
Passing to a subsequence, suppose that f(X(xn)) —* a for some complex
number a. Using the fact that ^(X) is a compact metric space
and passing to a further subsequence, it may even be assumed that
\(xn)-+F for some FeXiX,)-. Then from Theorem 2.4, (ii), xeF,
i.e., Fec(x), and therefore

f(X(x)) =f(F) = lim/(λ(αθ) = a .

If G is a nonempty open subset of X, then G is locally compact
and To in its relative topology. Let pG be the map F-+Ff)G of
9f(X) onto <if((τ), and let σG be its restriction to XX{G). Then
.σGoXx = XG and σG is a bisection of XX{G) onto XG{G). Using the fact
that G is open in X, it is easily checked that pG is continuous; how-
ever, σG is in general not a homeomorphism.

LEMMA 2.10. Let G be a nonempty open subset of X, and suppose
that λ ( I ) ~ c λ ( I ) U (X - G)1. If ^ is a subset of XX{G) and if

is compact, then so is
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Proof. As ρG is continuous,

pG(jr~) c \pG{jr)Y = \σG{^~)Y = σG{jT) c XG(G) ,

and since 0?λG(G), j ^ ~ ~ n (X - G)1 = 0 . But

^ " - c λ(X)~ c λ(X) U (X - G)1 c λx(G) U (X - G)1 ,

so that ^~~ is contained in XX(G), the domain of σG. Since

and o^ is one-to-one, ^ must be closed in

A point a? in X will be said to be strongly separated in X if
for each y Φ x, there are disjoint neighborhoods of x and 2/ (i.e., x
is closed, and separated in the sense of [3; §1]). A nonempty subset
Y of X will be called strongly separated in X provided each of its
points is strongly separated in X. Finally, X will be called almost
strongly separated if each nonempty closed subset F of X contains
a nonempty relatively open subset G which is strongly separated in
F (equivalently, every open subset U of X distinct from X is properly
contained in an open subset V such that V — U is strongly separated
in X - U).

PROPOSITION 2.11. A nonempty open subset G of X is strongly
separated in X if and only if λ(X)~ c X(Xλ) U (X — G)1.

Proof. Assume first that G is strongly separated in X. Suppose
that there is a net (xa) in X and an F^XiX,) U (X - G)L such that
X(xa) converges to F. Then F must contain two distinct points, at
least one of which is in G, which is impossible by Theorem 2.4 (i).
Conversely, suppose that λ(X)"cλ(X1) U (X— G)L. From this inclu-
sion it is immediate that G c Xt. As pG(X(X)~) is compact and contains

XG(G)~ c pG(x(X)~) c XG(G) U {0} ,

and therefore XG(G) U {0} is compact. For any relatively closed sub-
set ^~ of XG(G)f J?~ U {0} is compact and dilated, hence λj1(^"') is
a closed subset of G in the relative topology (Lemma 2.2). This
shows that λ^ is continuous; since it is always open onto its image,
XG is a homeomorphism and G is Hausdorff. To show that G is
strongly separated, suppose xeG and y&G are given. Let UaG be
a compact neighborhood of x; it will suffice to show that U is closed
in X. As XG(U) is compact and as XG(U) = (τβ(Xz(U))f Xχ(U) is
compact (Lemma 2.10). XX(U) is dilated since UczXlf and so U =
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^x1 (λ>x(U)) is closed, by Lemma 2.2.

A topological space which is a countable union of compact sets
will be called a Kσ.

LEMMA 2.12. If X is second countable and if G is an open
nonempty strongly separated subset of X, then XX{G) is Ka.

Proof. Since G is Hausdorff, λG(G)-cλG(G) U {0} by Proposition
2.11, and XG(G) is locally compact. Now ̂ (G) is second countable,
for as G is second countable, ^(G) is a compact metric space [6;
Lemma 2]. Therefore XG(G) is Kσ. The equality XG(G) = σG(λχ(G)),
Lemma 2.10 and Proposition 2.11 now imply that XX(G) is Kσ.

