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FAMILIES OF Lp-SPACES WITH INDUCTIVE AND
PROJECTIVE TOPOLOGIES

HENRY W. DAVIS, F. J. MURRAY AND J. K. WEBER, J R .

Let (X, j y , μ) be a measure space, and S c [1, <χ>). This
paper investigates basic properties of LP(S) = Cites Lt(μ) and
LT(S)= span of \JteSLt(μ), when they are endowed with ap-
propriate projective and inductive topologies.

If X is ^-finite or μ is a counting measure, then LP(S),
L1 (S) are projective and inductive limits in the usual sense.
In this case the extensive abstract theory of inductive and
projective limits applies. In the general case, however, this
theory does not appear applicable. Using special properties
of Lp-spaces a basic duality is established between LP(S) and
Lτ(Sf), for the general case, where Sf is the set of conjugates
to elements of S.

Next such properties as metrizability, normability and
completeness for LP(S), Lr(S) are considered. The question of
when LP(S) = LP(T) is also considered, and it is shown that
there is a certain maximal set T for which this is true.
Similarly for LΓ(S).

In § 4 we compare the weak topology for L1 (S) with its inductive
topology obtained by giving each inductee the weak topology. We
are unable to make a complete comparison but do show that the two
topologies are quite close. The corresponding problem for LP(S),
mentioned in Proposition 2.2. is simple.

Let us give some basic definitions. By a measure space is meant
a triple (X, j y , μ) in which j& is a σ-algebra of subsets of the set
X and μ is a measure on s>f. ^/£ is the set of all jy-measurable
complex-valued functions on X and Lp{μ), 1 ^ p^ oo, is defined as
usual.

If (E, Er) is a dual pair of vector spaces we use the symbols
σ(E,E'), τ(EyE

f) and β(EyE
f) in the usual fashion to denote the

corresponding weak, Mackey and strong topologies for E (cf., [3] or
[5]). If /, g G ~^€ and fg e L^μ) we write

< /, g > = i fg dμ .
Jx

For S c [1, oo] we let S' = {sr: 1 ^ s' ^ oo, 1/s + 1/s' = 1 for some
seS}. If fe ^ Γ , Rf, If denote, respectively, the real and imaginary
parts of / and, if / is real valued, / + , / - denote its positive and
negative parts. For A e Sf χA denotes the characteristic function
of A.

619
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DEFINITION 1.1. Let S c [1, oo], SΦ 0 . Define

L*(S) = span in ^ of j j Lt{μ) ,
tes

and

LP(S) = Π Lt(μ) .
tes

For each te S define

ut : Lt (μ) > L'(S) ,

vt: LP(S) >Lt(μ)

to be the natural injections. Let S^, 5^7, respectively, be the
strong (norm) and weak topologies for Lt(μ), 1 ^ t <J oo.

Let ,5^7(S), C/^7(S) be the inductive topologies for Z/(S) with
r e s p e c t t o t h e f a m i l i e s {(Lt(μ)9 S ^ 9 u t ) : te S } a n d { L t ( μ ) , W~u u t ) :te S } r

respectively. (See [5, p. 54]. In [3, p. 79], LT(S) is called an "inductive
limit" with either of these two topologies however, this phrase is.
used differently in [5].)

Let S^P(S), WP{S) be the projective topologies for LP(S) with
r e s p e c t t o t h e f a m i l i e s {(Lt(μ), £sζ, v t ) : te S } a n d { { L t { μ ) , <%ί/~%, vt):te S } ,
respectively. (See [5], p. 51], or [3, p. 84]. Again a difference of
terminology exists.)

2. The basic duality* We give here proofs for the basic duality
between LF(S) and 1/(5').

PROPOSITION 2.1. ( i ) Suppose X is μ-σ-finite. If S c [1, oo],
then '/^"'(S), S/*r(S), are separated. If S a [1, oo), then the dual of
LT(S) under either of 5^'"7(S), 6^\S) consists of the maps g—+<g,f>,
where f e Lp (Sf) is unique.

(ii) Suppose X is not μ-σ-finite. If S a [1, oo), w£{S), ^'(S)
are separated. If S c (1, oo), then the Ύ/y~ι(S), ̂ '{Sydual of U(S)
consists of the maps g —•> <g,f>9 where feLp(Sr) is unique.

Proof. For the second statement in either ( i ) or (ii) recall that,
as ,5^7(S), //"f(S) are inductive topologies, a linear form F on UiS)
is continuous if and only if F o ut is continuous for each teS ([3, p.
74]). Using Riesz representation and the fact that the simple functions
of //-finite support are dense in all of the spaces (Lt, 5^7), (Lt, S^t),
te S, it is not hard to show that such JF'S are exactly those of the
form F(g) — <g,f> for some unique feLp(S').

For the first statement take 0 Φ geLr(S). Suppose, for example,
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that (Rg)+ ̂  0. As the support of g is μ-σ-finite, there is a set
B a {xeX: Rg(x) > 0} such that 0 < μ(B) < oo. Let F be the linear
form on LT(S) given by

F{h) = ( hdμ .

Then F(g) Φ 0. As F o ut is both 5^7, ̂ -continuous, ί e S , ί7 is
•continuous. Thus 5^7(S), 6f\S>) are separated.

Suppose LP(S') is the dual of I/(S) as in 2.1. A separated in-
ductive topology formed from barrelled spaces is barrelled ([3, p.81]);
hence, S^T{S) = τ(Lz(S), LP(S')) = β(Lz(S), LP(S')). Clearly σ(Lr(S)9

LP(S')) c c ^ v ( S ) c ^ 7 ( S ) ; but it is not so clear as to whether or not
the first containment here can be replaced by equality.

