ON A SET OF POLYNOMIALS SUGGESTED BY LAGUERRE POLYNOMIALS

Tilak Raj Prabhakar

Abstract

Generating functions, integrals and recurrence relations are obtained for the polynomials $Z_{n}^{\alpha}(x ; k)$ in x^{k} which form one set of the biorthogonal pair with respect to the weight function $e^{-x} x^{\alpha}$ over the interval $(0, \infty)$, the other set being that of polynomials in x.

A singular integral equation with $Z_{n}^{\alpha}(x ; k)$ in the kernel is solved in terms of a generalized Mittag-Leffler's function and a unified formula for fractional integration and differentiation of the polynomials is derived.

It is known [7] that the polynomials $Z_{n}^{\alpha}(x ; k)$ of degree n in x^{k} for positive integers k and $\operatorname{Re} \alpha>-1$ are characterized up to a multiplicative constant by the above requirements. Konhauser [8] discussed the biorthogonality of the pair $\left\{Z_{n}^{\alpha}(x ; k)\right\},\left\{Y_{n}^{\alpha}(x ; k)\right\}$ in the basic polynomials x^{k} and x, over the interval ($0, \infty$) and with the admissible weight function $e^{-x} x^{\alpha}$ of the generalized Laguerre polynomial set $\left\{L_{n}^{\alpha}(x)\right\}$. Indeed the polynomials have several properties of interest and Konhauser [8] obtained among other things some recurrence relations and a differential equation for the polynomials $Z_{n}^{\alpha}(x ; k)$ which are our primary concern in this paper. For $k=2$, Preiser [11] obtained for these polynomials a generating function, a differential equation, integral representations and recurrence relations. Earlier Spencer and Fano [13] also used these polynomials for $k=2$.

For $k=1$, all the results proved in this paper reduce to those for $L_{n}^{\alpha}(x)$; in particular the integral equation (3.1) either reduces to or contains as still more special cases the integral equations solved by Widder [14], Buschman [1], Khandekar [6], Rusia [12] and Prabhakar ([10], (7-1)). For $k=2$, the results are essentially the same as those in [11] or [13].
2. Some properties of $\mathbf{Z}_{n}^{\alpha}(\mathbf{x} ; \mathbf{k})$. We now obtain a generating function, a contour integral representation and a fractional integration formula for $Z_{n}^{\alpha}(x ; \mathrm{k})$. In § 3, we need the Laplace transform and in $\S 4$ derive a more general class of generating functions for the polynomials. Recurrence relations and a few other results will follow as natural consequences. We shall freely use the closed form ([8], (5))

$$
\begin{equation*}
Z_{n}^{\alpha}(x ; k)=\frac{\Gamma(k n+\alpha+1)}{n!} \sum_{j=0}^{\infty}(-1)^{j}\binom{n}{j} \frac{x^{k j}}{\Gamma(k j+\alpha+1)} \tag{2.1}
\end{equation*}
$$

for $\operatorname{Re} \alpha>-1$; naturally the results may be established from alternative characterizations of $Z_{n}^{\alpha}(x ; k)$ but such a discussion does not seem to be of sufficient interest.
(i) A generating function. We obtain the generating function indicated in

$$
\begin{equation*}
e^{t} \dot{\phi}\left(k, \alpha+1 ;-x^{k} t\right)=\sum_{n=0}^{\infty} \frac{Z_{n}^{\alpha}(x ; k) t^{n}}{\Gamma(k n+\alpha+1)} \tag{2.2}
\end{equation*}
$$

where $\phi(a, b ; z)$ is the Bessel-Maitland function ([15], (1.3); [3], 18.1 (27)).

