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REGULAR-CLOSED SPACES AND PROXIMITIES

DOUGLAS HARRIS

The theory of the compactifications of a completely regular
space has been elucidated in recent years by the theory of
proximities, introduced by Efremovic and developed especially
by Smirnov. The two fundamental results are that a space has
a compactification if and only if it has the topology of some
proximity, and that there is a one-to-one correspondence from
the collection of compactifications of a space onto the collec-
tion of proximities that give the topology of the space. We
shall generalize these results to a larger class of spaces,
which are related to the regular-closed spaces in the same
manner as completely regular spaces are related to compact
spaces.

We recall that a space is said to be regular-closed if it is regular,
and cannot be nontrivially densely embedded in a regular space. Since
every compact space is regular-closed, then any completely regular
space can be embedded in a regular-closed space, namely any com-
pactification of it. It has been shown by Berri and Sorgenfrey [1]
that a regular-closed space need not be compact, and it has been shown
by Herrlich [4] that there is a regular space that cannot be densely
embedded in a regular-closed space. It follows from these remarks
that the class of spaces which can be densely embedded in a regular-
closed space, which we call the class of RC-regular spaces, lies properly
between the class of regular spaces and the class of completely re-
gular spaces.

The preceding remarks lead us to ask for a characterization of
those spaces that can be densely embedded in a regular-closed space.
We provide such a characterization in terms of a generalization of
the theory of proximities to the theory of jRC-proximities, and we
also establish a one-to-one onto correspondence between regular-closed
embeddings and .KC-proximities for an jβC-regular space.

The term regular as used herein includes ϊ\ separation.

2* Proximities* We introduce axioms describing a relation be-
tween subsets of a space, which we shall call a proximity relation.
These axioms are those of the usual theory of proximities, which we
shall call the theory of completely regular proximities, with the ex-
ception of the axiom of complete regularity, which we do not use.

A proximity on X is a symmetric relation δ between subsets of
X satisfying the following four conditions:
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PI. 0$A for every AaX ($ means "not-δ").
P2. AδA for every A Φ 0.
P3. Ad(B{jC) if and only if AdB or AdC.
P4. If x and y are distinct points of X, then
These axioms are equivalent to those given by Katetov and Frolίk

in [2, 25]. They lead to an operator u on 2X defined by uA = {x: {x}3A}.
This operator u has the following properties:

2.1. u0 = 0 .
2.2. AauA for each i d .
2.3. u(A UB) = uAU uB.
The operator w is thus a closure operator (in the sense of [2, 25]).

It induces a topology whose closed sets are precisely the fixed sets
under the operator u, that is, the sets A such that uA = A. It need
not be true that the operator u is a topological closure operator, that
is, we need not have uuA = uA for each AaX. However, we shall
shortly introduce axioms which will lead to this additional property.

We shall write A < B if A$X - B, and shall say that B is a
proximal neighborhood of A. We shall also write xdA and x < A re-
spectively in place of {x}8A and {&} < A.

The relation < and the operator u have the following useful
properties:

2.4. If AdB < C < D c E, then we have A < C, C < E, A < E,
and X - EdX - D <X- C <X- BaX - A.

2.5. If A < B and C < D, then A f] C < B Π D.
2.6. If A<B, then AauAaB and i d - u(X - ΰ)cΰ.

3* jβ-proximities* The next axiom will ensure that u is a
topological closure operator, and that the topology induced by the
proximity via the closure operator u is regular.

P5. (Axiom of regularity.) If x < A, then there is ΰ c l with
x < B < A.

We define a filter to be round if for each member V of the filter
there is a member W of the filter such that W < V. Axiom P5 can
be restated thus: the filter of proximal neighborhoods of a point is
round.

LEMMA 1. A proximity on X satisfying P1-P5 induces a closure
operator u such that uuA = uA for each i d . The topology induced
by the proximity is regular, and u is the closure operator induced
by the topology.

Proof. To verify that uuA = uA, we need only show that
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uuAczuA. Now if x& uA, we have x $A, that is, x < X — A, so by
P5 there is BaX with x < B < X — A. Applying 2.6 we have
BdX— uAczX— A, and hence from 2.4 we have x<X— uA, which is
equivalent to x & uuA.

