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COMPACT, DISTRIBUTIVE LATTICES
OF FINITE BREADTH

KIRBY A. BAKER AND ALBERT R. STRALKA

Necessary and sufficient conditions are given for a complete
distributive lattice with topology to be embeddable in the
product of n complete chains, where the embedding is required
to be simultaneously algebraic and topological. Corollaries
are (i) a characterization of those compact topological lattices
which can be embedded in an %-cell and (ii) the fact that
breadth provides a bound on the topological dimension for
compact, distributive topological lattices of finite breadth.

These corollaries prove conjectures of Anderson [2] and Dyer and
Shields [7], respectively.

In considering topologies on a lattice, there are two possible
approaches. The "extrinsic" point of view presupposes a given Haus-
dorff topology for which the lattice operations are continuous, much
as in the study of topological groups (cf. [2], [7]). Such a structure
is commonly called a topological lattice, and a typical problem is to
relate its topological dimension to the algebraic lattice structure.

The "intrinsic" point of view, on the other hand, is to examine
topologies on a lattice which arise naturally from the lattice structure.
Prominent examples are the Frink and Birkhoff interval topologies
and the topology generated by order convergence [4, Ch. 10]. Such
topologies usually fail to give a topological lattice in the above sense,
even for complete distributive lattices. A typical problem is to study
conditions under which an intrinsic topology does give a topological
lattice.

There is one important class of lattices for which both points of
view merge, namely, those compact topological lattices which are
known to be embeddable, topologically and algebraically, in a product
of complete chains. Specifically, if L is such a lattice, all the com-
monly used intrinsic topologies on L coincide and constitute the only
compact Hausdorff topology under which L is a topological lattice.

In this connection, the following complementary facts are known.
Let L be a distributive topological lattice with compact topology. By
an "algebraic" embedding of L we mean an embedding which preserves
the binary lattice operations.

1. If L has infinite breadth, it may not be possible to embed L
topologically and algebraically in any product of chains [12].

2. If L has finite breadth n, then L can be embedded topolo-

311



312 KIRBY A. BAKER AND ALBERT R. STRALKA

gically and algebraically in a product of infinitely many complete
chains [cf. 2, Corollary 3].

3. If L has finite breadth n, then L can be algebraically embedded
in a product of n chains ([6, Th. 1.2], augmented by [9, Th. 7, p. 261]).

These facts lead to an obvious question: If L has finite breadth
n, can L be embedded simultaneously topologically and algebraically
in a product of n complete chains?

Our main theorem answers this question in the affirmative. Indeed,
we show that the embedding exists even under a mild intrinsic con-
dition in place of the compact Hausdorff condition. One corollary to
this embedding theorem is the proof of a conjecture of Anderson [2],
to the effect that a compact, distributive, metrizable topological lattice
of finite breadth n can be embedded topologically and algebraically in
the n-te\\ In. Another corollary is the fact that a compact, distributive
topological lattice L of finite breadth n has topological dimension at
most n (equal to n, if L is connected). For the case of metrizable
lattices, this fact was conjectured by Dyer and Shields [7, p. 117].
(Lawson [13] has independently proved a generalization of the same
conjecture, without the requirement of distributivity.) Putting these
corollaries together, we obtain the result that a connected, compact,
metrizable distributive topological lattice of finite breadth can be
embedded topologically in an n-ce\\ of the same dimension—an interest-
ing fact, in view of the difficulty of finding such embeddings for spaces
without lattice structure.

In the construction of our embedding, the lattice is coordinatized
by using chains of its own prime elements.

2* Coordinate chains* We recall several definitions: A finite
subset B of a lattice L is meet-irredundant if no proper subset of B
has the same meet as B. The breadth of L, Br (L), is the supremum
of the cardinalities of its finite meet-irredundant subsets. An element
p of L is meet-irreducible in L if x A y — p implies x — p or y = p.
The element p is prime in L if x A y ^ p implies x ^ p or y ^ p.
If L is distributive, these two conditions on p are equivalent. If L
has a greatest (least) element, let us call it 1(0).

