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DERIVABLE SEMI-TRANSLATION PLANES

NorMAN L. JOHNSON

The author has previously classified semi-translation planes
with respect to (p, [, 7o)-transitivity, This paper is concerned
with the determination of the types of semi-translation planes
that can be constructed from certain dual translation planes
by Ostrom’s method of ‘‘derivation”,

If 7 is a derivable plane that is ((eo), L.)-transitive then the
plane derived from 7 is a semi-translation plane. There are only two
known classes of planes that are ((eo), L..)-transitive but not (p, L)-
transitive for any additional pointline pair. They are the Ostrom-
Rosati planes (and their duals) and the planes derived from the dual
Liineburg planes. With the exception of the above planes and the
translation planes, the only known derivable planes that are ((eo), L..)-
transitive are dual translation planes. Ostrom has shown that if 7 is
a strict semi-translation plane of order ¢* and ¢ > 4, which is derived
from a dual translation plane whose coordinate system is of dimension
2 over its (left) kernel, then the full collineation group of the pro-
jective extension of 7 fixes the line at infinity of 7. We shall give a
slightly different proof of Ostrom’s theorem which also includes the
case q = 4.

The author has previously classified semi-translation planes with
respect to (p, L, w,)-transitivity. With the exception of the Hughes
planes, for every known example of a semi-translation plane belonging
to a certain class there is an example of a semi-translation plane
in the same class and which is derived from a dual translation plane.
This suggests that one might look, in general, at the possible semi-
translation planes so derived.

Ostrom has shown that the number of possible translation planes
(and hence dual translation planes) is extremely large. This suggests
that the number of distinct semi-translation planes derived from dual
translation planes may also be very large. However, relative to our
classification, we will show that the number of classes of such planes
is exactly five.

2. Background material. We shall present the essential material
necessary for reading this article. However, the reader is referred to
Ostrom’s papers [10], [15], [17], [18] and [19] for a complete back-
ground.

DEFINITION 2.1. Let V be a vector space over a field F. Let
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N (V) be the following system of points and lines: the points of N (V)
are the ordered pairs (x, y) of elements of V. For each cc V, the
set of points (x, y) such that x =¢, is a line. For each aecF and
for each be V, the set of points (z, ¥) such that y = 2a + b, is a line
(see [18], p- 5). In this case, N(V) will be said to be a derivable
net.

Note that we may coordinatize a net by Hall’s method (see [18])
with the restriction that since we may not have enough parallel
classes to form an affine plane, multiplication may not be defined for
all elements of the coordinate system.

If F'is GF(q) and V is of dimension 7 over F, then N(V) is of
order q". Also, the number of parallel classes of N(V) is ¢ + 1.

DEFINITION 2.2. A net N is said to be replaceable if there is a
net N’ defined on the same points such that each pair of points that
is collinear in N is also collinear in N’, and vice-versa. We shall call
N’ a replacement for N.

The derivable net N(V) of (2.1) is a replaceable net if and only
if V is of dimension 2 over F (see [18]).

Let N(V) be embedded in an affine Desarguesian plane m of order
q¢*. That is, N(V) and 7 are defined on the same points and each
line of N(V) is a line of #=. Let (C, +, -) be the ternary ring of x.
Hence, (C, +) is a vector space of dimension 2 over F' relative to the
product za as a scalar product. Let te C and ¢ F', then every element
of C may be uniquely represented in the form ta + 8 for «, Be F (we
identify the vector 1 - @ with ae F)).

Let 7, be the subplane of 7 coordinatized by F' = GF'(q). That
is, points of =m, are of the form (a, 5) for a, Be F. Consider the
images of w, under the mappings (x, ¥) — (ax, ay) for all nonzero a € C.
The translates of these images are the lines of a net N’(V) that is a
replacement for N (V) (see [18]).

DEFINITION 2.3. Let N(V)U M, M a net defined on the same
points as N(V), indicate the incidence structure of the common points
of N(V) and M and the lines of N(V) and of M. Also, N(V) and
M are assumed to be disjoint; i.e., two points joined by a line of
N(V) are not joined by a line of M and conversely. By (3.3) [18],
N(V)U M is a net. An affine plane 7 is said to be derivable if it is
of the form N(V)UM with V of dimension 2 over F. If i’=N"(V)UM
(see above remarks) then 7’ will be said to be derived from z. (Ostrom
[15] has actually shown that weaker conditions than the above are
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sufficient for derivation, but we know of no planes admitting these
weaker (but not the stronger) conditions.)

Derivation is an involutory process. This is suggested by the
fact that lines of N'(V) are subplanes of N(V) and vice-versa.

DEFINITION 2.4. Let S be a coordinate system (see [18]) with
associative and commutative addition. If S contains a subfield F' such
that 1) a(a+B8)=aa+aB, (2) (aw)B = a(aB), and (3) (a+b)a =aa+ba
for all a,be S and for all «, B¢ F, we shall say that S is a right
vector space over F.

If T is the ternary function of S and if T (x, @, b) = zax + b for
all be S and for all «e F, we shall say that S is linear with respect
to F'.

Now let S be a coordinate system which is a right vector space
over a subfield F. Let S be linear with respect to F and let the
dimension of S over F' be 2. If the coordinate system of a plane =«
is as above, then the plane 7 is derivable (see (2.1) and [10]).

If @ is a right (left) quasifield, it is well known that @ may be
used to coordinatize a (dual) translation plane. The kernel F'of Q is a
skewfield and if @ is a left quasifield then @ is a right vector space
over F. If w is a dual translation plane with respect to (- ) then the
ternary function is linear (see [17]). Therefore, if the coordinate
system of a dual translation plane of order ¢* (with respect to (~))
is of dimension 2 over its (left) kernel then 7 is derivable (that is, the
affine version of 7 is derivable). (We are using L. to denote the line
at infinity and (ec) = L. N {(z, ) | * = constant}.)

THEOREM 2.5. (Ostrom [15]). We may choose a coordinate system
C for a semi-translation plane w (of order ¢°) which contains a sub-
system F' which 1s a quasifield of order q such that

(1) points of m, have coordinates in F' for some subplane @, of «
of order q,

(2) lines of m, have equations of the type y =z + B8 or x =
for all a, Be F,

(3) linmes of ™ whose slopes m are not in F have equations of the
form: y=(@@—B)m+ «a for a, Be F,

4) (x—a)yB=x8—aB for all xcC and for all a, B F,

(B) if ce F and deC there exist unique «, B¢ F such that d=
ca + B.