Let S c [1, o]. Both 5^ P(S) and Sfr(S) are separated ([3, p. 85])
and W{β) = σ(Lp(S), Do), where Do is the dual of (LP(S), 7^P{S))
•([3, p. 99]).

PROPOSITION 2.2. Γα&e S c [1, oo]. Then each /eL z (S r ) defines
a continuous linear form on (LP(S), Ύ/^p{β)) and on (LP(S), S^P{S))
by g-+ <g,f>- Now suppose S c [1, oo) and that either X is μ-σ-
βnite or that leS. Then LT(S') is the dual of (LP(S), W~P{S)). In
this case ^P(S) = σ(Lp(S), LT(S')).

Proof. If / = Σ?=i fi e LZ{S'), where /, e Lt.(μ), UeSf

9l^i^n9

then the linear forms g —• <g, f{> are continuous on Lt>(μ),
lΐt'i -v 1/ti = 1. As vt'.: LP(S) —> Lt., (μ) is continuous, 1 <̂  i ^ n, g —•>

<g, f > is continuous.
For the second statement, note that in this case a local base at

0 in (LP(S), \y/^p{S)) is formed by the sets of the form {x:xeLp(S),
j < x, y > I ̂  1 for all y e F} where F runs through the finite sets in
Uί esΊ Lt(μ). Equivalently we may let F run through the finite sets
in LZ(S'). Thus 9/~p(S) is precisely the weak topology induced by
LZ(AS;) and LΣ(Sf) must be the appropriate dual.

Take S c [1, :) and let D, be the dual of (LP(S), ,9*P(S)). By
the above, DLz> LT(S') and we would like to know when equality
holds. If 1 G S and X is not μ-σ-finite, then we cannot expect equality
for the general case (cf., [4], Chapter 11, problem 46). On the other
hand, it turns out that equality holds if either 1 g S or X is μ-σ-
finite. If the Lp-spaces are linearly ordered under containment, for
example if X is /j-finite or if μ is a counting measure, this is easy
to see: In this case (LP(S), ,^P(S)) is a protective limit in the sense
of [5, p. 52] (let the gnβ be identity maps here). It follows from [5,
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Chapter IV, Th. 4.4], that Όγ is algebraically isomorphic to U(β')*
The proof that Dx = Z/(S') in the general case appears to require
use of special properties of LP-spaces.

THEOREM 2.3. Let (X, j y , μ) be a μ-σ-finite measure space,
Sa [1, oo). Then the dual of (LP(S), S^P{S)) consists of the maps
g—+<g,f>, where /eZ/(S') is unique.

Proof. The argument parallels the classical argument for Riesz
representation, differing at certain crucial points (cf., [4, chapter 11,
§ 7]). The uniqueness of / follows from the usual considerations. We
divide the rest of the proof into three parts. Let F be an S^P(S)-
continuous linear form on LP(S).

I. We first show that there is a measurable function / such that
F{g) = <g,f>, for all geLp(S). Let {Xn}T c Ssf be an increasing
sequence such that \JnXn — X and μ(Xn) < <*>, % = 1, 2, •••. As
μ(Xn) < oo we may apply our earlier remarks to conclude the existence
of a unique fne 2/(S') whose support is contained in Xn and such that
F(g) = <g>fn> for all ge LP(S) which vanish outside Xn. Then fn+1

agrees a.e. with fn on Xnf n — 1, 2, , and we may suppose fn+i=fn

on Xn. Define / on X by / = fn on Xn9 n = 1, 2, . Take any non-
negative geLp(S). Let grn = gχx% so that ^ | g and Hflr-tfJI*—^ O
for all t e S. As F is continuous,

= lim F(gn) - lim ( gnfndμ
n n j

= lim 1 gjdμ
n J

= lim ( gn[(Rf)+ - (Λ/)" +
n J

= \ vfdμ, by monotone convergence .

If g G LP(S) is arbitrary, we break its real and imaginary parts intα
positive and negative parts and use the linearity of F to complete
the proof of I.

Now for t e S, δ > 0 define

V(t,δ) = {geLp(S):\\g\\t<δ}.

As F is continuous it is bounded on some ^p(S)-neighborhood of 0 .
Hence there exists 3 > 0 and t19 , tne S such that 1 ^ tL < ί2 <
< tn and JP is bounded on Π?=i ^ &> δ)

II. We now show that feLΣ(S') under the assumption that
1 < ί1# For geLp(S) define | |# | | = max ||flr||#i so that |; [j is a norm.
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on LP(S) and F is then || ||-continuous. If n = 1, then feLt[(μ)cz
LZ(S') because F is then || ||tl-continuous on LP(S) and LP(S) is
dense in (Ltl, S^t) (e.g., LP(S) contains the simple functions of μ-finite
support). We suppose n > 1. By breaking / into real, imaginary,
positive and negative parts it suffices to show/e Z/(S') under the
assumption / ^ 0.

Let A, = {xe X: f(x) ^ 1}, A2 = {xe X: f(x) < 1}. Let ft = fχA{

and define the linear form Ft on LP(S) by F{{g) = <g,fi>, i = 1, 2.
Each F{ is 11 11 -continuous so there exists ikf{ > 0 such that

(1) [ Φfidμ ^ AT* || φ || for all 0 e LP(S) .