We shall say that "the operations of L are continuous with respect
to order convergence" if xa —>a and yβ—>b imply xa V yβ—»a V b and
dually, where —> denotes order convergence. Birkhofϊ [4, p. 248] would
say that L is then a "topological lattice with respect to order con-
vergence." This condition, however, does not in general imply that
the operations of L are continuous with respect to the (open-set)
topology generated by order-convergence, i.e., the topology whose
closed sets are the order-closed subsets of L. As an example, consider
the complete Boolean lattice L of all regular open subsets of the unit
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interval. By [4, Corollary 1, p. 249] the operations of L are continuous
with respect to order convergence. On the other hand, if the opera-
tions of L were continuous with respect to the open-set topology
generated by order convergence, then the diagonal

{(#, y) e L x L: x Vn' = 1, x Λ yf = 0}

would be closed in L x L. Then L would be Hausdorff, contrary to
[8, Th. 1]. Continuity with respect to order convergence is thus a
fairly mild condition.

DEFINITION 2.1. Let L be a complete lattice. A chain C of L
will be called a coordinate chain if

(1) C consists of prime elements of L and includes 1,
(2) C is closed under arbitrary meets in L.

REMARK, By (2), C is a complete chain with respect to its own
internal order structure [4, p. 112, Th. 3]. However, infinite joins
in C may not agree with infinite joins in L. By (2), infinite meets
in C and L do agree, and this fact will be used freely below.

DEFINITION 2.2. If C is a coordinate chain in L, we define
cc\ L—*C by σc(x) =inf {p e C: p^x}.

LEMMA 2.3. Let L be a complete lattice whose operations are
continuous with respect to order convergence. With respect to the
internal order structure of C, σc is an (algebraic) lattice homo-
morphism and preserves arbitrary joins. Moreover, σc preserves
arbitrary meets (and so is a complete homomorphism) if and only if
(*) for all p, qeC with q < p, q is not the limit of a

decreasing net of elements of Oa\p)>

Proof. Without difficulty one sees that σc is an order-preserving
map of L onto C. Therefore the inequality σG(x A y) ^ σc(x) A σc(y)
holds. To get the reverse inequality, observe that x Ay ^ oc(x A y),
which is prime. Then x ^ σc(x A y) or y ^ σc(x A y), say the former.
By the definition of σc(x), we have σc(x) <̂  σc(x A y); hence

σc(x) A σc(y) ^ σc(x) ^ σc(x A y) ,

as desired. Now suppose that x0 = yaxa is any join in L, and let
a = \/aσc(xa) (join in C). Since σc is order-preserving, σc(x0) ;> a. On
the other hand, α ^ xa for all a, so that a ^ xQ> a = oc(a) ^ oc(x0).
Therefore σc(x0) = α a s desired, and σc preserves arbitrary joins.

Now suppose that σc preserves arbitrary meets. If xa j q e C with

<?c(%a) = p, then q = σc(q) = σ c (ΛA) = Λ«<MO = P- Thus (*) holds.
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Conversely, suppose (*) holds and xQ = A Λ > where {xa:aeΓ} is any
given family in L. Since σc is known to preserve finite meets, it is
no restriction to assume that the set of xa is closed under finite meets
and that the xa form a downward-directed net. Let q — σc(x0) and
let p — Aaσc(x<χ)- (By (2) of Definition 2.1, this meet is the same in
C as in L.) Since σc is order-preserving, we must have q ^ p. Define
ya to be (xa V q) A p. Note that σc(ya) = (σc(xa) V q) A p = p. Since
the operations of L are continuous with respect to order convergence,
we have J\aya = ( ( A Λ ) V g) Λ p = (α?0 V g) Λ p = g. From (*) it
follows that p = g; i.e., σc preserves arbitrary meets.

EXAMPLE 1. Let L = {(a?, y)el x I: y^x} and let

C - ({1} x /) U {(0, 0)} ,

where I is the unit interval. Then C violates (*).

EXAMPLE 2. Let L = ([0,1/2] x [0,1/2]) U ([1/2,1] x /) S / x /•
The set of primes of L is C(l) U C(2) where C(l) - {(α;, ί / ) e L : ( 0 ^ K 1/2
and y = 1/2) or (1/2 ^ x ^ 1 and 7/ = 1)} and C(2) = {(a?, 2/)eL:a; = l
and 0 ^ 2/ ̂  1} Note that C(l) is a complete lattice with respect to
its internal order structure but is not a complete subset of L. The
order-closure C(l)* on the other hand is a complete subset of L. C(l)*
is not a coordinate chain nor does σc{1)* satisfy (*). C(l) is a coordinate
chain and σcω does satisfy (*).

EXAMPLE 3. More generally, let /, g: I—>I be any nondecreasing
functions on the unit interval, continuous or not, and let L be the
closure of the region in I x I lying between the graphs of the func-
tions max (/, g) and min (/, g). Then L is a complete lattice. It is
instructive to examine coordinate chains in L, for various choices
of /, g.

