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SOLVABILITY OF CERTAIN p-SOLVABLE
LINEAR GROUPS OF FINITE ORDER

DaviD L. WINTER

Let p be an odd prime, Let G be a finite p-solvable
group which does not have a normal p-Sylow subgroup. Let
G have a faithful, irreducible representation of degree n over
the complex number field. It is proved that if n=p—1,p
or p + 1, G is solvable,

Until now most of the general structure theorems on finite linear
groups of degree = over the complex field have been limited to the
case n < p — 1 where p is a prime divisor of the group order (for
example, [5], [8], [3], [4]). In order to obtain suitable results for n =
p — 1, it is necessary (as it was for n» < p — 1) to first have results
for the class of p-solvable linear groups. Such results are obtained
here for n = p»p — 1, p and p + 1 in §s 3, 4 and 5, respectively.

2. Notation and preliminary results. All groups considered
are of finite order. All group representations occurring are represen-
tations by linear transformations over the complex numbers and all
characters mentioned are characters of such representations. p will
always denote a fixed odd prime. A group is called p-closed if it has
a normal p-Sylow subgroup and p-nilpotent if it has a normal p-
complement. Z(H) denotes the center of the group H. Z will some-
times be used in place of Z(G).

The following easily verified result is referred to as the Frattini
argument.

2.1. If H is a normal subgroup of G and P is a Sylow p-
subgroup of H, then G = N(P)H.

2.2. ([7], p. 263) If the Sylow p-subgroup P of G 1is abelian,
then the maximal p-factor group of G is isomorphic to PN Z(N(P)).

2.3. Let G be a p-solvable group which has a Sylow p-subgroup
P of order p. If P is self-centralizing, then G s solvable.

Indeed, by p-solvability PO, (G) <] G and by the Frattini argument
G = N(P)0O,(G). Because P acts fixed-point-free on O,.(G), the latter
group is nilpotent by a result of Thompson and (2.3) follows.

827



828 DAVID L. WINTER

The following statement is an immediate consequence of Schur’s
lemma.

2.4. Let X be a faithful representation over the field of complex
numbers of the finite group G. If H is a subgroup of G such that
X | H 1s irreducible, then C(H) < Z(G).

2.5. ([10], (2.1)) Let p be an odd prime and let G be a finite
p-solvable group. Suppose G has a faithful representation X over
the complex number field all of whose irreducible constituents have
degree not exceeding p — 1. Then G 1is p-closed unless p is a Fermat
prime and X has an irreducible constituent of degree p — 1.

We omit the proof of the following elementary result.

2.6. Let H be a normal subgroup of G of prime indexr p. Let
% be an ordinary irreducible character of G such that y|H 1is reducible.
Then Y| H is a sum of p distinct irreducible characters of H which
are conjugate in G.

It will be convenient to have (*) denote the following set of
conditions.

(*) Let p be an odd prime and let G be a finite p-solvable group
with p-Sylow subgroup P which is not normal in G. Let G have a
faithful, trreducible representation X of degree m over the complex
number field with character ¥.

3. In this section we prove

THEOREM 1. If G satisfies (*) and n = p — 1, then p is a Fermat
prime and G/Z has order 2°p for some s. In particular, G is solvable.

A preliminary step is needed.

3.1. The conclusions of Theorem 1 hold if it is also assumed
that G = PN where |P| = p and N is a normal p-complement of G.

Proof. Let B=C(P)N N. We may assume (dety)(w) =1 for
w € P, multiplying x by a suitable linear character of G/N if necessary
([6], Th. 2). Then by ([10], (2.3)) ¥x|P x B= p¥ + X or X|P X B =
O — X\ where ¥, \ are characters of PB/P and p is the character of
the regular representation of PB/B. Since y(1) = p — 1, it is easily
verified that the second case must occur and ¥ = )\ is a linear char-
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acter. Then y|B = (p — 1)\ and therefore B = Z.

Let ¢ be an odd prime divisor of |N|. Since G is p-nilpotent,
there is a ¢-Sylow subgroup @ of N normalized by P. Applying (2.5)
to the odd order group PQ, we get that Q < B=Z. Thus G/Z has
order 2°p for some s. Finally, p is a Fermat prime by (2.5).