THEOREM 2.6. (Albert [1]). Let w be a derivable plane (recall w is
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now considered as an affine plane). Let t be an element of the coor-
dinate system C of & such that t ¢ F (see (2.1), (2.2), (2.4)). Then the
derived plane ' can be coordinatized by a coordinate system C' such
that a point with coordinates (x,y) = (tx, + @, ty, + y,) n C has
coordinates (x', ') = (tx, + y,, t€, + ¥.) in C'.

Note that 7, = {(a, B); «, Be F} in m has coordinates {(0, ta+B);
a,ReF} in C'. That is, the set of points of the subplane 7, in 7 is
the same as the set of points of #' = 0 in #’.

A collineation of m which fixes N(V) also fixes M (see (2.3)).
Such a collineation induces a collineation of #’. In particular, a trans-
lation of # induces a translation of z’ (Theorem 7 [15], (4.8) [18]).

Let L be a line of = which is not a line of #’. If 7 admits a
group of translations transitive on the points of L, then the pro-
jective extension of 7’ is a semi-translation plane with respect to L..
Conversely, if 7’ is a semi-translation plane there exists such a line L
in 7 (corollary to Theorem 7 [15]).

Let © be a dual translation plane (order ¢*) with respect to (oo)
and whose coordinate system is a right 2-dimensional vector space
over GF(q¢). Thus, z is derivable and if =0 in 7 is the same as
the set of points of 7, (z, some subplane of the derived plane of =’)
then by the previous remarks, =’ is a semi-translation plane. As
pointed out in the introduction, it will be shown that the full col-
lineation group of the projective extension of n’ fixes L.

Note that if (tx, + @, ty, + ¥,) — (2, + 2,, tw, + w,) is a collineation
of the derivable semi-translation plane = which fixes M, x;, ¥;, z;, w; € F,
1 =1, 2, then, by (2.6), (tx, + v, tx, + ¥,) — (tz, + w,, t2, + w,) is a
collineation of 7' (7’ the plane derived from ).

THEOREM 2.7. (Ostrom [15]). Let v be a derivable semi-translation
plane coordinatized as in (2.6), then :

(a) Addition in C is isomorphic to addition in C'.

(b) F'’ is a subsystem of C.

(¢) C s linear with respect to F'.

(d) Multiplication on the right by elements of F' is the same in

C and C'.

(e) If - denotes multiplication in C’ and o denotes multiplication
wn C, then: (tx, + 9,) o (t2, + 2,) = tx, + ¥, if and only if (tx, + ;) -
(tu, + u,) = ty, + y, where z, - (tu, + u,) = t + 2,, provided 2z, #+ 0 and
Tiy Yir By W, €F, 7 =1, 2.

DeFINITION 2.8. We shall say that a system @ satisfying the
following properties is automorphic: Let Q be a set of ¢* elements
with the operations of 4 and - such that:
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(1) Addition is an Abelian group.

(2) Nonzero elements of @ form a loop under multiplication.

(8) @ contains a subsystem F' which is a field of order ¢ with
respect to addition and multiplication.

(4) @ is a right vector space of dimension 2 over F' with respect
to multiplication on the right by elements of F.

B5) a®+ a) =ab+ ax for all a,be @ and for all ae F.

(6) @ admits a group of automorphisms of order ¢ which fixes
each element of F. The group maps t—t + £ for all B¢ F where ¢
and 1 are basis elements for the vector space.

Notice that the coordinate system S for a dual translation plane
(of order ¢* whose kernel is GF'(q)) with respect to () is automorphic
if S admits automorphisms of the form ¢ — ¢ + B for each 8¢ F' which
fix the kernel elementwise.

THEOREM 2.9. (Morgan and Ostrom [8]). If C is an automorphic
system and if (ta) (ta,) = th (@, &) + k(a, o) where a, +0 and
I, ), k(a, @) € Fy then: (fa,+B,) ((a.+B:) = t [h(e, ) — a8, +,B:]
+B.a h(ay, an) + k(o @) — Blar™ a, + 5,6

THEOREM 2.10. (Ostrom [15]). Let @ be a derivable plane and let
the set of points such that x = 0 in 7 be the same as the set of points
of the subplane w in @’ (7' indicating the plane derived from =). If
B is a collineation of m™ which fixes the set of points (x, y) such that
x =0 pointwise and fixes M (see (2.3)) then B induces an automorphism
of C' which fixzes F' pointwise.

AssSuMPTION 2.11. We will assume for the remainder of this article
that 7 is a strict semi-translation plane which is derived from a dual
translation plane 7 with respect to (e0) whose coordinate system is
of dimension 2 over its kernel and which is coordinatized as in (2.6)
and (2.7). We denote the coordinate systems of = and 7= by (C,+, )
and (C,+,x), respectively. The subfield F' of C is actually the same
as the subfield F' of C and so we will not distinguish between F' and
F (see (2.7)).

Notice that if we have a semi-translation plane with respect to a
line L (see [4]), we can choose L to be the line that is deleted in
obtaining an affine plane. That is, we may choose L = L.. Also, we
may choose 7, as the subplane coordinatized by the subfield F. This
amounts to choosing a line of 7 and calling it #=0. Also, the choice
of ¢t in w depends on the arbitrary choice of (0) in #. That is, ¥ =0
in 7w is the set of points (x, y) such that © = ta, y = ¢8 in =. (Note
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that we are denoting the lines {(x, ) | ¥ = f(x)} by ¥ = f(x).)

DEFINITION. 2.12. Let X* be a projective plane of order ¢* and
X5 a projective subplane of order q. Let p be a point of X and L
a line of X* gsuch that L NZXZ} is a line of Xf. X* is said to be
(p, L, Zf)-transitive if the stabilizer of X; in the group of all (p, L)-
collineations of X* induces a collineation group of X§ such that X} is
(p, L)-transitive. Let 3 be an affine plane of order ¢* and X, an affine
subplane of order ¢ of 3. Let X* and X be the projective extensions
of 2 and XY, respectively. We shall say that Y is (p,L,Y,)-transitive
if and only if 3* is (p, L, X¥)-transitive.

Thus, a semi-translation plane = is (p, L., 7,)-transitive for all
points pe L. N wf for some subplane 7y of 7* (z*, 7 the projective
extensions of 7, w,, respectively). Hereafter we do not formally dis-
tinguish between 7, ane =;.

The following mappings represent collineations of the dual trans-
lation plane 7:

(i) (»,9)— (x, y+a) for all ae C. These are the ¢* translations
with center ().