LEMMA 2.13. Let E be a nonempty closed subset of X. Then
the map θ: EL ->ΐf(£ r) defined by Θ{F) = F for all FeE1 is a
homeomorphism onto, where E1 has the relative topology from

Proof. That ^ is a bisection is clear. Since E1 is compact
Hausdorff, it is enough to show that θ is continuous. But this
follows from the definition of the topologies and the fact that E is
closed.

LEMMA 2.14. // X is almost strongly separated, so is any non-
empty subset of X which is either open or closed.

Proof. See [11; §3].

THEOREM 2.15. Suppose that X is second countable, locally com-
pact, and To. Then X is almost strongly separated if and only if

(1) X is T19

(2) X(X) is Kσ, and
(3) every nonempty closed subset of X is second category in

itself.

Proof. Say that (l)-(3) hold. Let F be a nonempty closed sub-
set of X. Then F is TΊ and second category, and XF(F) is Kσ by
Lemma 2.13. Replacing F by X, it is therefore sufficient to show
that if X satisfies (1) and (2) and is second category, then X contains
a nonempty open strongly separated set. Write λ(X) = U"=i
where each ^l is compact. Since the ^ n are dilated, the \
are closed by Lemma 2.2. X is second category, hence for some n,
X~\j7~τ) contains a nonempty set G which is open in X. As λ-^^Q
is closed in X and is Hausdorff in the relative topology (Corollary
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2.3), G is strongly separated in X.
Conversely, suppose that X is almost strongly separated. By a

transfinite induction (see [11; Proposition 3.1]), there is an ordinal a0

and a family (Ga) of open subsets of X, indexed by those ordinals a
with 0 ^ a <; aoy such that: (i) Go = 0 , Gao = X) (ϋ) if a <̂  a0 is a
limit ordinal, then Ga = \Jβ<aGβ; and (iii) if a < α0, then Gac:Ga+ί

and Gα+1 ~ G α is a nonempty strongly separated subset of X — Ga.
To see that (1) holds, say xeX. Let β be the least ordinal such
that xeGβ. By (ii), β cannot be a limit ordinal; let a + 1 = β.
Then x e Ga+1 — Ga, so that {#} is closed in X — Gay and therefore
in X.

The natural map θa of (X - Ga)
L onto &(X - Ga) is a home-

omorphism, where (X — Ga)
λ has the relative topology from ^(X)

(Lemma 2.13). Since θa carries Xx(Ga+L — Ga) onto λjr_^α((?α+1 — Ga)
and since the latter is Kσ by (iii) and Lemma 2.12, λ x(Gα + 1 — Ga)
must be Kσ. Now

X — \Ja<ao(Ga+ι — Ga)

by the above and α0 is countable (see [16; § 19, II]), so (2) holds.
If JPJ, JP2, are closed and nowhere dense subsets of X, then
Fx Π (?i, F2f]G11 are closed and nowhere dense in the relative
topology of Gx. Being locally compact and Hausdorff, G1 is Baire, so
the Fn Π (?i do not cover Gλ. Thus X is second category. By Lemma
2.14, this is enough to show that (3) holds.

COROLLARY 2.16. If X is second countable and almost strongly
separated, then all nonempty closed and all nonempty open subsets
of X are Baire.

Proof. This follows from Lemma 2.14 and Theorem 2.15.

Suppose that X is second countable. If all nonempty closed
subsets of X are Baire, then λ(X) is Gs [6; Th. 7]; in view of [16;
§ 30, VI], this fact may be useful in deciding whether X satisfies
(2) of Theorem 2.15. As examples in §4 will show, (1) and (2) are
independent of one another even if all nonempty closed subsets of X
are Baire. The set of integers with the Zariski (or cofinite) topology
is second countable, locally compact, Γo, and satisfies conditions (1)
and (2), but not (3), of Theorem 2.15.

