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WEAK DENSENESS OF NONATOMIC MEASURES
ON PERFECT, LOCALLY COMPACT SPACES

NOKMAN Y. LUTHER

Our primary result is that the space of all compact zero-
set-regular, nonatomic, countably additive Baire measures is
dense, with respect to the weak topology, in the space of all
finitely additive, zero-set regular Baire measures if the un-
derlying topological space is locally compact, Hausdorff, and
perfect. Moreover, a corresponding result holds for Borel
measures. These results yield, as easy corollaries, the
existence of nonzero, nonatomic, countably additive, compact-
regular Baire and Borel measures on a locally compact, Haus-
dorff space which contains a nonempty perfect subset. Two
converses conclude the paper.

We use the methods and results of Knowles [5] and Varadarajan
[10] to prove our primary result (Theorem 3.1). This result extends
an earlier result in which the underlying space was assumed compact,
Hausdorff, and perfect (see [5, Th. 1 (i) and Remark (i), p. 65] and
12, p. 214]).

2* Preliminaries* Let X be a Hausdorff topological space. If
Y is a subspace of X, we use %(Y) and S5(Y) to denote the algebra
and σ-algebra, respectively, generated by the zero-sets of Y; we let
%*(Y) and 23* (30 denote the algebra and cr-algebra, respectively,
generated by the closed subsets of Y. 33(30 and 33* (Γ) are called the
Baire and Borel subsets of Y, respectively. For brevity, we let g —
%{X), S3 - SS(X), g* - %*(X), and S3* - S3*(X). A measure on an
algebra SI is a nonnegative, finite, finitely additive set function on 31.
A signed measure on SI is the difference of two measures on St.
Measures on 33(30 and 33*(3O will be called Baire and Borel measures
on Y, respectively. We use £(F), (£(30, K0(F) and S(Y) to denote
the classes of closed sets, compact sets, compact zero-sets and zero-
sets of Y, respectively. For brevity, we let £ = JQ(X)9 K = &(X),
e 0 - ©o(X) and S = 3(X).

If 31 is an algebra of sets and S) c St, a measure m on 31 shall
be called ^-regular in case

m(A) = sup {m(D); A D D G ® } for every A e 31.
Characteristically, ® will play the role of φ, ©, (£0> or 3

Let m be a measure on an algebra St. A set £7 e St is an αίom
for m in case ( i ) m{E) > 0 and (ii) for every F c E for which
Fe 31 either m(F) = 0 or m(i? — ί7) = 0. m is called nonatomie in

453



454 NORMAN Y. LUTHER

case it has no atoms. We shall need the following special case of
[4, Th. 2.4].

LEMMA 2.1. Let μ, v be countably additive measures on a σ-
algebra 6^ and suppose v <^ μ. If μ is nonatomic, then so is v.

Incidentally, one cannot replace "σ-algebra" by "algebra" in the
preceding result.

Finally, if 21 is an algebra and 3) c 21, we let
2K+(2Ϊ, 3)) = {m; m is a ©-regular measure on 21}
m(% ®) = {mx - m2; mlf m2 e 2K+(2ί, 3))}
9ΐ+(2ϊ, 3)) = {m; m is a ©-regular, countably additive, nonatomic

measure on 21}
3ΐ(2I, 35) = {mx - m2; mx m2e5ft+(2I, 35)}.

We note that 271(21, 35) and 9̂ (21, 3)) are linear spaces whenever 3) is
closed under finite unions, which will be the case in all of our con-
siderations. In order to relate our notation with that of Varadarajan
[10], we remark that our 2ft (§» 3) is precisely Varadarajan's 2ft (X)
[10, p. 164] and that $β(g, Ko) c 37ί(g, Ko) c 2K,(X) [10, Th. 29, p. 179]
where Ttt(X) denotes the space of tight signed measures [10, p. 174].

We shall consider 3K(2I, 3)) primarily when (2ί, 3)) is one of the
pairs (g, 3)> (S5f 3), @*> ®), or (S3*, φ). In each of these cases we
put the weak topology (called the weak*-topology by some authors)
on 501(31, 3)). This is the topology with basic neighborhoods of the
form

N(mϋ; A, ε) ^ {me SW(2t, 3)); \fdm - \fdmQ
< ε for every fe A}

where mQe 2W(2I, 3)), e > 0, and A is a finite subset of C*(X), the set
of all bounded, continuous functions on X. 2ft(31, 3)) will be completely
regular in each of these cases and will be Hausdorίf if (21, 3)) is (g, Q)
or (S3, 3); 2ft(g*, φ) and 9^(33*, £) are Hausdorff if X is normal (see
Taylor [9, pp. 151-153] and the proof of [10, Th. 1, p. 181]). It may
be relevant to Theorem 3.1 to point out that the linear subspaces
2K(g*f <£) and 3K(33*, <£) of 3ft(g*, ©) and SK(33*, φ), respectively, are
Hausdorff in the weak topology if X is completely regular, hence also
if X is locally compact, Hausdorff. Finally, we note that a net
{ma} c 331(21, ®) converges to m e 2ft(31, 3)) in the weak topology if,
and only if,

\fdma —λfdm for every feC*(X) .