We have now shown that u is the closure operator of the topology
that it induces: the closed sets are precisely the sets of the form uA
for some 4 c J . Now this fact along with 2.6 shows that the proximal
neighborhood filter of each point of X is a regular filter (that is, a
filter with a base of open sets and a base of closed sets). In parti-
cular the proximal neighborhood filter of each point is contained in
the neighborhood filter of the point. Since by the definition of the
topology the converse inclusion also holds we have equality of the two
filters. We have therefore that the neighborhood filter of each point
of the space is a regular filter, that is, the topology is regular.

An R-proximity is a proximity satisfying P1-P5. In accordance
with Lemma 1, the topology induced by an i?-proximity is regular.
Our next result includes a generalization of the converse of Lemma 1.

LEMMA 2. Suppose Z is a regular topologίcal space, and that X
is a dense subspace of Z. Define a relation between subsets of X by
setting AδB if c\zAf]c\zBΦ 0 .

(a) The relation d is an R-proximity on X.
(b) A filter on X is round if and only if it is the trace of a

filter that is regular on Z.

Proof, (a) Symmetry, PI, P2, and P4 are immediate, and P3
follows from the distributivity of closure with finite union. To show
P5, we observe that if V is a neighborhood (in X) of x e X, there is
a closed neighborhood (in Z) B of x e Z and an open neighborhood (in
Z) W of xeZ such that WnX = V and BaW. Setting A = Bf]X
we find x < A < V.

(b) Suppose 7 is a round filter on X, and let ζ be the filter on
Z generated by {c\zF: Fej}. Then ζ certainly has a base of closed
sets. Now if Fey and Gej with G<F, we have c\zGΠclz(X-F)=0.
Since X is dense in Z, we also have o\z Fl) olz (X — F) = Z. It follows
that c\zG(zZ — clz (X — F)czc\zF, and we have thus shown that ζ
also has a base of open sets. Thus ζ is a regular filter, and it clearly
induces 7 on X.

Conversely, suppose ζ is a regular filter on Z. Since X is dense
in Z and ζ has a base of open sets, every member of ζ intersects X
and so the trace 7 on X of ζ exists. If FG7, SO that V = WdX
for some open set Weζ, we let P be any member of ζ such that
c\zPc:W. Then if Q = Pf]X we have c\zQf]c\z(X - V) = 0 , so
Q < V and Q e 7. Thus we have shown that 7 is round.
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The proximity defined on a regular space by declaring sets to be
near if their closures intersect is, according to Lemma 2, an R-
proximity that induces the topology of the space. We can now state
the following:

THEOREM A. A topology is regular if and only if it is the
topology induced by an R-proximity.

There may of course be many i2-proximities that induce a given
regular topology.

We now establish some properties of round filters with respect
to an iϋ-proximity that will be needed in the next section.

3.1. Every round filter is a regular filter.
3.2. Every neighborhood filter is maximal round.
3.3. Every round filter is contained in a maximal round filter.
3.4. Distinct maximal round filters contain disjoint open members.

Proofs. Property 3.1 follows from Lemma 1 and from 2.6.
Property 3.2 follows from 3.1 along with the facts that neighbor-
hood filters are round and maximal regular in a regular space.
Property 3.3 is established in the usual manner using Zorn's lemma.
To show 3.4, we observe that by 3.1 round filters are open filters.
Also if the sup of two round filters is a filter, then by 2.5, this sup
is a round filter. Thus if two round filters do not contain disjoint
open sets, then their sup is a round filter containing each, and this
establishes 3.4.

4* i?C-ρroχimities* We shall now give the axiom that is used
for the connection with regular-closed spaces. It deals with a dif-
ferent type of neighborhood relation between subsets of an .R-proximity
space X.

We say that the subset B of X surrounds the subset A if every
maximal round filter that intersects A (that is, every member of the
filter intersects A) contains B.

P6. (Axiom of EC-regularity.) The subset B surrounds the subset
A if and only if B > A.

An RC-proximity is a proximity that satisfies P1-P6. Since such
a proximity is in particular an .R-proximity, the induced topology is
regular. We shall show in §6 that the induced topology is also RC-
regular. The following result gives the converse, that every RC-



REGULAR-CLOSED SPACES AND PROXIMITIES 679

regular space has its topology induced by an .RC-proximity.

LEMMA 3. Let Z be a regular-closed topological space, and let
X be a dense subspace of Z. Let δ be the It-proximity induced on X
by Z by the method described in Lemma 2.