From (2.1), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{Z_{n}^{\alpha}(x ; k) t^{n}}{\Gamma(k n+\alpha+1)} & =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{(-1)^{m} x^{k m} t^{n}}{m!(n-m)!\Gamma(k m+\alpha+1)} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{k m} t^{n+m}}{m!n!\Gamma(k m+\alpha+1)} \\
& =\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \sum_{m=0}^{\infty} \frac{\left(-x^{k c} t\right)^{m}}{m!\Gamma(k m+\alpha+1)} \\
& =e^{t} \phi\left(k, \alpha+1 ;-x^{k} t\right)
\end{aligned}
$$

and (2.2) is established.
Denoting $e^{t} \dot{\phi}\left(k, \alpha+1 ;-x^{k} t\right)$ by $f(x, t)$ we at once find that $f(x, t)$ satisfies the partial differential equation

$$
x \frac{\partial f}{\partial x}-\alpha t \frac{\partial f}{\partial t}+\alpha t f=0
$$

Substituting for $f(x, t)$ from (2.2) and equating the coefficients of t^{n}, we obtain the differential recurrence relation

$$
x Z_{n}^{\prime \alpha}(x ; k)=n k Z_{n}^{\alpha}(x ; k)-k \frac{\Gamma(k n+\alpha+1)}{\Gamma(k n+\alpha-k+1)} Z_{n-1}^{\alpha}(x ; k),
$$

also obtained by Konhauser ([8], (6)) by direct calculations.
(ii) Schläfli's Contour integral. It is easy to show that

$$
\begin{equation*}
Z_{n}^{\alpha}(x ; k)=\frac{\Gamma(k n+\alpha+1)}{n!2 \pi i} \int_{-\infty}^{(0+)} \frac{\left(t^{k}-x^{k}\right)^{n} e^{t} d t}{t^{k n+\alpha+1}} . \tag{2.3}
\end{equation*}
$$

For $\frac{1}{2 \pi i} \int_{-\infty}^{(0+)} \frac{\left(t^{k}-x^{k}\right)^{n} e^{t} d t}{t^{k n+\alpha+1}}=\sum_{j=0}^{n}(-1)^{j}\left(_{j}^{n}\right) x^{k j} \frac{1}{2 \pi i} \int_{-\infty}^{(0+)} t^{-(k j+\alpha+1)} e^{t} d t$

$$
=\sum_{j=0}^{n} \frac{(-1)^{j}\binom{n}{j} x^{k j}}{\Gamma(k j+\alpha+1)}
$$

using Hankel's formula ([3], 1.6(2))

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=\frac{1}{2 \pi i} \int_{-\infty}^{(0+)} e^{t} t^{-z} d t ; \tag{2.4}
\end{equation*}
$$

finally (2.3) follows from (2.1)
For $k=1$, (2.3) reduces to the known result ([2], p. 269)

$$
L_{n}^{\alpha}(x)=\frac{\Gamma(n+\alpha+1)}{n!2 \pi i} \int_{-\infty}^{(0+)}\left(1-\frac{x}{t}\right)^{n} e^{t} \frac{d t}{t^{\alpha+1}} .
$$

If α is also a positive integer than the integrand in (2.3) is a single-valued analytic function of t with the only singularity $t=0$. Hence we can deform the contour into $|t|=b|x|$ and the substitution $t=x u$ then leads to

$$
\begin{equation*}
x^{\alpha} Z_{n}^{\alpha}(x ; k)=\frac{\Gamma(k n+\alpha+1)}{n!2 \pi i} \int_{C}\left(u^{k}-1\right)^{n} e^{x u} u^{-(k n+\alpha+1)} d u \tag{2.5}
\end{equation*}
$$

where C denotes the circle $|u|=b$. Indeed C may be replaced by any simple closed contour surrounding the point $u=0$. For $k=2$, (2.5) reduces to the integral representation by Preiser ([11], (5.22)).