Now let G be a counterexample to Theorem 1 of minimal order.
Because n < p, x|P is a sum of linear characters and P is therefore
abelian. Hence P < C(0,(G))  G. If C(0O,(@) # G, then X|C(0,(G))
is reducible by (2.4). By (2.5) C(0,(G)) is p-closed which implies G
is p-closed. This is a contradiction and therefore O,(G) < Z. By [10],
|P: 0,(G)| = p. Suppose O,(G) #<1>. From (2.2) it follows that G
has a normal subgroup H of index p. If H is not p-closed, then y|H
is irreducible by (2.5). Therefore Z(H) < Z and we get a contradiction
by applying the induction hypothesis to H. Therefore H is p-closed
and it follows that H = 0,(G) X N where N is a normal p-complement
of G. Since 0,(G) =< Z,X|0,(G) = (p — 1)\ for some linear character
A of 0,(G). Let ¢ be a linear constituent of y|p. Then p|0,(G) = .
Consider g as a linear character of G/N. Then gy is.a faithful irre-
ducible character of G/O,(G) of degree p — 1. The induction hypothesis
now yields a contradiction because |Zx| = |x| implies Z(G/0,(®)) =
Z(G@)/0,(G). This proves that 0,(G) = <1) and |P| = p.

By p-solvability, PO,.(G) <] G and by the Frattini argument G =
N(P)PO,.(G) = N(P)O,(G). N(P) normalizes the normal p-complement
V of C(P) and therefore V < 0,/(G). Furthermore, G/PO,(G) =
N(P)/C(P) is cyclic of order dividing p — 1. Since p is a Fermat
prime by (2.5), |G: PO,.(G)| is a power of 2. Because PO,.(G) is not
p-closed, X| PO,.(G) is irreducible by (2.5) and this implies Z(PO, (G)) <
Z. The proof of Theorem 1 is now completed by applying (3.1) to
PO,.(G).

4. The purpose of this section is to prove the following result.
THEOREM 2. If G satisfies (*) and n = p, then G is solvable.

For the proof, assume Theorem 2 is false and let G denote a
counterexample of minimal order.

4.1. G has a normal series 0,(G) < N, < P, < G where N,/O,(G) =
0,(G/0,(®)), P/N, = O,(G/N,) has order p and |G:P,| is relatively
prime to p.

This is clear from the definitions and the fact that |P: 0,(G)| = »
by [10].
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4.2. 0,G) £ Z. In particular, 0,(G) = {1>.

Proof. Suppose {1> # 0,(G) < Z. Then P is abelian and by (2.2),
G has a normal subgroup H of index p. If H is not p-closed, y|H
is irreducible by Clifford’s theorem and (2.5) and then minimality of
|G| yields a contradiction. Therefore H is p-closed and we must have
H = 0,(G) x N where N is a normal p-complement of G. A contra-
diction can now be obtained by applying the induction hypothesis to
G/0,(G) as in the proof of Theorem 1.

Therefore if (4.2) is false, O,(G) = <1)> and |P| = p. In this case.
consider PO, (G) ] G. PO,(G) cannot be p-closed and therefore,
x| PO,.(G) is irreducible. This implies that x|0,(G) is a sum of p
distinct conjugate linear characters. Hence O,.(G) must be abelian.
By the Frattini argument, G = N(P)PO,(G) = N(P)O,(G). Since
|P|=p,C(P) =P x V for some group V = 0,(G). It follows that
N(P) is solvable and hence G is solvable, proving (4.2).

4.3. X s primitive and O,(G) ts nonabelian.

Proof. If X is imprimitive, the underlying vector space is a
direct sum of p subspaces of dimension 1 which are permuted transi-
tively by the action of G. If K is the normal subgroup of G stabili-
zing all the subspaces, then K is abelian and G/K is isomorphic to a
subgroup of the symmetric group S,. Since P is not contained in
K, it follows from (2.3) that G/K is solvable. This implies that G is
solvable, a contradiction. Therefore X is primitive.

If 0,(G) were abelian, primitivity of X would force 0,(G) < Z,
contrary to (4.2).