3* C*-Algebras* Let A be a C*-algebra. Throughout this
section and the next, an ideal in A will always mean a closed two-
sided ideal. Let Z{A) be the center of A, and let Id (A) [resp.,
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Prim (A), Max (A), and Mod (A)] donote the set of all ideals [primi-
tive ideals, maximal ideals, and modular ideals] in A. For a e A and
Jeld(A), define α(I) as the canonical image of a in Ajl and I 1 as
the set of all those ideals / in A which contain I. Prim (A) with
the hull-kernel topology (sometimes called the structure, or Jacobson,
topology) is the structure space of A. The following facts about the
structure space (see [4]) will be used frequently without explicit
mention: its closed points are the elements of Max (A); it is locally
compact and To; it is second countable whenever A is separable; and
J—»Prim (A) Π IL is a one-to-one correspondence between Id (A) and
the closed subsets of Prim (A). The weakest topology on Id (A)
making each of the maps J—*| |α(I) | | , aeA, continuous will be
called the weak* topology on Id (A). It is not hard to show that
I—> Prim (A) Π I1 is a homeomorphism of Id (A) onto ^ (Prim (A))
which restricts to λ on Prim (A) and carries IL onto (Prim (A) f] I1)1

{where the second 1 is taken in the sense of §2) [12, Th. 2.2]. In
what follows, Id (A) and <§r(Prim(A)) will be identified. Recall that
if A is separable, Id (A) and Prim (A) with the weak* topology may
be identified with the spaces N{A) and EN(A)-{ty of § 1.

In view of the above, the results of §2 may be applied to
C*-algebras. Save for one, these will not be explicitly mentioned.
For any aeA, I—>| |α(I) | | is a function of the type described in
Corollary 2.8. This has the following amusing consequence: If A is
separable and if T is a structurally compact subset of Max (A), then
{J{P:Pe T) is a norm-closed subset of A.

A nonzero ideal I in A will be called an M-ideal in A if
Prim (A) — I1 is a strongly separated subset of the structure space
of A, and A will be called an M-algebra [resp., a GM-algebra] if the
structure space of A is Hausdorff [almost strongly separated]. Clearly
A is an M-algebra if and only if A is an ikf-ideal in itself. Using
[4; §3.2], it is easily verified that A is a GM-algebra if and only if
•every nonzero quotient of A contains a nonzero M-ideal.

PROPOSITION 3.1. The following are equivalent for a nonzero
ideal I in a C*-algebra A:

(1) I is an M-ideal
(2) Prim (A)~ c Max (A) U J 1, where Prim (A)~ is the weak*

closure of Prim (A) in Id (A)
(3) for each a el, P—>||α(P)| | is continuous on Prim (A) in the

structure topology.

Proof. (1) <=> (2): This is Proposition 2.11.
(1), (2)=>(3): Suppose that an α e ί and an « > 0 are given.

The map p —>\\a(P)\\ is lower semi-continuous on Prim (A) with the
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structure topology, so it is enough to show that T= {P e Prim (A):
|| a(P) \\^a} is structurally closed. Now T is a structurally compact
subset of Prim (A) — I 1 , and as I is an M-ideal in A, Prim (A) — I 1

is Hausdorff in the relative structure topology. The map σ which
sends P into P Π / is a homeomorphism of Prim (A) — I1 onto Prim (/)
for the structure topologies, hence the structure space of / is Hausdorff.
From Lemma 2.1, this means that the structure and weak* topologies
coincide on Prim (I). Then σ(T) is a weak* compact subset of Prim (I),
and T is a weak* compact subset of Prim (A) (Lemma 2.10). Since
T is contained in Max (A), it is dilated and therefore structurally
closed by Lemma 2.2.

(3)=>(1): Say P e Prim (A) - I1 and QePrim(A) are distinct.
If Qel\ choose an α e l with | |α(P) | | = 2. Then {i2ePrim(A):
|| a(R) || > 1} and {RePrim (A): ||α(Λ)|| < 1} are disjoint structurally
open sets containing P and Q, resp. Now suppose that Qgl1. For
R G Prim (A) - IL and a e I, R Π Ie Prim (I) and

|| a(R n I) || - max {|| a(R) || , || α(I) ||} = || a(R) || .