To show fe U(S') we show each / ^ ^ ( S ' ) , i = 1, 2.
If Λ = 0 a.e., Λ G L ^ S ' ) . Otherwise let {ψf^JU be a sequence

of simple functions of //-finite support such that ψf^x) ^ 1 or ψjί](%)
= 0 for all xeX and ^ ] /{i, where l/ί< + l/ί{ = 1,1 ^ i ^ w. Let
^ ) = (ψf 7 ' S j = 1, 2, , so that ^ 1 } , ψf G LP(S). Then

so

(2) || ̂ > Ik ^ [ J t i 1 1 J ' " , l ^ i ^ n , j = l , 2 , "

Also ^"/i ^ ^ u W ) " ' = tί" . i = 1, 2, and, hence,

(3)

by (1). For some ie{l, •••,%} there exists a subsequence {i4} of
the integers such that || φfk \\ = || φψk \\t., k = 1, 2, . Hence, by (3)
and (2)

or

j t i» ̂  Λf {ί, Λ = 1, 2,

By monotone convergence this implies

To show f2eLr(S') we take fff'JΠ to be a sequence of simple
nonnegative functions of ^-finite support such that ψf \ /|ί. Let
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Φ? = WΨ\3 = 1,Z, . . . . Then

so

ψf] J ,lύi^n,j = 1,2,

As before, ψff2 ^ φf{ff])ιltΊ = f'f so

by (1). Again, for some ie { l , > ,n} there is a subsequence {jt} of
the integers such that \\φ^\\ = | | ^ | | t i , • = 1, 2, •••. By (5) and (4)

or

By monotone convergence of the ψf]ls we get f2e Lt>i{μ)c:LI(S'),
completing the proof of II.

III. We now show feLΣ(S') when t, = 1. Let Bm = {xeX:
f(x) ^ m}, m = 1, 2, . For some m fί(5m) < c>o for suppose the
contrary. Then for every n there exists Cn e s^ such that
1 ^ /j(C?i) < „ and f{x) ^ n for all xeCn. Let ^ - [3/2^(Cn)] χCn so
that H^llί = δ/2 for all f G [1, 0 Then F is bounded on {gn}?. But

which is unbounded. Therefore we may choose m such that μ{Bm) < ©o.
Let Λ = /χβ m and /, = / - /x. Then /2 e L ^ ) c L7(S') and we must
show that f.eUiS') also.

The argument now proceeds as in the third paragraph of part
II. A difficulty occurs in the event that | | ^ | | = H^H*. = l l ^ l l i ,
k = 1, 2, , because then the inequalities which follow are not valid.
We modify them as follows :

so
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<f > dμ ̂  K''% k = 1, 2, ,

yielding, as before, f^Lt^μ) c L'(S'). This completes the proof of
2.3.

THEOREM 2.4. Tλe conclusion of 2.3 is raZieZ i/ (X, j>/% μ) is
απ arbitrary measure space and S a (1, co),

Proof. We apply the previous theorem and the constructs which
occur in I, II of its proof. Given the linear form F we fix a neigh-
borhood Π?=i Vita δ) o n which F is bounded, 1 < t, < < tn, U e (S).
Take any μ-σ-finite Eesf. There exists a unique fEeU(Sr) whose
support is contained in E such that F(g) =\ gfEdμ for all g e Lp S

which vanish a.e. on X~E. We write fE = f^ + iff, where / /
are real. Let

J E - J E Xίfi/)^1Ί »

J E - J E / [ 0 ^ / ( ^ ) < J ] ?

f^3 _ f{S) y
J E — J E l^^flS)^ 1

JE - 3E Xίfi/)^l2 >

where, for example, [0 ̂  f{/) <1] denotes {.τ e X: 0 ̂  / ( / )(^) < 1}, /= 1,2.
If AaE, A e , y , then //'m = ffm a.e. on A, / = 1, 2, m = 1, . - 4.
Also we have seen that f{'meLt^(μ) if m = 1, 4 and f{'meLt>n(μ) if
m = 2, 3 / = 1, 2. Now for any μ-<7-finite ΐ/e J V define

Σ
= l ,4

Since the ikf/s of equation (1) of 2.3 may be replaced by the norm
| | F | | of F with respect to the norm j| \\ = max {|| ||t.} on LP(S),

we get from the proof of II that

for all μ-tf-finite E e s^> The argument now proceeds along the clas-
sical lines which appear, for example, in [4, Ch. 11, Th. 7.30]. We obtain
a μ-σ-finite set H on which λ achieves its maximum value. If Ho is
any μ-σ-finite set containing H we get that /^o

m = fi'm a.e. on ίί0,
so fH = ///o a.e. on HQ. Setting / = fH one obtains F(g) = <g, f>
via the usual argument ([4, Ch. 11, 7.30]).

3* Some properties of LP(S), L7(S). In this section we
examine some basic topological properties of LP(S), LZ(S). We also
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consider the question of when LP(S) = LP(T) and LZ(S) = U{T). If
S is a subset of the real line Sc shall denote its convex hull.

THEOREM 3.1. (LP(S), ^P(S)) is a Frechet space when S c [1, H

Proof. Let So = (S~{°o})c and let S, be a countable subset of
the interval So such that S? = So. Let S2 be S, if oo gS and S i U W
if oo e S. S2 is countable and we claim that S^P{S) is generated by
the norms {|| | |Jtβs 2. Let {fn} be a net in LP(S) such that /Λ—>0
in ^ P ( S ) . Take £eS 2 . If t = oo, then oo e S and | | / J | t - > 0 . If tΦ^r

there exist finite t19 t2e S such that ίx ^ ί <Ξ ί2. Letting

we get φn(t) g anφn(tγ) + ( l - α j ^ f e ) , where 0 ^ ^ ^ 1 ([1,13.19]) so

φn{t)SΦn{td + Φn{tz)->-^ as n gets large. Consequently H / J l t - ^ O

for all ί e S 2 . In a similar fashion one can show that if | |/ f t | | t—7-^0

for all teS2 then \\fn II,-7-* 0 for all ί e S , i.e., Λ - ^ 0 in ^ P % (S)^

Thus S^P{S) is generated by a countable family of norms and is con-

sequently metrizable.