Since we are interested only in the solvability of G, it may be
assumed, by a method of Blichfeldt ([1], p. 14), that X is unimodular.
Now a result of Brauer ([2], (5C)) yields that G/O,(G) = SL(2, p). If
p >3, G is not p-solvable and if p» =3, G is solvable. These are
contradictions and the proof of Theorem 2 is complete.

5. In this section the following theorem is proved.

THEOREM 3. If G satisfies (*) and n = p + 1, then p is a Mersenne
prime and G 1is solvable.

In the first step a special case is treated.

5.1. Let G be a finite 3-solvable group which has a faithful
wrreducible representation of degree n = 4 over the complex number
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field. If G is mot 3-closed, then G is solvable.

Proof. Let q be a prime with ¢ =11. Then (¢ —1)/)2=5>n
and so G has a normal abelian ¢-Sylow subgroup by [5]. Suppose G
does not have a normal abelian 7-Sylow subgroup. Then by [8], G/Z
is isomorphic to PSL (2,7) or 4, and so G is not 3-solvable. Hence
if F is the maximal normal nilpotent subgroup of G, the only possible
prime divisors of |G: F'| are 2,3 and 5. Since G/F is 3-solvable, it
must be solvable and therefore G is solvable.

Suppose Theorem 3 is false and let G be a counterexample of
minimal order. A contradiction is obtained after a series of steps.
By [9] it is sufficient to prove that G is solvable.

5.2. X 1is a primitive representation of G.

Proof. Suppose X is imprimitive. Let V be the underlying
vector space and let V, ..., V, be the subspaces which form a system
of imprimitivity for G. Let K be the normal subgroup of G stabili-
zing all V;. Then G/K is isomorphic to a subgroup of S,.

%|K is a sum of r constituents all of the same degree (p + 1)/r
which is less than p — 1 unless p = 3 and r = 2. By (5.1) the latter
case does not occur. Therefore by (2.5), K is p-closed and consequently
p||G: K| and r > p. It follows that » = p + 1. Therefore the dimen-
sion of each V; is 1, y|K is a sum of linear characters and K is
abelian. G/K is solvable by (2.3) and therefore G is solvable.

5.3. It may be assumed that the following does not hold: G = PN
where N 1s a normal p-complement of G and |P| = p.

Assume on the contrary that G = PN as in (5.3). A contradic-
tion proving (5.3) is obtained after a number of steps. By a method
of Blichfeldt ([1], p. 14) we may assume ¥ is unimodular for this proof.

5.8.1. Let B=C(P)NN. Then x|P X B = po¥ + N where ¥ and
X are linear characters of PB/P and p is the character of the regular
representation of PB/B. B s abelian.

Proof. By ([10], (2.3)), x|P X B = p¥ + xor X|P X B= p¥ — A\
where ¥ and )\ are characters of PB/P with \ irreducible and p is
the character of the regular representation of PB/B. It is easily
verified that the first case must occur and ¥ and M\ are linear char-
acters. Here we use the fact that X|P x B is a linear combination
of irreducible characters of P x B with nonnegative coefficients and
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» >3 by (5.1). B is abelian because y|B = p(¥|B) + (\|B) is a sum
of linear characters.

5.3.2. G contains mo proper mormal subgroup of index prime
to p.

Proof. Let H be such a subgroup. Then H cannot be p-closed.
Therefore by Clifford’s theorem, (2.5) and (5.1), y|H is irreducible.
By minimality of |G|, H is solvable and p is a Mersenne prime. By
the Frattini argument G = N(P)H = (P x B)H ='BH, B being abelian
implies that G is solvable and (5.3.2) is proved.

5.3.3. Let H be a subgroup of G such that y|H contains an
wrreducible constituent of degree p. Then H N N s abelian.

Proof. By assumption y|H = y, + J. where y, is irreducible and
%= is linear. Because pt|H N N|, .| HN N must be reducible and by
(2.6), x.|HN N is a sum of linear characters. Therefore y|HN N is
a sum of linear characters implying HN N is abelian.

5.3.4. Let Q be a Sylow gq-subgroup of G for some prime q + p.
Then Q 1is mot contained in B.

Proof. Suppose on the contrary that @ < B. Then P = C(Q) <] N(Q).
If P <] N(Q), then N(Q) < N(P) = P x B. This implies that N(Q) is
abelian and that G has a normal ¢-complement by Burnside’s transfer
theorem. This contradicts (5.3.2) and therefore N(Q) and, consequently,
C(Q) are not p-closed.