This equality together with the homeomorphism a of the previous
paragraph implies that the structure and weak* topologies on Prim (I)
coincide, and therefore that Prim (A) — IL is Hausdorff in the relative
structure topology. As Prim (A) — J 1 is a structurally open subset
of Prim (A), there are disjoint structure neighborhoods of P and Q.

THEOREM 3.2. If A is a separable C*-algebra, then Prim (A) is
a Gδ in the weak* topology, and A is a GM-algebra if and only if

(1) Max (A) = Prim (A), i.e., the structure space of A is Tu and
(2) Prim (A) is Kσ in the weak* topology.

Proof. This is an immediate consequence of Theorem 2.15, [6;
Th. 7], and the fact that all nonempty closed subsets of the structure
space are Baire [4; Corollaire 3.4.13].

Section 4 contains examples which show that neither (1) nor (2)
is a consequence of the other, even for separable C*-algebras. This
completes the analogy between (?M-simplex spaces and Gikf-C*-algebras.
In studying the second class of C*-algebras, the following two lemmas
will be useful.

LEMMA 3.3. For any ideal I in a C*-algebra A, Z(I) = If\Z(A).

Proof. See [1; Lemma 6].

LEMMA 3.4. The following are equivalent for a C*-algebra A:
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( i ) Z{A) ς£ P for each P e Prim (A) and the structure space of
A is Hausdorff, and

(ii) P —> P Γi Z(A) is a one-to-one map from Prim (A) into
Prim (Z(A)).

If these conditions are satisfied, then the map in (ii) is a homeo-
morphism of Prim (A) onto Prim (Z(A)) for the structure topologies.

Proof. For the equivalence of (i) and (ii), see [1; Proposition 3]
or [18; Corollary 3.1.2], The last statement is contained in [15; Th.
9.1].

A C*-algebra satisfying one of the equivalent conditions of the
last lemma is called central; for other equivalent definitions, see [1;
Proposition 3].

Several results from [7; §4] will now be recalled. Consider an
a 6 Z(A) and a primitive ideal P in A. Choose an irreducible repre-
sentation π of A with kernel P. As π(a) is in the center of π(A)f

it must be a multiple a of the identity operator on the space of π.
Then π(a)π(b) = aπ(b), i.e., ab — abeP, for all be A. This last con-
dition determines a uniquely, and shows that it depends only on P
(and not on π). Set fa(P) = a. The function fa is clearly bounded
on Prim (A). It is easy to show that φ(a) — fJJP) for any φ e Θ~1{P),
where θ is the natural mapping of P(A), the pure states on A, onto
Prim (A). Because θ is an open map,

fΓι(U) = {Pe Prim (A): fa(P) e U}

= θ({φeP(A):φ(a)eU})

is structurally open for any open set U of complex numbers. This
shows that fa is structurally continuous. If A is central, then
Pe Prim (A) implies P Π Z(A) e Max (Z(A)) = Prim (Z(A)), and regard-
ing a e Z(A) as a function on Max (Z(A)), fa(P) = a(P n Z(A)). Since
Z(A) ~ C0(Max Z(A)), we may identify the functions fa with C0(Prim (A)).

A C*-algebra A will be said to have local identities if given
PQ e Prim (A), there is an a e A such that a(P) is an identity in A/P
for all P in some structure neighbourhood of Po. A nonzero ideal I
in A will be called a C~ideal in A if I is a central C*-algebra. A
will be called a C-algebra if it is a C-ideal in itself (i.e., is central),
and a GC-algebra if every nonzero quotient of A contains a nonzero
C-ideal.

PROPOSITION 3.5. A nonzero ideal I in A is a C-ideal if and
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only if it is an M-ideal with local identities.