(ii) (x, y) — (z, ya) for all nonzero e F'; ((» ), y=0, 7,)-transitivi-
ty (see (3.4)). These mappings are collineations since C is of dimension
2 over F' (see proof of (3.6)).

(iii) (z, y) — (z, za + y) for all ae C; ((«), x = 0)-transitivity (see
proof of (3.2)).

The mappings (iii) for @€ F induce an automorphism group of
order ¢ fixing F' pointwise in C (see (2.10)). It is an easy exercise
to see that these automorphisms are represented by ¢—¢ + « for all
aec F (see (2.6) and the remarks immediately following).

Note also that the relations (2.6) and (2.7) between the coordinate
systems for # and @ are reciprocal since the deriving process is in-
volutory.

3. The possible types of semi-translation planes derived from
dual translation planes. The following five lemmas are very useful
and so are included here. Their proofs are very similar to the cor-
responding theorems for (p, L)-transitivity, so we will merely sketch
the proofs.

LemmA 3.1. If @ is ((0), x = 0, 7,)-transitive then C is such that
¢ (am)=(ca)m for all ¢,meC and for all acF. Also, (z,y)— (v, y)
for all monzero ac F' represents these collineations.

Proof. For each aec F 3 ((0), x = 0, m,)-collineation fixing 7, such
that (1, m) — (&, m) and (0, 0) — (0, 0). Therefore, y =am — y =
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xmd>am =m. If we let x =c¢—a = ¢ it follows that (¢,cm)—(¢/,cm)
so that ¢m = em. But m = am, which implies ¢'m = c(am). Letting
m = a implies m =1 and ¢ =ca. Thus, (ca)m = c¢(am) for all
¢, meC and for all aeF.

LEMMA 8.2. If @ is ((e0), x = 0, w)-transitive then C 1is such that
c(@+ m) =cx+ cm for all ¢, meC and for all acF. Also, these
collineations are represented by (x, y) — (x, B + y) for all Be F.

Proof. For each Be F 13 ((e0), x = 0, 7,)-collineation carrying (0)
to (B). It follows that this collineation may be represented by the
mapping (%, ¥) — (x, 8 + y). The assertion of (3.2) is then clear.

LemMmA 38.3. If @ ¢s ((0,0), L., w,)-transitive then C has the fol-
lowing properties: (1) (ac)m = a(em) for all ¢, meC and for all
acF. (2) alc+ m)=ac+ am for all ¢, meC and for all acF.
Also, (x,y) — (ax, ay) for all nonzero acF represents these col-
lineations.

Proof. For each ae F-{0} there is a ((0,0), L., 7,)-collineation
such that (1,1) — (a, ). Using the fact that points on L. and lines
through (0, 0) are fixed, we can establish that (1, m)— (a, am) and
Y =m—y=am.

Thus, (¢, em) — (¢, a(em)) such that é¢m = a(em) for all ¢, meC.
It then follows that the collineations are represented by the mappings
(x, y) — (az, ay) from which the result immediately follows.

LEMMA 3.4. If 7w is ((e0), y = 0, 7,)-transitive then (cm)a = c(ma)
for all ¢, me C and for all e F. Also, (z,y)— (x, ya) for all ac F
represents these collineations.

Proof. Lemma 4 [9].

Lemma 3.5. If w is ((ee), ¥y = 0, m)-and ((0), x = 0, 7,)-transitive
and aa =ax for all acF and for all acC, then m 1is also
(0, 0), L., m,)-transitive.

Proof. From (3.4) and (3.1) we have collineations represented by
(x, ¥y) — (xa, y) and (x, y) — (x, ya). Thus we have collineations re-
presented by (x, y) — (ax, ay) YV ac F — {0}. (3.5) then follows from
(3.4).

LEMMA 3.6. Let & be recoordinatized in either of the following
two ways:



694 NORMAN L. JOHNSON

(i) a point with coordinates (tz, + v, tx, + y,) will have co-
ordinates (ty, + x,, ty, + x.);

(ii) a point with coordinates (tx, + Y., tx, + ¥,) will have co-
ordinates (t(x, + y.@) + v, t(x, + Y,&) + Y,) for some acF; wx;,y;cF,
1=1,2. Then © remains a dual translation plane with respect to
() whose coordinate system 1is of dimension 2 over its kernel.

Proof. (i) Let (2/,%’) denote coordinates in the new coordinate
system.

Clearly, the sets of points satisfying the equations «'=c¢, y'=¢",
and ¢ = 2’ are lines so that we have a legitimate coordinate system
(@.4) [18]).

A plane 7 is a dual translation plane (of order ¢? with respect
to (o) and its coordinate system is of dimension 2 over its kernel if
and only if 7 is ((e0), L)-transitive for all lines L I () and = admits
collineations of the form (x/,%') — (¢, y'a) for all aecF = GF(q).
That is, the coordinate system (C + , - ) of a dual translation plane is
always a vector space over its kernel. Furthermore, the kernel-{0} is
isomorphic to the group of collineations of the form (x’, ¥') — (&', ¥'«@)
if © is a dual translation plane with respect to (co). (In this case,
¥y =a'm+ b—y = &'(ma) + ba under the above collineations so that
(¢, em + b) — (c(em + b) &) which implies ¢ (me) + ba = (em + b) a for
all «e F' — {0} and ¢, m, be C.) Thus, if = admits collineations of the
form (2, ') — (¢, ') for all «e F-{0} then C is a vector space over
F and hence is of dimension 2 over F. Let the coordinate change (i)
be denocted by o.

Let (x, y) denote coordinates of C, (x/, ¥’) coordinates of Co. Let
(g! +,+) 0 = (Co, B, ®). Thus, (@, y)0 = (tv, + Yy, t, + y)) 0 =
Yyt ty,+2) =@, ¥). {(@,9) 2= 0 0= {{te,+y, 0+y) | v, =y,=
0o = {(ty, + 2., ty,+2,| y,=2,=0} = {(2/, ¥') | = 0} and the line x = ¢ is
2" = ¢ under o so (<) is fixed under the coordinate change and the
set of ((e0), L)-transitivities L I(cc) is carried into itself.

Now (y = 0)o0 = (¥’ = 0) so (0)o = (0). Thus, 0Pa =a V ac Co.
Also, clearly, o=Q1). (B, tBPa)cy =2’ P a. Let tBDH a=ts,+s,
for some s,s,¢F. Then v =2’ Pa=(0,a) U @) if and only if
(B, ts, + 8) € (0, tar) U (1) in (x, y)-coordinates. That is, (B, ts,+ s) ey
=x+ta. Hence, B+ ta =ts, +s,=>s, =« and s, = L. Therefore,
I8P a=1tB + a.