By (2.5), x| N(Q) contains an irreducible constituent y, of degree
at least p — 1. If x (1) =p, N@Q NN is abelian by (5.3.3). By
Burnside’s theorem, N has a normal g-complement N, which is a
characteristic subgroup of N. Therefore N, <] G and PN, is a group.
If P<] PN, then N, < B and N, is therefore abelian. This yields
that G is solvable. Therefore PN, is not p-closed and y|PN, contains
an irreducible constituent ¢ of degree at least p — 1. If p(1) = p — 1,
then | N, is irreducible. This implies by Clifford’s theorem that y|N;
is a sum of irreducible characters of degree » —1. Q1) =»+1
implies p = 3, a contradiction. If o(1) = p, then N, is abelian by
(5.8.3) and G is solvable.

Suppose now that y,(1) = »p — 1 and at first that ¥ | N(Q) = x, + %
where ¥, is irreducible. N(Q) = C(Q) because G does not have a normal
g-complement. y,|C(Q) must be irreducible by (2.5) and (5.1), and
therefore 1,|C(Q) = N\, + N, where A, and )\, are linear characters con-
jugate in N(Q) which do not agree on Q. Indeed, otherwise we would
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have |x;(x)| = x:(1), ¢ = 1, 2 for x € Q and this would imply @ < Z(N(Q)).
However, by (5.3.1) x|Q contains at most two distinct characters.
2| @ contains exactly one linear character because y,|C(Q) is irredu-
cible. Therefore ¥,|@ = (p — 1)\, © = 1 or 7 = 2. But this contradicts
Clifford’s theorem which states that y,|Q must contain both )\, and A,.

Suppose now that y|N(Q) = X + X. + X. where y, is irreducible
of degree p — 1 and y,(1) = x:(1) = 1. By the complete reducibility of
X|N@), Z(N@Q)) = {xc N@Q)||x.(x)| = p — 1]. By Theorem 1, P nor-
malizes but does not centralize some Sylow 2-subgroup S of N(Q).
Therefore by (2.5) x,|S is irreducible. This yields that Z(S) < Z(PS) <
B. Let ¢ be the linear character of Z(S) such that y,|Z(S) = (p — ).
By (5.3.1), ¢ must have multiplicity at least p as a constituent of
x|1Z(S). Therefore y;|Z(S) = p for ¢+ =2 or 3. It follows that S’ N
Z(S) = {1> because S’ < ker y,Nkery, and y is faithful. This is
possible only if S is abelian and y,(1) =p —1 =1, which is a
contradiction.

The only remaining case is y|N(®Q) irreducible. If this holds,
x|Q is a sum of distinct (since N(Q) = C(Q)) linear characters each
occurring with the same multiplicity. This is contradictory to (5.3.1)
and (5.3.4) is proved.

5.3.5. p is a Mersenne prime and not a Fermat prime. Let q
be any odd prime divisor of |N| and let @ be a Sylow gq-subgroup of
N normalized by P. Then Q is abelian and y|N(Q) is irreducible.

Proof. By (5.3.4) PQ is not p-closed and by (2.5), x| PQ containg
an irreducible constituent of degree at least p — 1. PQ® having odd
order implies y|PQ must have an irreducible constituent of degree p.
By (5.3.3), Q is abelian and y|N(Q) must contain an irreducible con-
stituent y, of degree at least p. If x,(1) = p, N(Q N N is abelian
and we obtain a contradiction (as in the second paragraph of the
proof of (5.3.4)). Therefore x| N(Q) is irreducible and ¥ |Q is a sum
of distinct (by (5.3.4)) linear characters. N(Q) # G for otherwise the
primitivity of X would be contradicted. Minimality of |G| yields that
p is a Mersenne prime. p is not also a Fermat prime since p # 3.