Proof. Suppose that J is a C-ideal. Let P and Q be distinct
primitive ideals in A with Pi I1. If Q$ I1, then since I is central,
P Π Z(I) and Q Π Z(I) are distinct maximal ideals in Z(I) hence
there is an a e Z(I) c Z(A) with fa(P) Φ 0 and fa(Q) = 0. If Q e I1,
let α be any element of Z(I) with α(P) ̂  0. Then fa will provide
disjoint neighborhoods for P and Q, and A is an M-ideal.

Thus it suffices to show that a C*-algebra A is a C-algebra if
and only if it is an M-algebra with local identities. If A is a
C-algebra, Z(A) may be identified with C0(Prim {A)), hence it is trivial
that A has local identities. Conversely, suppose that A is an M-algebra
with local identities. Say PoePrim(A), and choose an α e i such
that a(P) is an identity in A/P for all P in some neighborhood T of
Po. Consider a continuous bounded complex-valued function / on
Prim (A) with f(P0) = 1 and whose support is contained in T. From
the Dauns-Hofmann theorem (see [7; §7]), there is a be A such that
b(P) = f(P)a(P) for all PePrim(A). Then (be - c6)(P) = 0 if ceA
and P 6 Prim (A), so that 6 e ϋΓ(A). Since 6 g Po, A must be a C-algebra.

LEMMA 3.6. For a nonzero C-ideal I in A,
(1) P—HI α(P) || is structurally continuous on Prim (A) — I 1 /or
aeA, and

(2) Prim (A)- c [Max (A) n Mod (A)] U P .

Proof. To prove (1), fix α G i , and suppose PoePrim(A) — IL is
given. It is sufficient to show that P—»||α(P)|| is structurally con-
tinuous on some structure neighborhood of Po. From the structure
homeomorphism of Prim (A) — I1 onto Prim (I) and the fact that I
has local identities, there is a structure neighborhood T of Po con-
tained in Prim (A) — IL and a b e I such that δ(P Π I) is an identity
in I/(Pf) I) for each PeT. As 7 is an M-ideal in A, each P e T is
a structurally closed point in Prim (A), and so is a maximal ideal.
Therefore P + 1 = A and there is a ^isomorphism of A/P onto
1/(1 n P ) which carries c(P) into c(InP), e e l [4; Corollaire 1.8.4].
Hence b(P) is an identity in A/P for each PeT, and since αδ61,
Proposition 3.1 implies that P—• || (ab){P) \\ = | |α(P) | | is structurally
continuous on T. Turning to (2), suppose P e Prim (Ay, Pi I1.
Since I is an M-ideal in A, Proposition 3.1 gives P 6 Max (A). As I
is central, there is an a e Z(I) c Z(A) with α ί P . Since a(P) is a
nonzero central element of A/P, P must be modular.

In the case of simplex spaces, the analogues of (1) and (2) of the
previous lemma are each equivalent to I being a C-ideal. This is not
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the case for C*-algebras. In fact, there is an example of a noncentral
C*-algebra A which satisfies (1) and (2) with / replaced by A, viz,
the algebra of all functions a from {1,2, •••} into the two-by-two
matrices with complex entries such that l inv^ ai3 (n) exists and is
equal to zero unless i = j = 1 (this example was also used by
Delaroche in [2; § 6]).

The following result is due to Delaroche [2, Proposition, 14].

THEOREM 3.7. A separable C*-algebra A is a GC-algebra if and
only if

(1) A is a GM-algebra, and
(2) every primitive ideal in A is modular.

Proof. Suppose that A is a GC-algebra. Then by Proposition 3.5,
A is a Gikf-algebra. If P e Prim (A), then since P is a maximal ideal in
A (Theorem 3.2), A/P must be central. But then AjP is primitive
and has a nontrivial center, implying that P is modular.