To prove completeness suppose that {/%}Γ is an ^ p (S)-Cauchy

sequence in LP(S). Then for each teS {fn} is || | |ΓCauchy so there

exists f{t)eLt(μ) such that | |/ f t - / ( ί ) ||, —^ 0. It suffices to show

that if t19 t2eS then f^] = f^ a.e. For then we define / = /** a.e.

on X and evidently fn •/ in ^P(S). Take tl9t2eS. As

II yΛ — jΓ(*l} | | t l —7—* 0, there is a subsequence {/n,} of {/J which con-

verges to / ( ί i } a.e. But II/u '-/ ( ί 2 ) l l ί 2 -τr^0 so there is a subsequence

{/*//} of {/Λ,} converging to / ( ί 2 ) a.e. Hence f{h) — / ( ί 2 ) a.e.

COROLLARY 3.2. Take S c [1, 00) and assume that either X is
μ-σ-finite or that 1 £ S. Then ^P(S) = τ(Lp(S), Z/(S')) = β(Lp(S),

Proof. By 3.1, (LP(S), ^ Z ( S ) ) is a Frechet space and hence
barrelled. Theorem 2.3 and 2.4 apply.

COROLLARY 3.3. (Z/(S), ^ Z ( S ) ) is complete ifSa (1, 00).

Proof. The strong dual of a metric space is complete.

Given S c [1, 00), there is a maximal subset S of [1, 00) such
that LP(S) = LP(S), ^ P ( S ) - ^P(S) and ^ P ( S ) = Ύ/^P{S). S ID S
and is even an interval. Similar statements hold for LX(S). We now
establish these facts.
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DEFINITION 3.4. Let (X, j y , μ) be a measure space, S c [1, oo).
Let §! = gib S, s2 = lub S (we allow s2 = oo). We consider the following
conditions on (X, j y , μ) :

( i ) 1 ^ ίx < *2 < oo implies Lh(μ) z> L ί2(μ)
(ii) 1 ^ ίx < t2 < oo implies htl(μ) c L t 2(μ).

If ( i ) but not (ii) holds define S = [1, s2) U S and S = fo, oo) u S.
If (ii) but not ( i ) holds define S = (sly oo) y S, S = [1, s2) U S. If
both ( i ) and (ii) hold, define S = S = [1, oo) and, if neither ( i ) nor
(ii) hold, define S = S = Sc.

It is easy to see that 3.4( i ) may be replaced by the condition.
( i ) ' For some t1912 such that 1 ^ tx < t2 < oo it is the case that

Lh(μ) z> LH(μ).
For suppose ( i ) ' holds and that 1 ^ sι < s2 < oo. If there exists fe LS2(μ)

such that f<£L8l(μ), take s - gib {t: ί | |/|Γd/i< oo}. T h e n s ^ s ^ s ,

(apply [1,13.19]). Now take we[s, s2] such that \ \f\udμ < oo and

wίi/ίg < s. Letting

g = \f\ulh

gives g e Lh but g £ L ίχ, a contradiction. Thus no such / exists and
3.4( i ) holds. Similarly 3.4(ii) is equivalent to

(i i) ' For some tlf t2 such that 1 ^ ^ < ί2 < °° it is the case that
Lh(μ) C Lh(μ).

THEOREM 3.5. 3.4( i ) is equivalent to
( i )" Every μ-σ-finite set in SZ is μ-finite.
3.4( ii) is equivalent to
( i i ) " Every member of LL(μ) is essentially bounded.

If 3.4( i ) is false, then, given 1 ^ u < oo and 1 < v < oo
measurable functions f19 f2 on X such that

there exist

and

Lt(μ),

Lt(μ),

If 3.4(u) is false, then, given 1 fg u <
measurable functions gu g2 on X such that

Lt(μ),

Lt(μ)

Lt(μ)

and 1 < v < oc

Lt(μ)

there exist

and

gr2eΠ Lt(μ), g2£\J Lt{μ) .

Proof. If ( i ) " holds then every function in Uise<~ Lt(μ) has
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/^-finite support so 3.4( i ) holds. Suppose ( i ) " is false. We shall
show that the functions f19 f2 then exist. This, in turn, shows that
3.4( i ) implies ( i )". If ( i )" is false, then there exist pairwise dis-
joint sets A19 A21 e S>f such that μ(An) = λw, where 1 ^ Xn < °o,
n — 1, 2, . One now defines

r 1Ύ'U if χ e A n

L_λww J

0 if x <£ \JAn

and

, if x (

if x£\JAn

For example, to see that f2 g (J Lt(μ), take ί e [ l , v) and note that
λi-'" > 1 so

/2 r ^ Σ Γ-
n = L L

( i i ) " implies 3.4(ii) because

We shall show that if ( i i ) " is false, then the functions glf g2 exist.
This shows that 3.4(ii) implies ( i i ) " and completes the proof of the
theorem. If ( i i ) " is false then Lλ(μ) and, hence Lυ(μ) contains an
essentially unbounded function /. As

0 < \ \f\vdμ > 0 ,

there exist pairwise disjoint sets An e Sf such that

0 < ( \f\υdμ<e~n, ra = 1,2, . . .

and \f{x)\ ^ 1 for all xe U«=i An. Let

so bn > 1, w = 1, 2, . Define

gt{x) = f{x) Γ Σ KXAJ?) 1 for all x e X .
L w=i J
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Then for a ^ 0

\\g*\v+adμ =ΣK+a\ \f\v+adμ
J J An

έΣδ j I/I" dμ= - .
JAn

For δ > 0

Π -[Sjv \ \J \

\fYdμ\ ψ
J \f\v

J Anδfv

Thus g2 satisfies the required conditions.

