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CARATHEODORY THEOREMS IN CONVEX
PRODUCT STRUCTURES

JOHN R. REAY

Various attempts have been made to place convexity in an
axiomatic setting. Recently J. Eckhoff has considered the
classic theorem of Radon in several different settings. Most
of his work is done in what we call an Eckhoff space, i.e., in
a finite product of euclidean spaces where convex sets are de-
fined as the cartesian products of usual convex sets in each
component space. The purpose of this paper is to investigate
the closely related theorem of Caratheodory and its generaliza-
tions in this setting.

The papers of F. W. Levi [5] and Dauzer, Grunbaum, Klee [3]
have various approaches to axiomatic settings of convexity, and a
good bibliography for before 1961. See the papers of Eckhoff [4] and
Bonnice-Reay [2] for more recent results and references.

!• Eckhoίϊ spaces* The pair (E, ^) denotes an Eckhoff space
provided (1) E is a direct cartesian product E = Π?=i E% where each
Ei is a c^-dimensional euclidean space with ^ the family of all convex
sets of Eif and (2) i f = {Π?=i AiiA+e ^ } is the family of all product-
convex sets in E. For any set XcE, the set E(X) = Π {A : XaA e 9 }̂
is called the product-convex hull of X. Let π{: E-+Ei denote the
usual projection. Then we can consider E as a linear space of di-
mension d — Σ?= ι di, and E(X) = ΠIU (conv πζX) where conv B denotes
the usual convex hull of B in each euclidean space Et. The cardinality
of B will be denoted by |J3|. Using the notation of Bonnice-Klee [1]
and others, we say that intr B is the set of all points p for which
there exists an r-dimensional simplex contained in B and containing
φ in its relative interior.

2 Caratheodory-type theorems* By a Caratheodory-type theorem
we mean a result which asserts that if a point is embedded in the
(axiomatically defined) hull of a set X, then it is similarly embedded
in the hull of a sufficiently small subset of X. Note that the case
n = 1 of Theorem 1 below is the result usually called Caratheodory's
theorem.

THEOREM 1. // X is any subset of an Eckhoff space E = ΐl^Ei
of dimension d = Σdi and if peE(X), then peE(Y) for some YaX
with I Y\ ^ d + δ, where δ = 1 if n = 1 and δ = 0 if n > 1. Fur-

227



228 JOHN R. REAY

thermore, if m = \Y\ is the cardinality of a smallest subset Y of X
for which peE(Y), then peintrE(Y) where

max (0, m - n) ^ r ^ (m — 1)| {d<: d{ ^ m} | + Σd.<mdi .

Proof. lΐ n = 1 the upper and lower bounds on r reduce to r =
m — 1, that is, p lies interior to the (m — l)-simplex determined by
the m points of Y.

Assume n = 2. It suffices to show that there is a set YaX for
which I Y\ ^ dι + d2 = eZ and TΓ^ G conv 7̂  Y for i = 1,2. Applying"
Caratheodory's theorem to Eγ, there is a subset Γ Ί c X with | YJ ^
c?i + 1 for which πλp e cony π^. Now if π2p e cony π^ as well, then
pe2ί7(Yi) and we are done. Otherwise choose a set Y2aX of minimal
cardinality such that π2peconv π2(Y1ΌY2) Since we may choose one
of the d2 + 1 points of Caratheodory's theorem arbitrarily (see [6] f

Lemmas 4.1-4.4) it follows that | Y2\ ^ d2. Thus letting Y = ΓXU Y2

it follows that peE(Y) and | Γ | ^ | YJ + | Γ 2 | ^ d, + ώ2 + 1. We are
therefore done unless both | Yx\ — dι + 1 and \Y2\ ~ d2and Y1f]Y2 = 0»
In this case we will show that one correctly chosen point may be re-
moved from Yx U Y2.

Case 1. 7Γ2peconv7Γ2Y2. In this case we reverse the roles of E1

and E2 in the above argument, i.e., let Y2 be as above and redefine
Yx to be a set of minimal cardinality so that πxp e conv (Y2 U Yi). Then
I Y,\ ̂  ^ and | Y2\ = d2 and peE(Y2U YJ.

Case 2. π2p g COΏV π2Y2. In this case | Y2\ — d2 so for each point
ye Y1 it is true that π2peconvτc2({y)U Y2). Thus some point of T^Y*
in the space Eί may be used to replace a particular point of Yly say
2/i Then πxpeCOΏYπ1(Y2\J(Yί — {y^})) and it is still true that π2pe
convττ2((Y1 — {i/i})U Y2). This establishes Case 2, and hence proves
the first statement of the theorem if n — 2.

The case when n ^ 3 now follows easily. As in the case n = 2 there
exists a set Yx U 7 2 c Z for which πφ e conv π4( Yx U Y2) for i = 1, 2 and
I Yx U Y21 ^ d, + d2 For each i ^ 3 there is a set Y < c l , by Caratheo-
dory's theorem in Ei9 such that {Y^^di and TΓ^ e conv 7Γ<( Yi U Y2 U Yi).
The set Y= (J?=i Y< then has the desired properties; peE(Y) and
I Y| ^ Σ?=i^* = d. This establishes the first half of the theorem.