If m is a signed measure on an algebra 21, we use m+ and m~
to denote its positive and negative variations, respectively. If m —
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m1 — m2 where mu m2 are measures on 2Ϊ, then ra+ ^ m1 and m~ <^ m2.
Thus clearly we have m e SK(2I, ®) if, and only if, m+, m~ e 3ft+(§I, ®).
Moreover, we have

THEOREM 2.2. Le£ (2ί, 3)) 6β any one of the pairs (g, (£0), (93, So),
(g*, (£), or (93*, (£). 7%<m rae$ft(5ί, ®) if and only if m+, m~ e

The following two lemmas, which will also have further application
later, will be helpful in the proof of Theorem 2.2.

LEMMA 2.3. Suppose m is a countably additive measure on an
algebra 2t and let μ be the unique extension of m to a countably
additive measure on the σ-algebra generated by 91. If μ is nonatomic,
then so is m.

The proof is fairly routine and will be left to the reader.

The converse of the preceding lemma is not true in general, but
is true with the added assumptions that are inherent in our setting.
This fact is contained in the following lemma.

LEMMA 2.4. Let X be a topological space and let m be a measure
on % — %(X) [resp., §ί* — S*(X)] which is countably additive. Let
μ denote the unique extension of m to a countably additive measure
on SB - 33(X) [resp., S3* - S3*(X)].

( i ) m is ^-regular [resp., (^-regular], if and only if, μ is.
(ii) Suppose m is ^-regular [resp., ^-regular]. Then m is non-

atomic if, and only if, μ is.

REMARK. With respect to (ii), it should be noted that every
countably additive measure on % (or on 93) is necessarily ^-regular
[10, Th. 18, p. 171].

Proof. ( i ) The one implication is clear. Suppose m is (£0-regular
[resp., ©-regular]. Then μ is ^-regular [resp., ^-regular] by a standard
proof ([10, Th. 18, p. 171]). Let ^ e 33 [resp., 93*] and ε > 0. There is
a set Fe S [resp., £] such that F c E and μ (E - F) < ε/2. There
exists Ce (£0 [resp., (£] such that μ (X - C) = m(X - C) < ε/2. Let
H = F n C. Then He (£0 [resp., (£], H c E, and μ (E - H)< ε.

(ii) The one implication follows from Lemma 2.3. To prove the
other implication, we note once again that μ is 3-regular [resp., φ-
regular]. Hence if μ has an atom, it must have an atom
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[resp., φ] But then Z would also be an atom for m which is a
contradiction.

Proof of Theorem 2.2. The only nontrivial part of the proof is
showing that m e 9ΐ(St, 5>) implies that m+, m~ are nonatomic. This
follows directly from Lemma 2.1 in case (2t, 2>) is (33, <E0) or (33*, (£).
Suppose (31, ®) is (g, Ko) [resp., (g*, (£)]. Let m = mγ — m2 where m l f

ra2 e 5Jέ+(2ί, 35). Then m + ^ mi and m~ ^ m2 so that m+, m~ are $-
regular [resp., ^-regular]. Let μ19 μ2 denote the unique extensions of
m1( ra2, respectively, to countably additive measures on 33 [resp., 33*].
Then μ19 μ2 are nonatomic by Lemma 2.4 (ii). Now m+, TΪΓ are countably
additive. Let vL, v2 denote the unique extensions of m+, mr> res-
pectively, to countably additive measures on 33 [resp., 33*]. Then
vι ^ μγ and v2 ^ μ2 because m+ ^ mt and wr ^ m2. Thus vL, v2 are non-
atomic by Lemma 2.1. Consequently, m+, mr are nonatomic by
Lemma 2.4 (i i).

3* Main result* Let X be a topological space. We say that a
nonempty subset Y of X is perfect in case F contains no isolated
points (with respect to the induced topology on Y).

THEOREM 3.1. Let X be a perfect, locally compact, Hausdorff
space.

( i ) yi(%> ®o) is dense in 3P£(g, 3) with the weak topology.
(ii) !Ji(33, Ko) is dense in 2ft(33, 3) wiίA the weak topology.
(iii) ?i(g*, (£) is de^sβ m SK(g*, φ) ^iίfe ίfcβ lί eαfc topology.
(iv) 9ΐ(33*, ©) is cίense m 3K(33*, φ) wiίA ίΛβ weak topology.