LEMMA 2.4. Suppose that L is a complete lattice with finite
breadth and that the operations of L are continuous with respect to
order convergence. Then every element of L is the meet of finitely
many meet-irreducible elements (prime elements, if L is distributive).

Proof. Let x0 e L. If x0 is meet irreducible then we are done.
Suppose that x0 is not meet irreducible. Then we can find a finite
set {x[, - ' ^ y g L so that

(1) x[ A Λ x'm = xQ

(2) {x[y , x'm) is meet-irredundant and
(3) m is the maximum cardinality of those sets satisfying (1) and

(2). Let X = {x e L: x A x% A A x'm — xo} Let C be a maximal
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chain in I . L is complete so C has a supremum; let it be xx. Since
Λ is continuous under order convergence, xteX. It follows that
{x19 x'2, •••,»»} satisfies (1), (2) and (3). Suppose that x, = a A b for
some a,beL. Since {a, b, x'2, , x'm) satisfies (1) and has cardinality
greater than m, some element of the set is meet-redundant. Since
a Λ b — xλ no x\ can be meet-redundant. So we may assume that δ is
redundant, {α, x'2, •••, x'm) satisfy (1), (2) and (3) and a^>xλ. By the
maximality of x1 we then have a = xx. Hence xx is meet-irreducible.
By the same procedure we can also obtain meet-irreducibles x2, , xm

such that xι Λ Λ #m = x0. The proof is thus complete.

If L is a lattice and x e L, let us say that # is a iocαί maximum
of L if there is no decreasing net {xa: aeΓ} in L such that ίcα > x
for all α and Λ Λ * = &•

LEMMA 2.5. Let L be a complete, distributive lattice of finite
breadth n whose operations are continuous with respect to order con-
vergence. Then there exist n coordinate chains C(l), •• ,C(w), in L
such that

(a) \Ji=ιC{i) contains every prime in L;
(b) if xeL then x = σcω(x) Λ Λ oC{n)(x))
(c) if pe C(i) is a local maximum of C{i), then p is in fact a

local maximum of L.

Proof. Let P be the set of primes of L and let 3f be the collec-
tion of all ^-tuples of coordinate chains whose union is P. Thus

S? is partially ordered by coordinate wise set inclusion. Since any
intersection of coordinate chains is a coordinate chain it follows readily
that any totally ordered subset of &* is bounded below in SK Thus,
in order to conclude by Zorn's Lemma that £f has a minimal element,
we need only show that Sf Φ 0 .

First we observe that any set of pairwise noncomparable elements
of P has cardinality at most n. Indeed, the meet of any (n + 1)
elements of P is redundant, and in any redundant meet of primes, two
primes must be comparable [cf. 4, Lemma 1, p. 58]. Then by Dilworth's
decomposition theorem [6, Th. 1.1], P is the union of n chains. Extend
these to maximal chains D(l), •• ,D(w). It is readily seen that the
D(i) are coordinate chains.

Suppose that (0(1), , C(n)) is a minimal element in £/ϊ By con-
struction (a) holds, and (b) then follows immediately from Lemma 2.4.
Suppose that peC(i) violates (c); i.e., p is a local maximum of C(i)
but is not a local maximum of L. Let C(i)' = C(i)\{p}. C(i)f is a
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coordinate chain. We claim that C(i)' U (Ui#;C(i)) = P. Since p is
not a local maximum of L we can find a downward directed net {xa}
of elements of L\{p} which converges to p. For each j , let
<Ti = Λ«0c<i>(««). % (b) we have p = q, A ••• Λ qn, so p = g, for
some j . Moreover, j Φ i; otherwise p would be a limit of elements of
C(i) greater than p; hence p would not be a local maximum of C{i).
Then (C(l), , C(i)', , C(n)) is in SZ This contradicts the minimality
of (C(l), , C(n)). Thus (c) holds.

LEMMA 2.6. Let L and C(l), • • ,C(w) δe as in the previous
lemma. Then for each i, σcw is a complete lattice homomorphism
of L onto C(i) (with respect to the internal order structure of C(i)).