To prove the last statement, let YaX be a smallest subset for
which peE(Y) and suppose \Y\ = m. Then for each i, π ^ G int r ( ί ) conv
π^Y for some largest nonnegative integer r(i) ^ di9 and ί9Gintr E(Y)
where r = ^=1r(i). It follows that r assumes a minimal value
whenever each r(i) is as small as possible, within the constraint | Y\ — m~
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This is achieved when the points of F are used as "inefficiently as
possible", specifically, when for some partition Y — Y1U U Yn we
have πtpecoΏYπiYi and the points of π^Y ~ Y{) are not used in Et.
For example, if π4( Y ~ Yt) is a single point in Et then the points of
π{Y are the vertices of a simplex in Et of dimension \Yi\, and πtp is
interior to the subsimplex convTΓ F;. In any case, Caratheodory's
theorem (case n = 1) implies that r(i) = j Ŷ  | — 1. Thus r = ^ ( ί ) =
(2̂ 1 Yi\) — n = m — n, and in general r ^ m — w. The other inequali-
ty on r follows from the fact that the m points of Y projected onto
each space 2^ can have a convex hull of dimension at most min (m—1, d*)
in j&i. This proves Theorem 1.

EXAMPLES. The following examples show that the bounds in
Theorem 1 cannot, in general, be improved.

(1) For each i = 1, 2, , n, let X{ be a subset of Ei for which
X, U{0} form the vertices of a nondegenerate dΓsimplex, and let p{

be in the relative interior of the simplex conv X{. Define p e E by
the relations πφ = piΛ For each point Xι in each set Xt define the
point xteE by the relations πβi = xi and πfit — 0 if j Φ i. Let XczE
be the set of all such points #<. Then clearly peE(X), but pgϋ^Γ)
for any proper subset of F of X, and |X| = Σ\Xι\ = Σdi = d. Fur-
thermore peint rj^(X) where

r - Σ(\Xt\ -1) =

(2) As a second example, let m be any integer for which 1 ^
m ^ max {̂  + 1:^ = 1, •••,%}. For each subspace J^ if m ^ d< + 1
let {aJiyJJLi be the vertices of a nondegenerate simplex in Et. If
m>di + 1 let {ί% : i = 1, , d{ + 1} be the vertices of a nondegenerate
simplex, and let xiL = xiS for j = (^ + 2), •••, m. In either case
choose a point Pi in the relative interior of this simplex. Now define
peE by the relations π{p = ^ and let X = {%}f=1cEr where each x,
is defined by π ^ = xiS e E{. Then \X\ = m and p e #(X) but p g ̂ (F)
for any proper subset F of X. Also p e intr E(X) where

r = (m- 1)| {dt: dt ^ m} | + ^ ^ . d , .

The case where w = 1 and r = d in Theorem 2 below is commonly
called Steinitz's theorem.

THEOREM 2. If X is any subset of an Eckhoff space E = Π?=i ^i
αwd if r Ξ> 0 is ίΛe largest integer for which p e intr E(X), then
peintrE(Y) for some subset YdX with | F | ^ 2r + δ where δ is the
number of spaces E{ for which πtp $ intx conv
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Proof. Let r(i) be the largest integer for which πφ e intr(ί)conv7ΓίX»
Thus r = Σr(i). By the Bonnice-Klee theorem (see [1], Th. 2.5) and
the maximality of r(i) there is a subset Yi of X for which πφ e intr( ί)

convTΓ.Γ, and | Y,\ ^ 2r(i) if r(ί) > 0, and | Y{\ = 1 if r(ΐ) = 0. Thus
letting Γ - UlU Γ* we have p e intr #(F) and | Γ| - | U Y, | ^ £| Γ, | ^
2^r(ί)>or(i) + Σ{i]rU)=0]l = 2r + δ. This proves Theorem 2.

Using the techniques from the examples given above, it is easy
to construct sets X in Eckhoίf spaces which show that the bounds
of Theorem 2 cannot, in general, be improved. A further generaliza-
tion may be obtained by considering p e ints E(X) where 0 < s < r,
and ask the cardinality of the smallest YaX for which peintsE(Y).
This is the spirit of the Bonnice-Klee Theorem (see [1] and [6]). An-
other approach is to add further information about the set X, and
ask how the bound on \Y\ may be improved. For example, if it is
known that ki is the dimension of the highest-dimensional simplex
with vertices in ^XcJ?,- and having πφ in its relative interior, then
the bound on \Y\ can, in general, be improved. See Bonnice-Reay
[2] for a bibliography and results of this type. Also connectedness
or symmetry conditions on X may lead to an improvement of the
bound on | F | . See [6] for a bibliography and results of this type.

These theorems and others which depend even more upon the struc-
ture of X are similar to the above theorems, but are much more com-
plicated and are therefore omitted.
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