Conversely, suppose that (1) and (2) hold, and let IΦ A be an
ideal in A. From Lemma 2.14, A/1 is a GM-algebra. Since any
primitive ideal in A/1 is of the form P/I for some P e Prim (A) Π IL

[4; Proposition 2.11.5 (i)], and since (A/1)/(P/I) ~ A/P for such P,
every primitive ideal in A/I is modular. So to show that A is a
GC-algebra, it is only necessary to show that A possesses a nonzero
C-ideal. Let I be a nonzero ikf-ideal in A. The structure space of
/, being homeomorphic to Prim (A) — I 1 with the relative structure
topology [4; Proposition 3.2.1], is Hausdorίϊ. Since any P e Prim (A) — I 1

is a maximal ideal in A, P + I = A and I/(P n J ) = ( P + I)/P = A/P
[4; Corollaire 1.8.4]. So any primitive ideal in /, being of the form
P Π / f o r some PGPrim (A) - I 1 , must be modular. This and [4;
Proposition 1.8.5] show that it is sufficient to establish the following:
If A is a separable C*-algebra all of whose primitive ideals are
modular and whose structure space is Hausdorff, then A has a non-
zero C-ideal.

For such a C*~algebra A, the structure and weak* topologies
coincide on Prim (A) (Lemma 2.1). Let 1P be the identity in A/P,
Pe Prim (A). Let (un) be an approximate identity in A indexed on
the positive integers, and set

Tn = {Pe Prim (A): || un(P) - 1P || £ 1/2} ,

n = 1, 2, . Since uJP) —> 1P as n —• <*> for each P, Prim (A) ==
U?=i Tn. Let A' be the C*-algebra obtained by adjoining an identity
1 to A. Then Prim (A') s Prim (A) U {A} and AL = {A}. Fix a
P ' e Prim (A') - A1, and set P - P' n A. Then a(P) — a(P'), a e A,
is an isomorphism of A/P onto (A + P')/P'. Choose a b e A such that
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b(P) = lp. Then δ(P') must be an identity in (A + P')/P'. The
latter is an ideal in A!\Pr, and from Lemma 3,3, δ(P') is a central
idempotent in A!\Pf. Since A'/P' is primitive, δ(P') = l(P'). Con-
sequently,

- || (un - b)(P') || - || (un - b)(P) \\

= \\un(P)-lP\\.

Therefore

T% = {P' n A: P'e Prim (A') and || K - 1)(P') || rg 1/2} ,

and JΓΛ is a closed subset of Prim (A). Since the structure space of
A is Baire [4; Corollaire 3.4.13], some Tn contains a nonempty open
set T. Because un^0 and \\un\\^l, Sp ̂ ( P ) c [1/2, 1] for each
Pe T. Choosing a continuous real-valued function / on [0, 1] with
/(0) = 0 and / = 1 on [1/2, 1] and setting a = f(un), a(P) = 1P for
each Pe T [4; Proposition 1.5.3]. Let / be the ideal in A with
Prim (A) - I1 = T. Say P e T. Since Prim (A) is locally compact
and Hausdorff, there is a continuous bounded function g on Prim (A)
such that g(P) = 1 and g vanishes off T. From the Dauns-Hofmann
theorem (see [7; §7]), there is a be A with b(Q) = g(Q)a(Q) for all
Q e Prim (A). Then b(Q) = 0 if la Q e Prim (A) and {be - cb){Q) = 0
if ceA and Q ePrim (A), which imply (by [4; Th. 2.9.7 (ii)] that
beZ(I). Therefore I satisfies condition (i) of Lemma 3.4, and so is
a C-ideal in A. This completes the proof of Theorem 3.7.

It is not known whether the conclusion of Theorem 3.7 is true
for nonseparable C*-algebras.

4* Concluding remarks* Let A be a C*-algebra. Recall that
A is a CCK-algebra ("liminaire") if the image of A by any irreducible
representation is contained in the algebra of compact operators on
the representing Hubert space. A nonzero ideal I in A is a CCR-
ideal in A if it is a CCJS-algebra, and A is a (?CJ?-algebra ("post-
liminaire") if every nonzero quotient of A contains a nonzero CCR-
ideal.