To obtain gι take tn J w. By the above, there exists hn e Γ\ι^t<tnLt(μ}
such that hn ί Ltn(μ), n = 1,2, , and for all # e X either Λ,n(ίc) = 0
or hn(x) > 1. Let

Define Sk = Σϊ=i α»^> & = 1, 2, . For k > m we have

k

V1

0, as m, k

Hence there exists gλeLu(μ) such that \\Sk — g1\\u—j->0. There exists-

a subsequence {Snk\ of {Sn} such that Snfc > gx a.e. As {SJ is a
pointwise increasing sequence, gλ{x) ^ Sw(ίϋ) for all xe X, n — 1, 2, .
To see that & £ Uu<«<~ ^ί(i")> take £e(w, °o). Take tne(u,t). If
flf^Lt then, since gιeLu(μ),we have g1eLtn(μ). But

f f f
\ I gλ \tndμ ^ \ SI™ dμ ^ α ^ \ hin dμ
J j J

a contradiction. Therefore gι & U«<ί<oo Lt(μ). On the other hand, if
ί e [1, %] then 1/^ ^ 1/ί ^ 1. As hn(x) is either 0 or ^ 1 , we have
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llΛlli^Σ α IIM,
Λ = l

oo r- r ηi/ί

^ Σ α.[ j Λ; d^ J
^ Σ 2"" < oo .

71 = 1

This proves the theorem.

Incidently, it is not hard to show that 3.4 (ii) is equivalent to
{ii)'". For every pairwise disjoint sequence {An} c J^f such that
μ(An) > 0 for all n, it is the case that liminf μ(An) > 0.

But we shall not use this in the sequel.

THEOREM 3.6. Take S, Ta [1, oo). Then

(a) LP(S) = LP(S), L'(S) = LZ(S).
(b) LP(S) = LP(T) if and only if S = t; LZ(S) = U{T) if and

only if S = T.
(c) S is the largest subset of [1, oo) determining LP(S), i.e.,

LP(T) = LP(S) implies TaS. Similarly for S and L*(S).
(d) IfLp(S) = Lp(T), then W~P(S) = Ύ/^P(T) and S^P(S) = ^
(e) If U(S) = LZ(Γ), then W"\S)=<W\T) and ^I(S) = ^

Proof, (a) It suffices to show that LP(S) = LP(SC) and Lr(S) =
LT(SC). Clearly, LP(S) Z) LP(SC) and the reverse containment follows
from the fact that Lh(μ) Π L\(μ) c Lt(μ) whenever 1 ̂  tL ̂  t ^ t2 < oo
([1,13,19]). It is also clear that Z/(SC) D Z/(S). The reverse con-
tainment follows from the fact that if feLt(μ), where
1 ^ t, ̂  t ^ t2 < oo and t1912 e S, then fχAl e Lh(μ) and fχAz e Lt2(μ),
where A, = {.τ e X: |/(α)| ^ 1}, A2 = {x e X: |/(α;)| < 1}.

(b) The sufficiency follows from (a) and the necessity from Theorem
3.5: For example, suppose neither 3.4( i ) nor (ii) hold and S=[a, b),
1 ^ a < b < oo. Take v — a and f2 according to 3.5. Now take v = b
and g2 according to 3.5. Then f2 + g2eLt(μ) if and only if te [a, 6).
Consequently, Lp(f) = LP(S) implies f2 + g2eLp(f) which, in turn,
implies f = S.

(c) For example, if LP(T) = LP(S), then Taf=Sbγ (b).
(d) It suffices to show that Ύ/^P{S) = W~P(S) and £fp(S) =

^ P ( S ) . Clearly S^P(S) 3 ^ P ( S ) . To show equality it suffices to
show that for each t e S the injection

vt: (L^(S), ̂ P(S)) > (Lt(μ), &)

is continuous. (It is well-defined since LP(S) = LP(S) by (a).) The
argument of 3.1 shows that vt is continuous for all teSc. If 3.4( i)
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holds, there may exist toeS such that 1 ^ ί0 < t for all teS. We
must show that in this case vtQ is continuous. Take {fn} c LP(S)
such that fn >0 in S*P(S). Take tteS. Then 1 ^ ί0 < ίL and
||/*|| t l—^-*0. The support of each /Λ is μ-σ-finite so the union U of
these supports is μ-σ-finite. By 3.5, μ(U) < co and we may suppose
μ(U)>0. Then

so ^ίo is continuous. If 3.4(ii) holds, there may exist soe S such that
1 <; s < s0 for all s e S. We must show that in this case vSo is con-
tinuous. Again let {fn} c LP(S) be such that fn >0 in S^P(S) and
take st G S. Then 1 ^ s, < s0 and | | / J | S l —^ 0. We claim that {/Jf
is uniformly essentially bounded. Otherwise, for each n there exists
kn such that | fkjx) \ ̂  22n for a; in some set An with j«(AΛ) > 0.
Letting / - Σ (1/2*) | fk% \ we get

while f{x) ^ 2% for x e An. Thus / S l e Lι but is not essentially bounded.
By 3.5, this cannot happen. Thus there exists M>0 such that
IIΛHcα ^ M for all n. It follows that

/Jso d^ ^ Mso-i j I /w | i dμ 0

so ^So is continuous.