Also, (a,a®) 0 = (ta, + a,, (ta, + a,) ) o, for some «,, a,cF,
(ta, + a,, ) + a)o = (ta, + ay, tlaa) + aa).  Also, (0, 0)o = (0, 0),
(1, @)o = (¢, tar) and (¢, ta)o = (1, @) so that (y = za)c = (¥ = 2’ @ ).

Hence, (ta, + @) ®a = (ta, + a)a and so t@B, DB, =B, + B,
Y By, B.eF.
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Now let o denote a collineation of 7 (2, y) — (¢, ya). Letting
x = tx, + x, and y = ty, + ¥,, for some x,, X, Y, Y, € F, (2, + 2oy tY, + Y5)0
Do (t@, + @, t0a) + @000, S0, (t2,+ 2y, s+ 1)) (8, + @), HY0) + Y,2))
and thus («/, ¥') — (@', ¥’ ® @). Hence (i) is proved.

The proof of (ii) is very similar to proof of (i) and is left for
the reader.

COROLLARY 3.7. The plane & remains a derivable semi-translation
plane derived from a dual translation plane ®™ whose coordinate
system is of dimension 2 over its kernel under the coordinate change
(i) (z, %) — (y,2) or (ii) (z,y) — (x + ya, y) for some aec F.

Proof. Immediate from (3.6) and (2.6).

LEmMA 38.8. Let © be (p, L, ,)-transitive with pe L. Then we
can choose p and L so that @ is (i) ((e0), y =0, w)-0or ((0), x = 0, ,)-
transitive if pe L; (ii) ((e0), x = 0, m)-or ((0), y = 0, w,)-transitive if
pelL. -

Proof. (i) Suppose p = () and L = (y = 0). Then, by (3.7)
(i), we may obtain ((0), x = 0, m,)-transitivity. If L=(y = 0) (if
L = (y = ¢) then by (56.1) [4], ce F and y =0 is in the orbit of y=¢
under the existing translation group of 7) then there is an a ¢ F' such
that L I (@) (i.e., LNm, is a line of w,). Since y = za is in the line
orbit of L (under the collineation group of 7), 7 is ((e), ¥ = za, m,)-
transitive. Clearly, by rechoosing ¢ to be ¢+ « in C we have
(), y = 0, &,)-transitivity. And, by (3.7)(i), then we have ((0)=
x = 0, 7,)-transitivity (see (2.5) (5) and the remarks following (2.2)).

If p + (e0), there exists an ac F' such that p = («). Rechoose ¢
in C so that p=(0). If L=(x=0) we have ((0), » = 0, ,)-transitivity
and thus (see (3.7) (i)) ((e0), ¥ = 0, &,)-transitivity. If L = (x = 0)
we then have ((0), y = 2(-8), m,)-transitivity for some 8¢ F. By reco-
ordinatizing by the map (x, y) — (¥ + y8~", y) we see that y = x(-8) —
(x=0) and (0) is fixed in w. Thus, we have ((0), x =0, 7 )-transitivity.

(ii) follows from a similar argument. The proof is left to the
reader.

ProposiTiON 3.9. If 7w is ((0,0), L., 7,)-transitive then aa = ax
Sfor all aeC and for all ae F.

Proof. It is an easy exercise to show that the collineations (x, ¥)
— (@, za+1y) ¥V acF and (z,y)—(x,yB) ¥V BecF-{0} of 7 induce
respectively in C (in 7) automorphisms o, fixing F pointwise of the
form to,=t+a and collineations of the following type: (tx,+¥,, tx,+¥.)
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— (tx,+v.8, tx,+¥.,8) for all nonzero BeF (note z;, y; € F, 1 =1,2).
These latter mappings fix (0,0) and (1,%) — (8, t). Thus, ¥y =at—y
=2(87') (see (3.3)). Let y,it = th(y) + k(), y.€F and h,k: F—F.
Then (y,, y.t) — (.8, th(y.) +k(y,)8) and hence (y,8)8~'t = th(y,) +k(¥,)5.
It follows then that k(y,)8 = k(y,) for all y,e F' and for all nonzero
BeF. Hence, k(y) =0 for all y,e F and thus yt = th(y,) for all
Yy, € F (note: F cannot be GF'(2)).

Now (y,t)0. = (th(y,))0. so ¥.(t + @) = (t + a)h(y,). By using the
properties of a right vector space (see (2.4) and (3.3)) we can establish
yt + ya = th(y,) + ah(y,). That is, y, = h(y,). Therefore, y,t = ty,
for all y, e F.

Let aeC and a = ta, + a,; @, 0, F. Then aa = (ta, + a,) @ =
(taya + a0 = (@) + o, = ate,) + aa, = a(ta,+a,) = aa (see (3.3)).
Therefore, (3.9) is proved.

ProrosiTION 3.10. If 7 is ((e0), 2 = 0, 7)-and ((0), x = 0, w,)-trans-
itive, them aa = aa for all a e F and for all aeC.

Proof. Let x indicate multiplication in = (in C). We will show
that, axa = axa in 7. Fryxell [2], Lemma 2.1, shows that under these
conditions, aa = aa in the semi-translation plane 7n. (Fryxell’s
argument is straightforward and can be supplied by the reader by an
application of (2.7) (e).)

If we derive @ we obtain & so that remarks that we made as to
the form that collineations of 7 take in 7 also hold for the form col-
lineations of 7 take in .

By (3.1), the ((0), z = 0, m,)-collineations of = are represented by
the mappings (x, ¥) — (xa, ). Letting x=tx,+x,, y=1ty,+ ¥, 2;, y; € F,
1 =1, 2, we clearly have the following induced collineations in & (see
(2.6)): (tx, + ¥, txy + ¥) — (E(x ) + y,, t(x,0) + ¥,) (note that txa = ta
by (2.7)(d)). By (2.10), the ((0), « = 0, 7,)-collineations of 7 induce an
automorphism group in z (in C) of order ¢-1 fixing F' pointwise. We
see that such automorphisms are of the form ¢-—¢a for all nonzero
ackF.