REMARK. In the setting of Varadarajan [10], ( i ) says that the
set of all differences of (£0-regular, countably additive, nonatomic
measures on % is dense in Wl(X).

The proof of the preceding theorem will require the following
three lemmas.

LEMMA 3.2. Let X be a topological space.
( i ) If X is perfect, then every open subset of X is perfect.
(ii) If Y is a perfect subset of X, then the closure (in X) of

Y is perfect.

The proof is easy and will be omitted.

If 21 is an algebra of subsets of X and xeX, we shall use px to
denote the measure on St defined by
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ί l i f x e E

LEMMA 3.3. Let X be a topological space. If (St, 3)) is any one
of (%, 3), (33, 3), (S*, Φ), or (35*, £), ίAβrc ίλe set of measures on §ί
of the form Σί=i α * P*^ wΛere % ^ 0 and % 6 X, k = 1, , w, is
dense m 3ft+(2t, 25) wiίΛ, ίfee weafc topology.

The proof of [10, Th. 10, p. 187] can obviously be adapted to
each of these cases.

LEMMA 3.4. Let X be a locally compact, Hausdorff space.
( i ) If ve9ΐ+(33*, (£), then ιV33e9ΐ+(33, <£0) where v/33 denotes the

restriction of v to 33.
(ii) Suppose μ is a Baire measure in the sense of Halmos [3,

p. 223] and v denotes the unique extension of μ to a regular Borel
measure in the sense of Halmos [3, 54.D]. If μ is nonatomic, then
so is v.

Proof. ( i ) Let μ = v/S3. Since v is ©-regular, there exist
J ^ e S , i = 1, 2, •••, such that v ( X - U Γ = i ^ ) = 0. Hence by [3,
50.D] there are sets C eSo, i = 1, 2, •••, such that, defining B=
U Γ=i C«, we have

(1) μ{E) = μ(JE7 n J5) for every Ee%> .

Let 33O denote the class of Baire sets in the sense of Halmos [3,
p. 220].

Since every compact Gδ is a zero-set, we have

(2) 33O c 33 .

Moreover,

(3) {Ef]B; # e 3 3 } c 3 3 0

because of [1, Exercise 57. 13 (i)] and the fact that every zero-set is
a Gδ. Since every Baire measure in the sense of Halmos is (£0-regular
[3, 52. G], it follows easily from (1), (2), and (3) that μ is (£0-regular.

Suppose now that μ has an atom £76 33. Since v is nonatomic
there is a set Fe33* such that F a E and 0 < v(F)< v{E). Now
there are sets C e (£, U open such that C c F c U and 0 < v(C) £
v(F) ^ v(U) < v(E) because of ©-regularity. We pick a set Coe(£o

such that C c Co c U and define H = E f] Co. Then i ϊ e 33 and i ϊ c ^ .
Moreover, C cz H a U so that 0 < μ(£Γ) < μ(E) which is a contradic-
tion.
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(ii) Suppose v has an atom Ee$8*. By the regularity of v
there is a set Ce (£ such that C a E and v{E) = v(C). As in [1, 59.1]
we can find a set Coe(£o such that CaC0 and y(C) = v(C0). Now /*
is nonatomic so there exists Fe 35 such that FaC0 and 0 < μ(F)<μ(C0).
Since C U F c Co and y(C) = v(C0), we have V(JP - C) = 0. Consequ-
ently, if we let if - F n C, we have HeW, H a E, and 0<i>(F) -
v(H) < v(E) which is a contradiction.

Proof of Theorem 3.1. The proof follows closely those of Par-
thasarathy, Rao, and Varadhan [6, Th. 6.1] and Knowles [5, Th. l(i)]
and, in addition, makes strong use of the latter result. Let (21, 3D)
be any one of the pairs (g, g), (35, g), (g*, £) or (35*, &) and let
meSK(2t, ®). We shall exhibit, for each case (but all at once), a net
{mα} from the appropriate 31 space such that ma~>m in the weak
topology. Clearly we can assume m ^ 0 and, moreover, that m is of the
form Σ2=i α * Pa* where ak >̂ 0 and % e l , ft = 1, , ^(Lemma 3.3).
In any of the cases we can extend m to be of this form on 35*.