As before it is clear that Ύ//"piβ) c ^^ P (S) and to show equality
it suffices to show that each vt is cWp(β), ^"-continuous, teS. If
X is μ-σ-ϋmte or l e S then the dual of LP(S) is L7(S;) under both
WP(S) and ^ P ( S ) . Also WP{S) = σ(Lp(S), LZ(S')) The
^"-continuity of each vt now follows from their S^P{S)1

tinuity (cf. [3, p. 39]). If X is not μ-α -finite and 1 e S, then it is not
clear that LP(S) has the same dual under both W~P(S) and ^ P ( S ) ,
so this argument does not apply. In this case we take a typical
subbasic <^p(S)-neighborhood of 0, say

where g e Lt,(μ), ϊ e (S)'. If V - <χ>, then t'e S' and
For V Φ co take t e S such that 1/ί + 1/t' = 1. Suppose there exists
ij.eS such that l^t^t,. Let Λ - {α?: \g{x) | ^ 1}, Λ = {x: | ^ ) |< 1}
and gt = gfχ̂ ., i = 1, 2. Then # = g, + ^2, ^ e Lt[, (μ) and
giving that
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V' = {fe LP(S): j < /, g{ > | < - L , i = 1, 2}

is in 5^ P (S). But V c F(#) so F ( # ) e 5 ^ p ( S ) . If such a ^ does
not exist then 3.4(ii) must hold. In this case g is essentially bounded
so geL4μ) and again V(g)e^p(S). It follows that W~P{S) =

(e) As before it suffices to show that ^ 7 ( S ) = S^\S) and
2^ 7(S) = ^ 7(S). Let us show the former, for example. ^ 7 ( S ) is
a locally convex topology for LT(S) such that

ut : (Lt(μ), Sft) > (L7(S), ^ 7 ( S ) )

is continuous for all teS. As SczS each ut,teS, is continuous
when L7(S) has the topology S^£{S). But 5^7(S) is the finest locally
convex topology for U(S) such that ut, teS, is continuous. Hence
S^T(S) Z3^ 7(S). But since S z ) S a direct comparison of the basic
neighborhoords of 0 gives ^ 7 ( S ) =) S^Z(S) (cf., [3, p. 79]).

THEOREM 3.7. Lei (X,s^,μ) be a measure space, S c [ l , co]y

and let ( i ) , (ii) rβ/er to the conditions of Definition 3.4.
(a) If ( i ), (ii) AoM, 6^F(β) is normable.
(b) // ( i ) holds and ^ e S , ̂ p ( £ ) is normable.
(c) // (ii) is false and ^ gS, ^ P ( S ) is normable if and only

if S is closed and bounded.
(d) In all other cases S^P(S) is normable if and only if

lubSeS.

Proof. If t e S, e > 0 we let

V(jk, e) = {feLp(S):\\f\\t<e}.

We apply frequently, below, the considerations which occur in the
proof of 3.6 (d).
(a) If ( i ) , (ii) hold and ^ ^ S , then the considerations of the proof
of 3.6(d) show that || 1̂  generates S^P(S), which is therefore nor-
mable. If c o G S , y F ( S ) is generated by || ||x and || \U. In this
case V(l,l)Γ\V(oo,l) is a bounded ^p(S)-neighborhood of 0 and
S^P{S) is normable.
(b) In this case S^T{S) is generated by || ||x and || Ĥ  and hence
normable.
(c) We suppose (ii) is false and co gS. If S is closed and bounded,
say, S = [u, v], where 1 ̂  u ^ v < co, then || ||w, || \\v generate 6^p(β)
(since {u, v}~ = S), which is therefore normable.

Now suppose (ii) is false, oo gS and S^P(S) is normable. We
must show that S is closed and bounded. S is an interval with left
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and right end-points, u, v, say, where 1 ̂ u ^v ^ oo. I f ( i ) holds,
then u = 1 e S. Suppose ( i ) is false and that u g S. We show that
in this case every ^p(S)-neighborhood of 0 is unbounded, yielding
a contradiction. Let W = Γ\"=ι V (ti9 ej be an arbitrary basic S^p{Sy
neighborhood of 0. Then there exists teS such that u<t<tiy

i ^ ί ^ n . By 3.5 there exists a nonnegative f e f}"^ Lt.(μ) such
that f£Lt(μ). There exists δ > 0 such that ||<?/||*. < ei9 ί ^ ί ^ n .
Set g = δf. As / has μ-σ-fϊnite support there exists a sequence {gn}
of simple functions with /^-finite support such that 0 ̂  gm \ g. Then
{gm}czLp(S) and \\gm-g\\u—+o, l^i^n. Thus {gm}Z^c:W for
some N. But g & Lt(μ) and 0 ̂  gm j g imply that ||f7m||ί—ĵ -> oc.
Consequently,

m 7 ( ί , 1) 2> IF, m = 1, 2, •••

and TF is not bounded. This contradiction assures that ue S.
We now argue that oo > v e S in an analogous fashion, showing