Now let a * t=tf () +G(a) for f(a),G(a)e F. The ((c0),2=0,7,)-
collineations of 7 induce an automorphism group in z (in C) of order
q fixing F' pointwise of the form ¢—t¢+ a for all acF. Hence
ax(t+B8) = (t+ B)f(a)+G(a) for a,B e F. By the properties of the right
vector space and (3.2), we have axt + af = tf(a) + B f(a) + G() and
thus a = f(a). Therefore, a*xt = ta + G(«). Using the automorphisms
of the form t-—¢8 we have ax({B) = (tB)a + G(a). But, ax*(tB)=
(@xt)B = (ta + G(a))B = t(aB) + G(a)B. Hence, G(a) = G(a)B for all
ac F and for all nonzero Se F. Since ¢ > 2, we have G(a) = 0 for
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all « in F. Thus, axt = ta. By the argument of (3.9), aax = axa
for all e F and for all ae C (see (3.1)).

LEMMA 3.11. Let (ta,)(ta,) =th(a,, o)+ k(a, a,) in C;h, k: F—F;
a,a,eF. Then, if w is ((o0), ® = 0, 7,)-transitive, there cannot exist
functions f and g: F— F such that h(a, ) = f(a)a, and k(a)o, =
g(a)a, unless 7 is the Hughes plane of order 9 (see [3],[9], or [18]
for the definition of the Hughes plane).

Proof. Suppose there do exist functions f and g with the above
properties. Since C is of dimension 2 over its kernel, it is easy to
see that if (ta) * (ta,) = th(a, &) + k(a, «,) in C; b, k: FxF— F and
a,, a,e F then h(a, )a, = h(x,, a,) and k(a, Da, = k(a, a,).

By (@2.7) (e), (ta)(tar)) = tf (@), + g(a)e, if and only if (ta, +
fla)a,) * (tu, + u,) = g(a,)ax, where a,* (tu, + u,) = t; a;, u; € F-{0}, 1=1,2.
Since 7 is (( ), =0)- and ((~), ¥y = 0, 7,)-transitive, a,* (tu, + u,) =
a,*x (tu,) + au, = (a,* tu, + au, (see (3.2) and (3.4)) and by the first
part of the argument of (3.10), a,*t = ta, + G(a,), G(a,) ¢ F. Thus,
t = (ta, + Gla))u, + au, = t(au,) + Gla)u, + au,. Equating vector
parts of the last equation, we have u, = a;* and u,= -G(a,)a;®. Thus,
(t, + fla)a) « (tar" — a*Gla) = g(a)a.

Now since 7w is ((ee), x = 0, m,)-transitive, = (and also w) is auto-
morphic (i.e., C and C are automorphic) (see (2.8)). Hence, by (2.9),
(ta, + fla)a) * (ta;* — a;* G(a,)) = t [h(a,, D' — fla) — a0 Glaw)] +
flah(ay, Dar* + ke, Da'(f (@) a'a, — fla)a'Ga,).

Equating vector parts, we have:

@) @(an Da;' — f(a) — aa°G(a) = 0 and

@ flahle, Dar + ko, Dot — (f(@) ar'a, — f(a) o Gla,) =
g(a,)a, for all nonzero a,,a, ¢ F. Let a,=1 in (1), then h(a;, 1)=f(a)).
Substituting h(a,, 1) = f(«,) back into (1), we have:

B) fla)o,—1)=-aa;' G(a,). Let f(1)=p8 and let a, =1 in (3).
Hence, G(a,) = -B(a,— D, so,

4) f(a) =apB for all ;e F. So, by substituting &(a,, 1)=g(a,)
(let @, =1 in (2)) and (3) and (4) into (2), we have

B) gl@)(a;' — a,) = 0 for all nonzero a,, a,c F. If ;! = «, for
all nonzero elements of F’ then F = GF (3). In this case, 7 is a dual
translation plane of order 9. Fryxell [2] has pointed out that, in
this case, # would be the Hughes plane of order 9. Therefore, by our
assumptions, either 7w is the Hughes plane of order 9 or g(a,) = 0 for
all nonzero o, ¢ F'. But in the latter case, ¢*=¢f(1) + g(1) + t8 which
is a contradiction to multiplication being a loop. Thus, (3.11) is
proved.

Assume for the remainder of this paper that q > 3.
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PrOPOSITION 3.12. 7 cannot be both ((e0), x = 0, 7,)- and ((e0), y
= 0, m,)-transitive.

Proof. If m is so transitive then clearly (see (3.4)) if (ta,) (ta,)=
th(a,, a,) + k(a,, ;) then k(a,, D), = k(a,, @) and h(a,, D)a, = h(a,, a).
But, this is contrary to (3.11).

THEOREM 38.13. If 7w 1is strict, then L. 1is invariant under the
Jull collineation group of the projective extemsion of m. In this case,
the full group of w is the inherited group (see [18] for this definition).

Proof. (Ostrom [10] gives a proof for ¢ > 4.) Suppose L. is
moved. By Lemma 3 [10], we may take the image of L. to be x=0.
In this situation, by Lemmas 4,5 and 6 [10], if (ta) (ta,) = th (o, &)
+k (a,, a,) then there exist functions f, g: F— F such that & (a,, «,)
= fla)a, and k(a, o) = g(a)®,. But, this is a contradiction by
(3.11).

LEMMA 3.14. 7 cannot be both ((e0), x = 0, m)- and ((0,0), L., 7,)-
transitive.

Proof. If m is so transitive, we have pointed out in (3.11) that
both 7 and 7 (i.e., C and C) are automorphic. By (3.9) and Lemma
2.1 [2], elements of F commute with elements of C and of C. Hence,
by (3.3), # admits collineations of the form (x,y)— (za, ya) for all
nonzero € F. By (2.6), it is easy to see that = also admits collin-
eations of this same form. Recall 7 is ((e0), y = 0, 7 )-transitive, so (see
3.4)) = admits collineations of the form (z, y) — (z, y5) for all nonzero
BeF. Hence, (2,9 — (za,ya) followed by (z,y) — (v, ya™) will
vield collineations represented by (z, y) — (z«, ). By (3.3), (3.4), and
(3.5), we have that elements of F' associate and commute with the
elements of C. By Theorem 5 [8], we know that since C is auto-
morphie, ¢ < 3. However, we have assumed that ¢ > 3 and thus we
have a contradiction.

LemMmA 3.15. 7 cannot be both ((0), x = 0, ,)- and ((0, 0), L.., 7,)-
transitive.

Proof. Suppose 7 is so transitive. By the argument of (3.14)
the elements of F' associate and commute with the elements of C in
7. By our assumptions we see (by the argument of (3.10)) that there
is an automorphism group of C of order ¢—1 which fixes F' pointwise
and is represented by ¢— ta for all nonzero « e F.