The spectrum of A is the set A of all equivalence classes of
irreducible representations of A provided with the inverse image
topology by the natural map π —* Ker π of A onto the structure space
of A. Dixmier [4; § 4.5] has shown that the closure J(A) of the
finite linear combinations of those aeA+ for which π—»Trπ(α) is
finite and continuous on A is an ideal in A. A nonzero ideal I in A
will be called a CTC-ideal in A if IaJ(A), and A will be called a
CΎC-algebra [resp., GΓC-algebra] if A is a CTC-ideal in itself [every
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nonzero quotient of A contains a nonzero CTC-ideal]. These algebras
have been studied in the literature, where they are sometimes
called "C*-algebre a trace continue" ["C*-algebrea a trace continue
generalisee"]. Recall that a CTC-algebra has Hausdorff structure
space and that a GTC-algebra is CCR ([4; §4]).

A CCR-algebra A with a Hausdorff structure space will be said
to satisfy the Fell condition if the canonical field of C*-algebras
defined by A satisfies the Fell condition of Dixmier [4; § 10.5], This
amounts to saying that given P oePrim (A), there is an α e i such
that a(P) is a one-dimensional projection in A/P for all P in some
structure neighborhood of Po. The following are some of the relations
between the various classes of C*-algebras:

(1) if A is separable, then it is both GM and GCR if and only
if it is GTC ([5; Proposition 4.2]),

(2) if A is separable, then it is both GC and GCR if and only
if it is GTC and all its irreducible representations are finite-dimen-
sional ((1) and Theorem 3.7),

(3) A is GCR and M and satisfies the Fell condition if and only
if it is CTC ([4; Propositions 4.5.3 and 10.5.8]; recall that A is CCR
if it is GCR and M),

(4) A is a central GCiϋ-algebra and satisfies the Fell condition
if and only if it is a CΎC-algebra with local identities ((3) and
Proposition 3.7), and

(5) if A is separable, then it is GM if either it is a CCR-algebra
with compact structure space or its irreducible representations are
all finite-dimensional ([3; §1]).

Let H be a separable infinite-dimensional Hubert space. Let B
denote the C*-algebra obtained by adjoining an identity to CC(H),
the compact operators on H. The structure space of B (see [4;
Exercise 4.7.14 (a)]) fails to be 7\, and therefore is not almost strongly
separated. Yet Prim(J3) is Kσ in the weak* topology.

In [3; §2], Dixmier has constructed a separable CCR-algebra D
whose structure space contains no nonempty strongly separated subset.
In particular, D is not GM. Nevertheless, there is an open subset
of the structure space of D which is homeomorphic to [0, 1], and D
contains an ideal C isomorphic to the C*-algebra of continuous maps
of [0, 1] into CC(H). So C is an ilf-algebra, yet no nonzero ideal in
C is an Jf-ideal in D. Since D is a CCϋί-algebra, Prim (D) is Tx in
the structure topology, so that Prim (D) cannot be Kσ in the weak*
topology (Theorem 3.2). These two examples are the ones promised
after Theorems 2.15 and 3.2.

Finally, one further point of contact between C*-algebras and
simplex spaces will be mentioned. Fell has shown that a C*-algebra
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A can be described (to within isomorphism) as the set of all functions
on Prim (A)" satisfying certain conditions, the value of such a function
at an I e Prim (A)- being an element of A/1 [12]. Moreover, the
Dauns-Hofmann theorem (see [7; §7]) may be deduced from this re-
presentation theorem [Fell, unpublished]. There is an analogous
representation theorem for simplex spaces, due to Effros [10; Corollary
2.5]. The analogue of the Dauns-Hofmann theorem for simplex spaces
can be deduced from this representation theorem (however, this is
not the manner in which it is proven in the literature; cf. [10;
Th. 2.1]).

We are indebted to Alan Gleit for a correction in the proof of
Corollary 2.7. The third-named author worked on this paper during
his visit to the University of Pennsylvania; he would like to thank
Professor R. V. Kadison and the University for their hospitality
during his visit.
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