Now since X is locally compact, Hausdorίf and perfect, it follows
easily from Lemma 3.2 that the perfect, compact neighborhoods in X
are basic. Denote by © the family of ^-vectors Ύ — (Uγ{x^, , Uγ{xn))
where Ur(xk) is a perfect, compact neighborhood of the point xk and
Uγ{xk) Π Ur(Xj) = φ, jΦk. We direct © by saying that 7> δ if, and
only if, Ur(xk) c Z7δ(%) for every ft = 1, •••, n. We fix ye®. Since
each U7(xk), k = 1, •••, w, is a perfect, compact Hausdorίf space,
there is by [7, p. 214] or [5, Th. 1 (i)] a nonatomic, &(Ur(xk))—regular,
countably additive Borel measure vk on ί7r(%) such that vk(Uγ{xk))
= 1, ft = 1, •••, %. Define

- α Λ ( J ϊ n Uγ(xk)) for every ^ G 35* - 35*(Z), ft - 1, . . ,n, and let

It is not hard to see that mr is a nonatomic, (^-regular, countably
additive Borel measure on X (i.e., mr e 9ΐ+(35*, (£)). (Note that for
any closed Ka X, {Bni f ; # e 3 5 * - 35*(X)} = 35*(ίΓ), hence 35*(if)c
35*(X).) Finally, one can readily see, by elementary continuity con-
siderations, that mγ—*m in the weak topology. Clearly this conver-
gence also holds for the restrictions of mr and m to g*, 35, and %,
respectively. But it follows from Lemmas 2.4 and 3.4 ( i ) that
m r/8* e Ή+(δ*, ©), mr/35e5ft+(35, Ko), and mr/ge$ft+(8, e0) for every 7.
The proof is complete.

COROLLARY 3.5. Let X be a locally compact, Hausdorff topological
space which contains a nonempty perfect subset. Then there is a
nonzero, nonatomic, countably additive, ^-regular measure on g*
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[resp., 33*] and there is a nonzero, nonatomίc, countably additive (£0-
regular measure on % [resp., S3].

Proof. Let W denote a nonempty perfect subset of X. Then W
(the closure of W in X) is a locally compact, Hausdorff, perfect
topological space in the induced topology (Lemma 3.2 (ii)) so there is
a nonzero, nonatomic, countably additive, (£( TF)-regular measure v on
33*(PF) by Theorem 3.1. Hence, defining

m(E) = v(E n W) for every SeSS* = 33*(X) ,

we find, as before, that m is a nonzero, nonatomic, countably additive,
©-regular measure on 33*. The restrictions of m to g*> S3, and %,
respectively, provide the other desired measures because of Lemmas
2.4 and 3.4 ( i ) .

For the sake of completeness, we conclude the section by listing
two converses of Corollary 3.5. They extend a result of Rudin [8,
Th. 5] and, indeed, follow quite easily from it.

THEOREM 3.6. Let X be a Hausdorff topological space which con-
tains no perfect subsets. Then there is no nonzero, nonatomic, coun-
tably additive ^-regular measure on 33* [resp., %*].

Proof. Suppose there is such a measure m. By ©-regularity
there is a compact set K c X such that m(K) > 0. Defining

v(E) = m{E) for every Ee®*(K) [resp., %*(K)] ,

one readily sees that v is a nonzero, nonatomic, countably additive
@(ίΓ)-regular measure on S3*(iί) [resp., %*(K)]. By Lemma 2.4, we
can assume v is defined on S3*(ϋΓ). Hence by a theorem of Rudin
([8, Th. 5]; [5, Th. 1 (ii)]), there is a perfect subset of K, hence of X,
which is a contradiction.

REMARK. The preceding theorem remains true if we simply require
our measures to be finite on compact sets the proof goes through
unscathed. This same remark applies to the next theorem.

Since any continuous function on a compact subset K of a com-
pletely regular topological space X can be extended to a continuous
function on X [2, p. 43], we have &(K) = {E f] K; EBQ = Q(X)}
and, consequently, similar results for %(K) and S3(ίΓ). This fact is
used in the proof of the following theorem.

THEOREM 3.7. Let X be a completely regular, Hausdorff topologi-
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cal space which contains no perfect subsets. Then there is no non-
zero, nonatomic, countably additive, ^-regular measure on S3 [resp., %].

Proof. Suppose there is such a measure m. There is a compact
zero-set K c X such that m{K) > 0. Defining

v{E) = m(E) for every Ee^8(K) [resp., %(K)] ,

we see that v is a nonzero, nonatomic, countably additive, @0(^)-
regular measure on 33(iΓ) [resp., %(K)]. By Lemma 2.4 we can assume
that v is defined on 93(i£). Since K is compact, Hausdorff, it is clear
that v is a Baire measure on K in the sense of Halmos [3, p. 223].
By Lemma 3.4 (ii), v extends to a nonzero, nonatomic, countably
additive, ©-regular measure on S3*. This contradicts Theorem 3.6.

4* Concluding remarks* Clearly the hypotheses on X in Theorem
3.1 and in Corollary 3.5 cannot be weakened significantly. For if X
is the rationale (with the relativized usual topology of the reals), then
X is a perfect, separable metric space. But obviously there is no
nonzero, nonatomic, countably additive measure on %, S3, %*, or S3*.
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