Let (ta) = (te,) = th (o, @) + Ek(ay, «,) in C for functions h, k: F' x
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F—F. Thus, ¢#=th(,1) + k1,1). Applying the automorphism
t— ta, we have (ta)’=(tw)h(1, 1)+ £, 1). But, (ta)*’=t*a*=th(1,)a*+
k(1, 1)a?, so by equating vector parts of the two expressions for 2 we
have: i(1, 1)a= = A1, 1) and k1, 1)a? = k(1, 1) for all nonzero « ¢ F.
But, since ¢ >3 this implies £(1,1) = A(1,1) = 0 and thus that ¢#=0.
But this is a contradiction to multiplication being a loop.

LEMMA 3.16. 7 cannot be both ((0),x =0, 7,)- and ((e), y=0, 7,)-
transitive. F = GF(4) or F = GF(5) may be exceptions.

Proof. Suppose m is so transitive. By (3.1) and (38.4) ¢(am) =
{ecaym and (em)x = e¢(ma) for all ¢, m e C and for all « ¢ F. Moreover,
(@, y) — (wa, yB) for all a, B e F-{0} represent collineations in 7.

Also, w is ((e), 2 = 0, m)- and ((e0), y = 0, 7 )-transitive, so C
admits automorphisms represented by ¢—t¢ + « for all «e F which
fixes F' elementwise and © admits collineations represented by the
mappings :

m,
(txl + Y1 th + yz) __ﬁ" (t(vl + lev txz + yzlg)

for all B¢ F — {0} (see (3.9)). Since

0, 0) =25 (0,0), (1, —2 (8, 1)
then
Yy = at i y =Bt .

Let y.t = th(y) + k(y), v, € F, h, k: F— F. Then

W 1) — (.8, th(y) + h(y)B)
and hence (y,8)87't = th(y,) + k(y)B. Thus, k(y)8 = k(y,) for y,e F
and for all nonzero 8¢ F. Hence, k(y,) = 0 for all y, e F.

Since (b))t = a(Bt) ¥V «, Bec F, it follows that h(aB) = h(@)h(B).
Moreover, h is clearly cne-to-one (and hence onto) so h is a multip-
lication automorphism of F — {0}.

It is easy to see that axt = th(«) (see (2.7)(e)) where x denotes
multiplication in C.

By the remarks following (2.6), the collineations (x, ¥) — (zw, ¥8),
«a, 8e F — {0} of w induce collineations in 7 of the following form:

Zr\r,‘ N
(e, + @y, 1y, + %) — (Ha,q) + (@,8), Hy.a) + ©.6))

for all «, Be F — {0} for a;,y;€ F, v =1, 2.
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Now (1, tm, + mg) =<5 (8, t(m@) + m,B), m;eF, i=1,2, and
Xa,p

(0, 0) —= (0, 0). Therefore
Y = wx (b, + my) =y = gt + ) 3 Box (Hily + i)
= t(m,&) + m,B .
Since we have the full left distributive law in C it follows that
tRTH(B)M,) + B, = t(ma) + M8
and hence m, = mah~(8™), m, = m,. Thus,
Yy =xx*({tm, + my) — y = & (t(mah™(87)) + my) .

Let (t6 4-v)«t =1tf(0,v) + g(6,7) for all §,ve F where f,g: F x F—F.
Then (6 + 7) = (tm, + m,) = ¢(f(9, V)m, + omy) + (9(, V)m, + vm,). So

o + v, t(f (0, V)M, 4+ dm,)) +
(@06, Vym, + ¥Ymy) 225 46y + v8, 16, Vym, + om)a +
(9(3, M)ym, + Ym,)P) .
Hence,
((0c) +vB) * (t(m,ah™ (87 +ms) = (E(f(0,Y)my+ dmz)a+ (9(0,7)m,+7m;)8 .
But,
t(0a) + ¥YB) x (t(mah=(B™Y) + my) = t(f(0a, YBym,ah™ (5~ + dam,) +
(9(0a, YBYmM,ah™(87") + YBm,) .
Equating vector parts of the last two equations,
f0a, vyB)ym,ah= (B + dam, = (£(6, v)m, + dm,)x
and
g(0a, 7B8)Ymah™(B7Y) + ¥Bm, = (9(8, M)m, + M) .
For m, £ 0, we have:
S (oa, ¥B) k(57 = f(0, %)
and
g0a, YBR(B™) = g0, M)Ba

for all @, Be F such that B+ 0 and for all 6,ve F. Let #2 = t0+ 0>
for some 0, pe F (clearly o = 0). Then

(t, 80 + )€ (1 = wxt) = (8, 80 + 0B) € (y = @+ (th(57)



DERIVABLE SEMI-TRANSLATION PLANES 701

so that ¢+ (th~(87") = t0 + pB. But,
t=(th=(B™)) = 7 (B™") = (t0 + )R~ (B™") = t(Oh~(87)) + Ph™(B7) -

Hence, 6 = 6h~*(A~") and ph~*(8") = pB. Since p+#0, we have
(B =B for all BeF — {0} and § =0. So A =h"'and f(0,7) =
féa, vB)B and g¢(d, v) = g(da, ¥vB)a for all nonzero a, B F and for all
o,veF. Letting 0 = a' and v = B~ we obtain f(a™, 87 = f(1,1)B
and g(a, 87 = g1, Da. Let f(1,1) = f and ¢g(1,1) = g. Thus,

fla, B) =B~ aB+#0
70,8 =87,8+0
fla,0) =0

and

g(a, B) = ga™, aB + 0
g(a, 0) = pa~ where t* = p .

(Recall t* = p and C admits automorphisms of the form t— ¢t which
fix F elementwise. Hence (ta)x(tar)=p0 which implies (ta)*t=pa'.)

Now suppose that we have at least seven elements in F, choose
v=0,1, 0 0or (f-9)if(f+9)#0. Now (ta+ B)+x(t+v)=t+1
must have a unique solution for ta + 8. If a=0thent8 '+ By =1t+1
which implies * = 1, contrary to assumption. If 8= 0 then ({(ay)+a'p)
=t -+ 1 which implies that v = o', again contrary to assumption.
Thus, if we are to have a solution, @8 = 0. In this case, (ta + B) *
+v)=t(f"+ay)+@at+-By)=t+1. So B'f+ary=1 and
a~'g - By =1. These last equations are equivalent to f+ av8 =28
and ¢ + avB = «a. If these equations have a solution («, 8) then
(v7* = B), (v7' — a) is also a solution. That is,

f=C7 =87t —a)y=Ff+rv—(@a+ B+ arB
=f+ayB+7v'—(a+ B
=v'!'—w.