Proof. By induction on n. If n = 1 then L = C(l) and σcω is
the identity map. Suppose next that the lemma holds for all lattices
of breadth less than n. We shall use Lemma 2.3 to show that σ = σcω

is a complete homomorphism; the cases of σcii), "^oc{n) are similar.
Suppose that p, q e C(l) with p > q, where p and q violate (*). Let
Br (a~\p)) — m. By Lemma 2.5 (b), the sublattice σ-\p) can be coordi-
natized algebraically by the n — 1 chains C(2), , C(ri), with the value
of σ = σcω being fixed at p. Therefore m ^ n — 1. Let U be the
order closure of σ^1(p) in L. Z/ is a complete, distributive lattice of
breadth m ^ n — 1 whose operations are continuous with respect to
order convergence. Since p, q do not satisfy (*), qeL'. Let
C(l)', •••, C(m)' be the chains constructed for U by means of Lemma
2.5. By the induction hypothesis, each σCU), is a complete lattice
homomorphism on I/. Suppose that {xa: a e F} is a decreasing net in
tf"1^) which converges to q. q is not a local maximum of L. Hence
by Lemma 2.5(c) there is a decreasing net {pβ: β eΛ} which converges
to q, such that pβ e C(l) and q < pβ < p for every /9 6 A By Lemma
2.5(a) for I/, a cofinal subnet of {pβ: βeΛ} is contained in some C(i)',
say C(iy. Thus # e C(l)'. Choose a particular ^ e C(l)\ Since #α-~>g,
by our induction hypothesis we have ocω,(xa)—>σcω,(q) = g. So for
some aeΓ, σcω,(xa) ^ pβ1 giving p> pβ^ σcω,(xa) ^ α?α. Then in L,
p y pβ = σ(pβ) ^ o (α?α) ^ p. This is a contradiction. Thus σ ~ σcω

does satisfy (*), and hence by Lemma 2.3 is a complete homomorphism.

3* The embedding theorem*

THEOREM 3.1. Let L be a complete, distributive lattice of finite
breadth n. Then the following five conditions on L are equivalent.

(1) The operations of L are continuous with respect to order
convergence.



COMPACT, DISTRIBUTIVE LATTICES OF FINITE BREADTH 317

(2) Under some topology, L is a compact, Hausdorff topological
lattice.

(3) The interval and order topologies on L coincide and make L
a compact, Hausdorff topological lattice.

(4) L can be embedded, via a complete lattice isomorphism, in
some product of complete chains.

(5) L can be embedded, via a complete lattice isomorphism, in
a product of n complete chains.

Moreover, if these equivalent conditions hold, then all compact
Hausdorff topologies which make L a topological lattice coincide with
the interval and order topologies, and the embeddings of (4) and (5)
are topological embeddings.

Proof. We shall show (5)->(4)=>(3)=>(2)=>(l)=>(5). Of these, the
implications (5)=>(4) and (3)=>(2) are trivial. The implication (4)=>(3)
follows from the easily proven fact that agreement of interval and
order convergence holds for complete chains and is preserved under
formation of products of complete chains [cf. 4, Ex. 11, p. 250] and
under relativization to complete sublattices. The implication (2)=>(1)
follows from the fact that any compact Hausdorff topology is weaker
than the order topology [16]. For (1)=>(5), construct coordinate chains
C(l), « ,C(π) as in Lemma 2.5, and let <p: L-+C(l) x ••• x C(n) be
given by φ(x) = (σcω(x), , σc{n)(x)). Then φ is one-to-one by Lemma
2.5(b) and is a complete lattice homomorphism by Lemma 2.6.

Finally, if (1) through (5) hold, all compact Hausdorff topologies
are trapped between the interval and order topologies [16] and there-
fore coincide, by (3). Moreover, φ, being complete, is continuous with
respect to order convergence, and has a compact domain and Hausdorff
range. Therefore φ is a topological embedding. The proof of Theorem
3.1 is thus complete.

We next show that in the case of connected topological lattices,
the requirement of compactness in the main embedding theorem can be
replaced by the weaker hypothesis of local compactness. We include
some auxiliary facts.

COROLLARY 3.2. Let L be a locally compact and connected, dis-
tributive topological lattice of finite breadth n. Then

( i ) L has a neighborhood base consisting of compact lattice
intervals;

(ii) L can be embedded in the direct product P of its own com-
pact intervals;

(iii) L can be embedded in the real cube J1101^1"7) (cf. [2, Corolla-
ry 3]);

(iv) L can be embedded in a product of n complete chains.
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Here all embeddings are simultaneously algebraic and topological.
Horn (L, I) is the set of all continuous homomorphisms of L into the
real unit interval I.