that the contrary would imply that no ^ p(S)-neighborhood of 0 is
bounded. For suppose vί§. Let W = Π?=i V(tn εi) be an arbitrary
basic ^p(S)-neighborhood of 0. Then there exists t e S such that
U < t < v,i = 1, 2 . By 3.5, there exists a non negative fe f\l=ιLt.{μ)
such that f&Lt(μ). As before we take simple functions gm with μ-
finite support such that 0 ̂  gm ] δf, for appropriate δ > 0. One ob-
tains {gm}Z=N^W f ° r some N while \\gm\\t—>°°, showing that W
is not bounded, a contradiction. This completes the proof of (c),
(d) Suppose (ii) is false and ^ e S. If ( i ) is true, case (b) applies
so we may suppose ( i ) is false. Let sL = lub S. If s1 e S, it is not
hard to show from the considerations in the proof of 3.6 (d) that
|| | |Sl, || IU generate ^P(S) so 6^P{S) is normable. On the other
hand suppose 6^p{β) is normable. One can show sι e S by the argu-
ment which occurs in the second paragraph of the proof of (c). This
works even if some tι = °° because the function / obtained from the
proof of 3.5 is essentially bounded and \\gn\\oo ^ || g |U (If all ί/s
are oo, / may still be chosen to have μ-σ-finite support by the
negation of 3.5( i )".)

Suppose (ii) is true and again let s, = lub S. By (a) we may as
well suppose ( i ) is false. Suppose sLeS. If oo gS, || | |βl generates
S^P(S) and if oo G S, \\ \\Sl and || |U generate S^P(S) so, in either
case, S^P{S) is normable. If S^P{S) is assumed normable, one argues
that s,e S as above. This completes the proof of 3.7.

The conditions of 3.7 also determine when (LZ(S), S^Z(S)) is
metrizable for the case when S c ( l , oo). For then (Z/(S), ^T(S)) is
the strong dual of the metrizable space (LP(S'), £^P{S')) and so is
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metrizable if and only if the latter space is normable. In this case,
of course, (Z/(S), ^T(S)) is normable.

THEOREM 3.8. Take S c ( l , oo). J3cZ/(S) is ^'(Sybounded if
and only if there exists a finite set FaS such that BczUiF) and
B is bounded in the norm of (LT(F), £

Proof. Let " 0 " denote polar and let V(t, ε) c LP(S') be as in
the proof of 3.7. As B is bounded, there exists ε > 0 and t[, •••,
ti e S' such that B° z> f|?=i V{t\, ε). (Lp({t[}), ^p{t[})) is normable (by
3.7) with norm || |j = sup {|| | | t i : 1 S i ^ n}. Letting lfc + 1/ίί = 1,
l^i^n, we set F = {tu , tn) so that Fc S. 6^\F) is normable
by

|| y || - sup {|< x, y > \: x e LP(F'), || x || ^ 1} .

Also

f V(tι, e)]°

= {2/ e L 7 (S): sup | < y, a;

α; e LP(S')

(•) cz{yeL'(S): sup

x e L p

11*11 ^i

because LP(S') is dense in (LP(F'), ^P(F')) (e.g., LP(S") contains the
simple functions of ^-finite support). But the right-hand set in (*)
clearly consists of elements from the dual of (Lp(Fr), S^P(F')). Hence

establishing the necessity of the condition for B to be bounded. The
sufficiency is clear since the natural imbedding i : (L'(F), S
(L'iS), &"(S)) is continuous.

Suppose that X is μ-finite so that 3.4 ( i ) holds and L'(S) is an
inductive limit in the usual sense. Then it is known that a sequence
{xκ}Γ ^^7(S)-converges to 0 if and only if for some seS | |a;B | | s-^->0
([2, p. 454]). We do now know if this is true in the general case.

4 . The weak topology in L7(S). If LT(S) and LP(S') are dual
we have seen that o (L7(S), LP(S')) c W^S). In this section we
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attempt to compare these two topologies. Our results indicate that
they are quite close. However even in the case when S consists of
two elements and (X, J ^ , μ) is the real line with Lebesgue measure
we do not know if they are equal.

THEOREM 4.1. Take S c ( l , oo) and suppose that either 3.4 ( i )
or (ii) holds. Then a bounded net in LZ(S) converqes to zero in
Ύ/^Z(S) if and only if it converqes to zero in σ(Lτ(S), LP(S')). By
bounded is meant with respect to any topoloqy of the dual pair
\J-J \&), ±J \ιθ )).

Proof. Let (φd,deD, ^ ) be a bounded net in LT(S) converging
to zero in σ(Lz(S)9 LΣ(S')). To show that φd > 0 in W^\S) we shall
show that for some V e S' < φd, h > ——> 0 for all h e Lt,{μ). (One may
then apply the corollary in [3, p. 79]). By 3.8, there is a finite set
FaS such that {φd}deD c LT{F) and is bounded there. By 3.4 ( i )
and (ii) we may suppose F — {t}. There exists M > 0 such that
H^ll^ikf for all deD.

Now take any heLt,(μ) and ε > 0. The support A of h is μ-σ-
finite so we write A = U~=i An, where μ(An) < oo, % = 1, 2, . We
may suppose AnaAn+ί, n = 1, 2, •••. Let Bn = {xe X: \h(x)\ ^ n).

Finally let Cn = AnΓ\Bn so that Lfci Cn = A and hχCneLp(S') for
all n. Take N so large that

\h\tf dμ <

As hχCne LP(S'), there exists dQeD such that

I < Φdf hχCn > I < e/2 for all d ^ d0 .