Also, g -~ (v —8)v(v'—«a =v*'—B. Thus, in order to insure
that we have a unique solution it follows that ' — 8 =a and
vt —a=p8 so that v =« + B. If the characteristic of F is 2,
then f+ aBy =78 and g + aBv = « implies that f+g =a+ 8 =77,
contrary to the choice of v. Thus, char. F is odd and the equations
f—aBfy=p8 and ¢ - aBfy =« are equivalent to 2f + 2aBvy = 28
and 2¢g + 2aBv =2v. Since f+ g + 2aBy=a + B8 =7" we have
frg—2f=~v1'—28or f—g-+~v?!=28. Similarly, g—f+7v"'=2a.
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4f + Co)2R)y = 48
49 + Ca)2B)y = 4.

If a unique solution (a, 8) exists, it must be ((¢ —f+ 72,
(f — 9 + 127" and must satisfy the latter equations. Hence

Af+@—-r+7 0 —g+7vMW=2(—-9+77)

if and only if 2(f+ ¢9) — (g — f)*=7". Thus, if a(t+7)=¢t+1
is to have a unique solution for 2 and v=+#0, 1, o™, (f+ ¢)* if
f#—g¢ then v must satisfy the equation 2(f + ¢g) — v(g — f)* = v
If v can take on other values, say w and X distinct from 0,1, o7,
(f+9™ then v(g—/)P+rv'=w(@—f)+w'=23(@-—f)+23"
Thus, (v — w)(g — f)) = w™* — v = w™'v™(v — w) which implies that
(9 — ) =wv'. It follows that we have w='v~' = 3-"v~ so that
w™' =X, contrary to assumption. Thus, we have a contradiction to
the initial assumption and (3.16) is proved. Note that we may have
possible exceptions if F' = GF(4) or GF (5).

The proof of the following lemma is routine and is left to the
reader.

Now f4+ aBy =25

if and only if {
g+aBy=a

LeMMmA 3.17. FEach ((0), y = 0, 7,)-collineation is represented by a
mapping of the form (x,y) — (x + ya, y) for some ae F.

LEmMA 3.18. 7 cannot be both ((e<), x =0, 7,)- and ((0), y =0, 7,)-
transitive.

Proof. Suppose 7 is so transitive. By (3.17), we have collineat-
ions in 7 represented by (x, ¥) — (x + ya, y). Therefore, in = we have:
collineations: V aeF,

(ta, + @, ty, + Yo) — (@, + 2,0) + @y, EY, + Yo0) + ¥)

SO
1,4 U (©,0 — (te +1,¢ U (0,0)
Y =t —y = x(tm, + my)
such that (ta + 1) (¢m, + m,) =¢t. C 1is automorphic since = is

(o), @ = 0, 7,)-transitive.

(ta + 1) (tm, + my) = t[(h(a, 1) — 1)m, + am.]
+ (a'h(e, 1) + k(a, 1) — a™)ym, —~ m,
where

(t) (tm,) = th(a, m,) + k(a, m) = (th(a, 1) + k(a, 1))m.
for h,k: F x F— F. (Note the multiplication denoted by juxtaposi-
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tion is now assumed to be that of C.)
O ((a, 1) — Vym, + am, =1 and
@) (ah(a, 1) + k(a, 1) — a)ym, + m, = 0 .
Solving for m, and m,, we have:
B) m, = (—ak(a, 1)) and
4 my=0a"'Q+ ((a,1) — 1) k(a, 1)) .
Now
¢, ¢ = th(,1) + k1, 1)) — (¢, t(h1, 1) + k1, 1)a) + k1, 1))
and
Y = gt —> y = x(tm, + m,) .
&, ) ey = xt 80 t(tm, + m,) = t(h(1, 1) + k1, 1)a) + k1, 1). Also

t(tm, + m,) = t(tm,) + tm, = t*'m, + tm,
= (th@1, 1) + k@, L)m, + tm,
= t(h(1, h)m, + m,) + k@, L)m, .

Equating vector components we have k(1, 1)m, = k(1,1) and
r(1, )m, + m, = h(1,1) + k1, D .
From the first equation (since k(1,1) = 0) we have
(3) m, =1 and thus k(a,1) = —a.

Also, k@, D)m, + m, = h(1, 1) + k(1, 1) implies k1, 1)a = m,. By «(5),
k1, 1)a = —a. Hence,

6) m,=—a and (see 1)) h(a,1) =2+ a*.

Therefore, y = xt —y = 2(t — «).

Let Bt=1tf(B)+9(B) in C for f,g: F—F. Since 7 is
((e0), = 0, m,)-transitive, ¢(a + m) = ca + e¢m for all ¢, m e C and for
all « e F (see the proof of (3.2)). Applying the automorphisms ¢t —¢ + «
which fix F elementwise,

Bt + a) =+ a)f(B) + 9B =tf(B) + af(B) + g(B) .
Since B(t+a) = Bt + Ba, it follows that af(B8) = Ba so that f(B)=2.
Thus,
(B, Bt = tB + g(B)) — (t(Ba) + B, B + g(B)a) + 9(B))
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and hence (t(Ba) + B)(t — a) = t(B + g(B)a) + g(B).

(t(Ba) + B)(t — a) = t[h(Ba, 1) — B — (Ba)a] + B(Ba)~'h(Ba, 1)
+ k(Ba, 1) — B*(Ba)™ — Ba .

Applying (5) and (6),

t(Ba) + B)(t — @) = t[2 + (Ba)* — B — (Ba)a]
+ B(Ba)™(2 + (Ba)’) — (Ba)™ — B*(Ba)™ — Ba .

Thus, equating vector parts,
2+ (Bay — B — Ba* =B+ g(Ba

and B(Ba)(2 + Ba)’) — (Ba)™ — B (Ba)™ — Ba = g(B). Therefore,
we have

(M 9B =2a + fa — Ba! — fa — Bat
and
® 9(8) = 20 + Fa — (Ba) — fat — fa.

Equating (7) and (8), we have:
(Ba)™ = Ba~* which implies 8~ = 8

for all nonzero in F. Hence, 8 =1 for all B¢ F — {0} so that F =
GF3). But this is contrary to our assumption. Hence (3.18) is
proved.