Proof, (i) Theorem 1 of [1] states that a locally compact, con-
nected topological lattice is locally convex. Furthermore, a distributive
topological lattice of finite breadth is "locally a lattice," i.e., has a
neighborhood base consisting of sublattices [7, proof of Th. 3]. By
applying these three local properties of L in succession, we can shrink
any neighborhood of a point in L to a compact neighborhood which
is the convex hull of a compact sublattice, i.e., is a compact interval,
(ii) It is sufficient to show that if K is closed in L and x e L\K, then
there is a compact interval [a, b] in L and a continuous homomorphism
φ: L-+ [a, 6] such that <p(x) £ φ{K)* (Embedding Lemma, [11, p. 116]).
Accordingly, given K and x, use (i) to choose [a, 6] with x in the
interior of [a, b] S L\K, and let φ(y) — (a V y) A b for y e L. φ(x) = x,
whereas Lemma 6(ii) of [lj, combined with its dual, states that φ{K)
is contained in the boundary of [a, 6]. (iii) Each compact interval M
of L is a compact, connected, distributive, topological lattice of finite
breadth, and so can be embedded in the cube /Hom<*'*>, according to
[2, Corollary 3]. Then by (ii), L can be embedded in some real cube,
hence in IHom^>7>. (iv) The closure of the image of L in P of (ii) or
the cube of (iii) satisfies the hypotheses of Theorem 3.1-(4).

We are now able to prove and generalize a conjecture first for-
mulated by Dyer and Shields [7, p. 447] and sharpened by Anderson
[2, p. 62].

COROLLARY 3.3. Let L be a metrizable, distributive topological
lattice of finite breadth n which is either (a) compact or (b) locally
compact, separable, and connected. Then L can be embedded, topolo-
gically and algebraically, in the n-cell In.

Proof. By Theorem 3.1-(5) or Corollary 3.2-(iv), L can be embed-
ded in a product of n chains. It therefore suffices to show that if
φ: L—+C is a continuous homomorphism of L onto a chain C, then
C can be embedded in the unit interval /.

Assume hypothesis (a). We claim that C has at most countably
many gaps (closed intervals with only two elements): It is well known
that the continuous image of a compact metric space is again such a
space; hence C is such a space. Therefore the base of open intervals
in C can be thinned to a countable base. It is easy to see that any
endpoint of a gap in C must also be an endpoint of a basic set. Thus
the claim is verified. Now, fill each gap of C with a copy of the
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real open unit interval, and let D be the chain thus obtained. D is
a complete, connected chain with a countable topologically dense subset.
In a connected chain, a topologically dense subset and 0,1 (if present)
together form an order-dense subset. But a complete, connected chain
with such a subset is the completion of the rationals by cuts [4, p. 200].
Thus D = I.

Assume hypothesis (b). Then C — φ{L) is a separable connected
chain. As before, C then has a countable order-dense subset and
D = C U {0, 1} is complete [4, Th. 14, p. 243]. Again, D = I.

We are now ready to relate breadth to dimension. Let dim be
covering dimension as defined in [15] and let cd be codimension as
defined in [5]. Recall that for a locally compact Hausdorff space X,
cd X ^ dim X.

COROLLARY 3.4 (cf. Lawson [13]). Suppose that L is a distribu-
tive topological lattice of finite breadth n. (i) If L is compact, then
dim L ^ n. (ii) If L is connected and either compact or locally com-
pact and metrizable, then n — dim L — cd L.

Proof. Assume any group of hyp3theses. By Theorem 3.1 or
Corollary 3.2, L can be embedded in a product of n compact chains
P = C ( l ) x ••• x C(n). By [10, Th. 5.1], dim P ^ Σ< dim C(i) = n.
Since L is fully normal, locally compact, and hence has the starfinite
property, L £ P implies dim L 5Ξi dim P <: w [14, Th. 1]. Let L be
connected. The method of proof of [3, Th. 1] shows that a connected
distributive topological lattice of breadth n contains a product of n
compact connected chains and hence has codimension at least n. Thus
•n ^ cd L <̂  dim L ^ n.

The following fact can be extracted from Corollaries 3.3 and 3.4.

COROLLARY 3.5. Let L be a compact, connected metrizable dis-
tributive topological lattice of finite breadth. Then L can be embedded
homeomorphically in a cell of the same topological dimension as L.

PROBLEM. TO what extent can the requirement of connectedness
be relaxed in Corollaries 3.2 and 3.3?
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