5.3.6. Let g be an odd prime divisor of | N|. Then q divides | B|.

Proof. Let @ be a Sylow g-subgroup of G normalized by P. By
(5.3.4), PQ is not p-closed. Because PQ has odd order y|PQ = X, + X.
where the y; are irreducible of degree p and 1, respectively. Let K
be the kernel of %,. Then @ £ K because by (5.3.5) and Clifford’s
theorem y%|Q is the sum of conjugate characters and yx is faithful.
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Multiplying y, by a nonprincipal linear character of PQ/Q if necessary,
we may assume PN K = <1). Then yx, is a faithful linear character
of PQ/KN Q@ and therefore this group is cyclic and P centralizes
Q/KNQ. It follows that Q@ = (BN QYK N Q) ([6], Lemma 3 (c)),
proving (5.3.6).

5.3.7. B — Z s nonempty.

Proof. If B= Z, then P acts fixed-point-free on N/Z whence
N/Z is nilpotent by a result of Thompson. It follows that G is
solvable.

5.8.8. There exists be B — Z such that C(b) is not p-closed.

Proof. Suppose on the contrary that C(b) is p-closed for all be
B — Z. We shall show that N/Z is a Frobenius group with comple-
ment B/Z. Let G = G/Z and let H, T denote, respectively, the sub-
group HZ/Z and the element Zx of G where H < G and z¢G.

Let ye BN B*,y¢Z,cc N. Then y and y** are inB. Therefore
P and P® are in C(y). By assumption, P = P*, so e N(P)N N =
B and therefore Z e B. Therefore N is a Frobenius group with abelian
complement B. Consequently, N is solvable and it follows that G is
solvable.

5.8.9. For all be B— Z,C(b)N N = C(B) N N and this group ts
abelian.

Proof. By the preceding step there exists b,¢ B — Z such that
C(,) is not p-closed. yx|C(b,) is reducible because b, ¢ Z and y|C(b,)
contains an irreducible constituent y, of degree » —1 or p because
C(b,) is not p-closed. By (2.5), x.(1) = » because p is not a Fermat
prime. By (5.8.3), C(b) N N is abelian. Because B = C(b) N N,
Cb)N N = C(B)N N and therefore C(b,) N N = C(B)N N and C(b,)) =
C(B). Thus C(B) is not p-closed. If be B — Z, C(B) < C(b) and C(b)
cannot be p-closed. Repeating the argument, we have C(b) N N =
C(B) N N as desired.

From (5.3.5), (5.3.6) and (5.3.9), we get
5.3.10. |N:C(B)N N| is a power of 2.

Let ¢ be an odd prime divisor of | N|. Because C(B) is p-nilpotent,
there is a ¢-Sylow subgroup Q of C(B) normalized by P. By (5.3.4),
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PQ is not p-closed. Since PQ has odd order, it follows from (2.5)
that y | PQ contains an irreducible constituent y, of degree p. By (2.6),
%,1Q is a sum of distinet linear characters. Therefore %|Q is a sum
of p + 1 distinct linear characters because X|N(Q) is a irreducible by
(5.8.5) and Clifford’s theorem may be applied. By a result of Brauer
(121, (8F)) C(Q)/Z is a (2, q)-group. By unimodularity of X, |Z||(p + 1).
Since p is a Mersenne prime Z is a 2-group and therefore C(Q) is a
(2, g)-group. C(B) N N = C(Q) because C(B) N N is abelian. Therefore
by (5.8.10), 2 and ¢ are the only prime divisors of |N|. It follows

that N and therefore G are solvable. This completes the proof of
(5.8).

5.4. 0,(G) Z Z(G).

Proof. By [10], |P: 0,(G)| = p. Assume (5.4) does not hold. As
in the proof of (4.2), it can be shown that |P| = p, 0,G) = {1
Because PO, (G) <| G, PO,.(G) is not p-closed and y|PO,(G) is irredu-
cible by (2.5) and (5.1). Let C(P) = P x V. Then X|PVO,(G) is also
irreducible. Therefore PVO,(G) is solvable by either (5.3) or mini-
mality of |G|. Because N(P)/PV is cyclic, N(P) is solvable. But by
the Frattini argument G = N(P)PO,(G) and therefore G is solvable,
proving (5.4).

Now a final contradiction can be obtained. yx|0,(G) must be a
sum of p + 1 linear characters. If they are all equal, (5.4) is con-

tradicted. If they are not all equal, X is imprimitive contradicting
(5.2).
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