(a) The relation δ is an RC-proximity on X.
(b) The maximal round filters on X are precisely the traces on

X of the neighborhood filters of points of Z.

Proof. We show (b) first. Since Z is regular, by Lemma 2(b)
the trace 7 on X of the neighborhood filter ζ of a point z e Z is a
round filter. If η is round and yaη, by Lemma 2(b) there is a re-
gular filter v on Z whose trace on X is η. Since ζ is maximal re-
gular, we must have vcζ and thus ηa7. Conversely, if 7 is a
maximal round filter it is the trace on X of a regular filter on Z,
and since Z is regular-closed this regular filter has a cluster point.
The trace on X of the neighborhood filter of this cluster point must
be the given maximal round filter.

To show (a), suppose that A and B are subsets of X and A > B.
By the definition of the proximity this is equivalent to
cl^(X— A)f]cΊzB = 0 . Now if 7 is a maximal round filter on X
then by (b) we know that 7 is the trace on X of the neighborhood
filter of some point zeZ. If 7 intersects B then z e clz B, and so
there is a neighborhood V of z disjoint from X — A, from which we
find that A e 7. We have thus shown that if A > B then A surrounds
B.

Conversely, suppose A and B are subsets of X and A surrounds
B. Let zeelzB and let 7 be the trace of X of the neighborhood
filter of z. Then by (b) 7 is a maximal round filter. Since 7 inter-
sects B we must have A e 7, from which it follows that z £ dz (X — A).
Thus A > B.

In accordance with this lemma, we can now state:

THEOREM B. Every RC-regular space has its topology induced
by an RC-proximity.

5* Absolutely closed .RC-proximities* We now introduce a
completeness condition on JSC-proximities that is a generalization of
a condition given by Smirnov [7]. It will prove to be characteristic
for regular-closed spaces in the same way that Smirnov's condition is
characteristic for compact spaces. We also show that a regular-closed
space has topology induced by precisely one .RC-proximity, just as a
compact space has topology induced by precisely one completely re-
gular proximity.

An .RC-proximity space is absolutely closed if every maximal round
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filter is the proximal neighborhood filter of some point of the space
(that is, converges in the topology induced by the proximity). It will
later become apparent that this is equivalent to stating that there is
no proper dense embedding (in either the proximal or topological
sense) of the space into an RC- proximity space, which is the condi-
tion corresponding to Smirnov's definition.

THEOREM C. If an RC-proximity space is absolutely closed, then
its induced topology is a regular-closed topology, and the proximity
is given by: A and B are far if and only if they have disjoint
closures.

Proof. We establish the second statement first. Suppose A and
B are subsets of an ϋJC-proximity space X, and that A$B, that is,
A < X — B. Since the proximity satisfies P6 we have that X — B
surrounds A, and so every maximal round filter that intersects A
contains X — B. Now by 3.1 neighborhood filters are maximal round,
and thus we see that any neighborhood filter that intersects A fails
to intersect B, that is, A and B have disjoint closures.

Conversely, suppose AdB, that is, A < X - B. Then by P6
X — B does not surround A, so there is some maximal round filter
that intersects A and intersects B. Since we are assuming that the
proximity is absolutely closed, this maximal round filter must be the
neighborhood filter of some point of the space, and this point is in
the closure of both A and B.

Having characterized the proximity, we establish that the induced
topology is regular-closed. According to 3.1 every round filter is a
regular filter. Observing that every open set containing a closed set
is a round neighborhood of the closed set, by the above characteriza-
tion of the proximity, we see that every regular filter is a round
filter, thus every maximal regular filter converges and the topology
is regular-closed.

The following theorem is a generalization of Theorem 8 in [7].

THEOREM D. An RC-proximity space is absolutely closed if and
only if the induced topology is regular closed.

Proof. That an absolutely closed u?C-proximity induces a regular-
closed topology is a part of Theorem C. To show the converse, that
an ϋ?C-proximity space whose induced topology is regular-closed is
absolutely closed, we observe that a maximal round filter (being a
regular filter by 3.1) must have a cluster point, to which it must
then converge (since neighborhood filters are round by 3.2).
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Using Theorems B, C, and D, we can establish the following two
results.

THEOREM E. A topological space is regular-closed if and only if
it has the topology induced by an absolutely closed RC-proximity.