Thus for d^ dQ we have

\<φd,h>\^\<φd, hχc > I + I I φdhdμ \
)x~cn

< ε / 2 + I I ^ H

Thus, when 3.4( i) or (ii) hold, 0 (L7(S), Lp(S')) agrees with
W^T(S) on bounded sets. In particular, the same sequences converge
in σ(U{S), LP(S')) as in WP{S).

THEOREM 4.2. Take S a [1, oo) and suppose that either X is μ-σ-
βnite or that 1$S. Let (φd, de 1Λ SO be a net of nonnegative
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functions in LT(S). The φd-+0 in σ(Lz(S), LP(S')) if and only

if φd~+0 in

Proof. Assuming that φd —*0 in σ(I/(S), LP(S')), we shall show
that φd —> 0 in <W"I(S). By applying 3.6 we may assume S is coun-
table, say S= {ίlf ί3, •••}. If ί e [ l , oo), ί 'e( l , oo] denotes the con-
jugate of t. For each t e S let Ft, be a finite set in Lt,(μ). Let

F t - t o e L t ( ^ ) : | < < 7 , / > | < 1 for a l l / e i ^ , } .

Let F be the convex hull in Lr(S) of \JteS Vt so that V is a typical
basic 5^J(S)-neighborhood of 0. To prove the theorem we shall show
that φd is eventually in V. For each i — 1, 2, let

/< - max {(Rf)+, (Rfy, (//)+, (//)": / e *VJ .

Then /f.(aj) ^ 0 for all x. It suffices to show that there exists d0 e D
such that the following holds:

(1) For all d^ d0 there exists positive c19 , cm {m — m{d)) such that

Σ c = 1 and φd = Σ Ci Ψi9 where ψt e U(S) and

0 ^ < t < , / * 4 > < ^ ,
* 4

1 <£ i ^ m and suitable integers fe^ .

To prove (1) set & = min {fk: 1 ^ k ^ i}, i = 1, 2, . Then
0 ^ ^(ίc) for all xeX and ftGfli^i ^ί ί i")- Ά-lso & j # where
geLp(S'). There exists d o e ί ) such that

0 ^ < $jd, fif > < - ί - for all d ^ d0 .
o

We shall show that this is the d0 of (1). Take any d Ξ> dG. φd e Lt.{μ)>
for some j so

0 S < Φd, 9j > < oo .

As φdgt I όdg as i —> oo, W e have

(2) 0 ^ < φd, gn> < 4 ~ for some 7̂  .
8

(Actually (2) holds for all n sufficiently large but we shall not use
this.)

Now set

A, = {xe X: fx{x) ^/<(.τ), l^i^n}
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An = {xeX: x$ Q Λ; fn(x) g f^x), 1 ̂  i ^ n} .

i = l

'Then gn = Σ? = 1 / ^ 4 . and U?=i Λ = ^

Suppose first that in (2) we have < φd, gn > = 0. Then

\ Φdfidμ = 0, 1 ̂ ΐ ^ w ,

(3) j r

Writing όd = Σ?=i 1/^ [̂  ^d%^.], combined with (3), proves (1) in this
case.

Now suppose <φd,gn> > 0 in (2). By renumbering the ft 's, if
necessary, we may suppose

(4) \ φdfidμ >0, l ^ i ^ m ,

where 1 ̂  m ^ τι, and

(δ) \ όdfidμ = 0, m <i^n .

We suppose m < ?t the case m = n is handled by an obvious adjust-
ment. Set

<6)

By (4), (5)

1 φtfidμ
•3{ = -iΔi , 1 £ί i ^ m .

m "I

(7) Σ&=-±-

Now

r r -i I

= 2 <C 9d> ^ ^ > b y

-i-, by (2), 1 ̂  i ^ m

Also, by (5),
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(9) I [2(n-m)φdχΛ.]fidμ = 0, m < i ^ n .

We write

^ = Σ A [ 4 " Φ*Ϊ
< L β

i=»+i 2(π — m) *

This, combined with (7), (8) and (9), proves (1).

Let {φd} be a net in LT(S) which converges to 0 in σ(Lz(S)r

LP(S')). If we know that {(Rφa)*} and {(Iφa)*} also converged to 0 in
σ(L7(S), LP(S')), then 4.2 would imply convergence of {φd} to 0 in
^ ^ Z ( S ) . We close with an example of a net in LT(S) to which neither
4,1 nor 4.2 are applicable even though 3.4( i ) holds.

EXAMPLE 4.3. Let X = [0, 2π) and let μ be Lebesgue measure
so that 3 4( i ) holds. Take S = (p, ex?) for some 1 ^ p < oo. Let DJ

be the set of all finite subsets of LP(S') directed by inclusion. Take
arbitrary deD and let \d\ denote the cardinal of d. Take n = n(d)
so large that

\ (sin nx) g (x) dμ (x) <—p for a l l ged .

Define φ^L'iS) by φd(x) = \d\ sinnx. To see t h a t φd-+0 in

LP(S')) take any geLp(S') and ε > 0. Let dQeD be such that ged,,
and c?0 contains at least 1/ε elements. Then

I < Φd, 9 > \< -Λr < ε f o r a11 d 3 do

On the other hand, < φi, 1 > = < φd, 1 > = 2 | d [ for all d e D so-

^ί-T^O in σ(LI(S)1L
p(Sr)). Finally for any ί e S | | ^ | | t ^ H ^ = 4|<Z|

for all d e D so {φd} is not eventually bounded. We do not know

whether or not {φd} converges to zero in Ύ/^\S>).
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