Let S(7) denote the set of point-line pairs (p, L) such that the
plane 7 is (p, L, w,)-transitive. In [4] we have separated semi-trans-
lation planes into types depending on the extent of (v, L, 7,)-trans-
itivity the planes admit (see (3.20)). A type T, is a certain set of
point-line pairs (p, L). We shall say that a plane 7 is of type T, if
and only if S(7) is exactly equal to the set that defines 7;. In this
case, we shall use the notation S(T;) = S(xn).

DEFINITION 3.19. A plane of type T, will be said to be above a
plane of type T, if and only if S(T,) < S(T)).

THEOREM (Johnson [4]) 3.20. If = is a semi-translation plane of
order ¢, gq+#5 or 9 (or its dual) then w is of one and only one of
the following types:

1-la (p, L.) € S(n) for all points pe L. N 7,

1-2a S(1-2a) = S(1-1a) U {(pw, L) for all lines L of =w, such that
L T p. and p.. a fixed point of L..}.

1-3a S(1-3a) = S(1-2a) U {(p, L) for all points pe L. N &, for all
lines L of 7, incident with p.}.
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1-4a S(1-4a) = S(1-1a) U {(p’, L) for all lines L of =, such that
LTk peL,kand peL.N 7}

1-5a S(1-5a) = S(1-4a) U {(k, L) for all lines L of m, such that
LT 9p,keL k pelL.Nn,

1-1b S(@1-1b) = S@A-1la) U {(p, L) for all pem, — L.}

1-2b  S(1-2b) = S(1-1b) U S(1-2a).

1-3b S(1-3b) = S(1-1b) U S(1-3a).

1-4b S(1-4b) = S(1-1b) U S(1-4a).

1-5b S(1-5b) = S(1-1b) U S(1-5a).

1-2¢  S@1-2¢) = S(1-2b) U {(pw, L) for all lines L of my}.

1-3¢ S(1-3¢) = S(1-3b) U S(1-2¢).

2-1a S(2-1a) = {(p, L) for all incident point-line pairs of m, such
that L T p. for some point p..c€ L.}.

2-2a S(2-2a) = S(2-1a) U {(9-, L) for all lines L of m, such that
L] pa}.

3-1 S@3-1) = {(p, L) for all incident point-line pairs of m}.

32 S(3-2) = {(p, L) for all point-line pairs of 7).

D1-la, D1-4a, D1-5a, D1-ib, :+ =1, 2, 3, 4, 5, D2-ja, j =1, 2 = the
duals of the above corresponding classes.

LEMMA 3.21. 7 cannot be above type D1-1b. In this case then,
7w cannot be of type D1-1b, D1-2b, D1-3b, D1-4b, D1-5b, D2-2a.

Proof. If @ is above D1-1b, we may choose coordinates (see (3.8))
so that 7 is ((=2), * = 0, 7,)- and ((e<), ¥y = 0, 7,)-transitive. But this
is contrary to (3.12). Thus, (3.21) is proved.

LEMMA 3.22. If ¢ > 5, © cannot bz above type 1-ba. Thus,
cannot be of type 1-5a, 1-5b or 1-3c.

Proof. Suppose 7 is above type 1-5a and is (p’, I/, m,)-and (k, [, 7,)-
transitive where £ 1 and ' T I. By (8.8)(i) we can choose coordinates
so that p’ = (e0) and ' = (y = 0). Since k[ U, p' ] 1, then k = (0)
and 1 is (x = ¢) for some ce C. Hence, 7 is ((0), x = ¢, 7,)-transitive.
By (5.1) [4], ¢ce F and (x = 0) is in the orbit of z = ¢ under the
existing translation group. Therefore, = is ((0),x = 0, 7,)- and
((e0), y = 0, m,)-transitive. But this is contrary to (3.16).

In the cases Dl1-la, Dl-4a or D1-5a, = is a dual semi-translation
plane but not a semi-translation plane. This is contrary to the corol-
lary to Theorem 7 [15]. Hence 7 cannot be of any of these types.

LEMMA 3.23. 7 cannot be above type 1-2b. Thus, © cannot be of
type 1-2b, 1-3b or 1-2c.
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Proof. We may choose p.. = () (see (3.20) and 3.8)) so that =
is ((e0), x = 0), m,)- and (0, 0), L.., 7,)-transitive. But this is a con-
tradication by (3.14).

LEMMA 3.24. 7 cannot be above type 1-4b.

Proof. Suppose 7 is above type 1-4b. Then, letting »’ = (0) and
k = (=) (see (3.20) and (3.8)), we have ((0),x = 0, 7,)- and ((0, 0), L.., 7,)-
transitivity. This is a contradiction by (3.15).

By (3.13), = cannot be of type 2-la, 2-2a, 3.1 or 3-2. By (3.18),
7 cannot be both ((> ),z = 0, 7,)- and ((0), ¥ = 0, 7,)-transitive. Hence,
m cannot be of type D2-1a or D2-2a (see (3.20)).

The previous lemmas and remarks establish the following theorem
for planes of order ¢, ¢q > 5.

THEOREM 3.25. If © is a strict semi-translation plane that is
derived from o dual translation plane whose coordinate system is a
2-dimensional vector space over its kernel, then @ is of one and only
one of the following types: 1-la, 1-2a, 1-3a, 1-4a or 1-1b.

Note. The possible exception for ¢ =9 in [4] is excluded here
since m, is Desarguesian.

We have stated our propositions in terms of a coordinate system.
But, given a derivable semi-translation plane = with respect to line
L, we may choose L = L., and the set of points of the subplane 7, of
7 to be the same as the set of points of # =0 in 7. And, in general,
choose the coordinate system as in (2.5) and (2.6). Thus, our results
could be stated for an arbitrary semi-translation plane.

We have given examples of planes of each of the types 1-la,
1-2a, 1-3a, 1-4a and 1-1b in [5].

For planes of type 1-3a and 1-1b, (3.9) and (3.10) show that
aa = ax for all a e F and for all ae C. Furthermore, this shows if
axq #= axa for some a in F and for some aec C (the coordinate
system for the dual translation plane) then = must be of type 1-1a,
1-2a or 1-4a. If 7w is a nearfield dual translation plane of order ¢*
and ¢ > 5, we have shown that 7 is of type 1-la if there exists an
element a ¢ C such that axa # axa for some aec F and of type 1-1b
otherwise.

The research discussed here was directed by Professor T. G.
Ostrom at Washington State University and this article is based on
the author’s Ph. D. dissertation. The author would like to express
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his appreciation to Professor Ostrom for suggesting the problem con-
sidered here and also for his encouragement and guidance.
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