THEOREM F. There is precisely one RC-proximity that induces
the topology of a regular-closed space.

6. The ideal space of an iϋC-proximity* The final link in our
chain connecting it!C-proximities and iϋC-regular spaces is to show
that a space having topology induced by an iϋC-proximity is an RC-
regular space, and it is to this problem that we now turn our
attention.

Let δ be an iϋC-proximity on X. We shall construct a set rX
and an absolutely closed iίC-proximity π on rX such that X is natu-
rally embedded in rX as a dense subspace both in the topological and
the proximal sense.

Let rX be the disjoint union of X with an index set for the
family of nonconvergent maximal round filters on X. For p e rX,
define Op as follows: if p e X then Op is the filter of proximal neigh-
borhoods of p, and if p e rX — X then Op is the nonconvergent maximal
round filter for which p is the index.

Define a relation π on subsets of rX by PπQ if there is p e rX
such that for each VeOp there is (a, b) e P x Q with VeOa and Ve OK
We shall show that π is an absolutely closed .KC-proximity on rX,
that it induces the proximity δ on the subset X, and that every point
of rX is related to X under π. An immediate consequence will be
that the topology induced on X by δ is iϋC-regular.

Axioms PI and P2 are clear, and P3 is readily shown. Axiom
P4 follows from 3.4. Since the relation δ satisfies P6, it is easy to
see that for subsets A and B of X, we have AδB if and only if AπB;
thus the relation π does indeed induce the relation δ on the subset
X. To show that every point of rX is related to X under π we
merely observe that if perX and VeOp, there is xeX with VeOx.

We now introduce some useful notation. For A c l , let Ar —
{p erX:Ae Op}, and let A* = AU A'. Also let A° ={xeX:x< A}. It
is easy to see that (A°)' = (A°)* = A\ Given a filter 7 on X, we
let 7* be the filter on rX generated by {i*7*: Fej} Finally, we write
P ^ Q for PfirX - Q).

The following lemma is useful in proving that π has the properties
P5 and P6.

LEMMA 4. (a) p <̂  R if and only if there is VeOp with V'aR.
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(b) For A, ΰ c l , i * ^ JB* if and only if A < B.
(c) If Z is a round filter on rX, then the trace 7 of ζ on X

exists and ζ = 7*.

(d) 7* is a (maximal) round filter on rX if and only if 7 is a
(maximal) round filter on X.

Proof, (a) If {p}trX — R, then since for each VeOp there is
pe{p} with VeOp, we must have some VeOp such that VgOb for
any berX — R; equivalently, V'aR. Conversely, if {p}π(rX — R), it
is easily seen that we must have V (£ R for each VeOp.

(b) Suppose that Ad(X — B). Then using P6 we see that there
is Op such that Op intersects A and Op intersects X — B. Since AaA*
and X — BarX — B*, we have A*π(rX — J3*). Conversely, suppose
that A*π(rX- £*). Then there is 0p such that for each Ve 0p there
is (a, b) G A* x (rX - £*) with Ve Oa and Ve OK Now if a e A then
ae Af]V ^ 0; if αeA* — A then α e A!, so i e Oα, and since also
VeOa we have again i n F ^ 0 . If b e (rX-B*) πXthen b e (X-B)Π V;
if b G (rX - J5*) - X then β g O6, thus Fζί β, and so Vn (X - B) Φ 0 .
Therefore the set B does not surround A and so by P6 we have B > A,
that is, Ad(X - £).

(c) Let A e ζ; since ζ is round there is B e ζ with A ^ S. Since
B Φ 0 there is pe B, and thus p ^ A . It follows immediately from
(a) that AnX Φ 0- We have thus shown that every member of ζ
intersects X, and so the trace filter 7 of ζ on X exists.

We shall now show that (.BnX)*c:A, which will establish that
ζ c 7 * . Wecertainly h a v e ΰ n X c A n X ; now if p e (Bf)X)* - (BnX),
then^nXeO^, and so for each VeOp there is b G Bf]X with BΓ)Xe O\
thus since Bf(rX— A) there must be WeOp with We A, and this
gives p e W'aA.

To show conversely that 7*cζ we shall show that J?c(AπX)*.
If p e By then p <£ A, and so by using (a) we have (Af)X) e Op, which
gives pe (AaX)*.

(d) This follows immediately from (b) and (c).

Lemma 4 (c) and (d) establish a one-to-one correspondence from
the maximal round filters on X onto the maximal round filters on
rX. They show in particular that the maximal round filters on rX
are precisely the filters (Op)* for some perX.

It is immediate from Lemma 4 (a) and (b) that π satisfies P5.
We now demonstrate that π also satisfies P6. Suppose P, QczrX and
PπQ. Then there is a maximal round filter (P on X such that for
each VeOp there is (p,q)ePxQ with VeOp and VeOq; then the
maximal round filter (Op)* on rX intersects P and does not contain
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rX — Q, so rX — Q does not surround P.
Conversely, suppose rX — Q does not surround P. Then there

is a maximal round filter on rX that intersects P and does not contain
rX — Q, that is, it intersects P and Q. Letting Op be the trace of
this filter on X, we have that for each VeOp there is (a, 6) e P x Q
such that VeOa and FeO δ , and therefore PπQ.

We have now shown that π satisfies P1-P6, that is, that π is an
jRC-proximity on rX, and we have shown that π induces δ on its
subspace X, and that X is proximally dense in rX. This establishes
in particular that the space X with the topology induced by δ is
densely embedded in the space rX with the topology induced by π.
If we can show that rX with this topology is regular-closed, then
we will have shown that X with topology induced by δ is iϋC-regular.
To show that rX is regular-closed, we show that π is absolutely closed
and apply Theorem C.

The proximity π is absolutely closed if every maximal round
filter on rX converges in the topology of the proximity. Now one
need only observe that a maximal round filter on rX is of the form
(Op)* for some perX, and that the following sets are all bases for
(Oψ: {F* Ve Op}; {V: Ve Op}; and {AczrX: p ^ A}. Thus, (Oψ con-
verges to p e rX.

The set rX with the proximity π is called the ideal space of the
proximity <5. Summing up the preceding conclusions, we have the
following result:

THEOREM G. The ideal space of an RC-proximity is an absolutely
closed RC-proximity space, and its induced topology is regular-closed.
The given space is a dense subspace of its ideal space, in both the
topological and the proximal sense.

COROLLARY. Every RC-proximity space is RC-regular.

The following theorem, which is a generalization of the corre-
sponding result for completely regular proximities, is an immediate
consequence of the preceding results.

THEOREM H. There is a one-to-one correspondence from the col-
lection of RC-proximίties for an RC-regular space onto the collection
of regular-closed embeddings of the space, given by letting an RC-
proximity correspond to its ideal space.

We order regular-closed embeddings of an ϋJC-regular space by
stating Z > Y if there is a map h from the regular-closed embedding
Z (necessarily) onto the regular-closed embedding Y that reduces to
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the identity on the subspace X. Then it is not difficult to show that
the corresponding proximities are comparable, in the sense that sets
which are far in the proximity of Y are far in the proximity of Z
when we have Z > Y. The author does not know if the converse
holds, that is, if comparable proximities give rise to comparable re-
gular-closed embeddings.

7. Some problems and remarks* There are many unsettled
questions in the theory of regular-closed spaces, and it is hoped that
the preceding theory will be helpful in their solution. It allows us
to focus attention on the space itself, rather than on its extensions,
and it gives us a method of comparing different regular-closed embed-
dings by their effect on the space.

PROBLEM I. This problem has already been mentioned. It is to
determine if comparable proximities give rise to comparable regular-
closed embeddings.

PROBLEM II. In the theory of compactiίications it is known how
to determine if a map from a completely regular space X has an ex-
tension to a given compactification of X. Similar results have been
established for Hausdorff-closed spaces [3], [4], [5], [6]. It would be
quite useful to have such a theory for maps from an iϋC-regular space
into a regular-closed space.

PROBLEM III. In analogy with the theory of compactifications,
and with the theory of Hausdorff-closed spaces, we might conjecture
that there is a largest regular-closed embedding for each .RC-regular
space X.

PROBLEM IV. It is unknown whether the product of iϋC-regular
spaces is i?C-regular, and whether the product of regular-closed spaces
is regular-closed. A related question is whether the product of RC-
proximities (using the definition of product given in [2, 39]) is an
jBC-proximity.

PROBLEM V. There is no nontrivial characterization of the regular-
closed subspaces of a regular-closed space.
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