Using (2.5), it follows that

$$
\frac{\partial^{k}}{\partial x^{k}}\left[\frac{n!x^{\alpha+k} Z_{n}^{\alpha+k}(x ; k)}{\Gamma(k n+k+\alpha+1)}\right]=\frac{n!x^{\alpha} Z_{n}^{\alpha}(x ; k)}{\Gamma(k n+\alpha+1)}
$$

and

$$
\left(\frac{\partial^{k}}{\partial x^{k}}-1\right)\left[\frac{n!x^{\alpha+k} Z_{n}^{\alpha+k}(x ; k)}{\Gamma(k n+k+\alpha+1)}\right]=\frac{(n+1)!x^{\alpha} Z_{n+1}^{\alpha}(x ; k)}{\Gamma(k n+k+\alpha+1)}
$$

which leads to the pure recurrence relation

$$
\begin{equation*}
x^{k} Z_{n}^{\alpha+k}(x ; k)=(k n+\alpha+1)_{k} Z_{n}^{\alpha}(x ; k)-(n+1) Z_{n+1}^{\alpha}(x ; k) \tag{2.6}
\end{equation*}
$$

For $k=2$, (2.6) reduces to ([11], (5.39)).
(iii) Fractional integrals and derivatives. We show that

$$
\begin{equation*}
I^{\mu}\left[x^{\alpha} Z_{n}^{\alpha}(x ; k)\right]=\frac{\Gamma(k n+\alpha+1)}{\Gamma(k n+\alpha+\mu+1)} x^{\alpha+\mu} Z_{n}^{\alpha+\mu}(x ; k) \tag{2.7}
\end{equation*}
$$

for $\operatorname{Re} \alpha>-1$ and $\operatorname{Re} \mu>-\operatorname{Re}(1+\alpha)$ where for suitable f and complex $\mu, I^{\mu} f(x)$ denotes the μ th order fractional integral (or fractional derivative) of $f(x)$ (see [10], § 2).

When $\operatorname{Re} \mu>0$, we write [10]

$$
\begin{aligned}
I^{\mu}\left[x^{\alpha} Z_{n}^{\alpha}(x ; k)\right] & =\int_{0}^{x} \frac{(x-t)^{\mu-1}}{\Gamma(\mu)} t^{\alpha} Z_{n}^{\alpha}(t ; k) d t \\
& =\frac{\Gamma(k n+\alpha+1)}{n!\Gamma(\mu)} \sum_{j=0}^{n} \frac{(-n)_{j}}{\Gamma(k j+\alpha+1)} \int_{0}^{x} t^{k j+\alpha}(x-t)^{\mu-1} d t
\end{aligned}
$$

$$
=\frac{\Gamma(k n+\alpha+1)}{n!} \sum_{j=0}^{n}(-n)_{j} \frac{x^{k j+\alpha+\mu}}{\Gamma(k j+\alpha+\mu+1)} ;
$$

hence for $\operatorname{Re} \mu>0$ and $\operatorname{Re} \alpha>-1$, we obtain

$$
\begin{equation*}
I^{\mu}\left[x^{\alpha} Z_{n}^{\alpha}(x ; \mathrm{k})\right]=\frac{\Gamma(k n+\alpha+1)}{\Gamma(k n+\alpha+\mu+1)} x^{\alpha+\mu} Z_{n}^{\alpha+\mu}(x ; k) . \tag{2.8}
\end{equation*}
$$

But (2.8) may be written as

$$
\begin{equation*}
x^{\alpha} Z_{n}^{\alpha}(x ; k)=\frac{\Gamma(k n+\alpha+1)}{\Gamma(k n+\alpha+\mu+1)} I^{-\mu}\left[x^{\alpha+\mu} Z_{n}^{\alpha+\mu}(x ; k)\right], \tag{2.9}
\end{equation*}
$$

the inversion being valid for Re $\mu>0$ and the assumptions made.
Putting $\mu^{\prime}=-\mu, \alpha^{\prime}=\alpha+\mu$, we obtain for $\operatorname{Re} \mu^{\prime}<0$

$$
x^{\alpha^{\alpha}+\mu^{\prime}} Z_{n}^{\alpha^{\alpha}+\mu^{\prime}}(x ; k)=\frac{\Gamma\left(k n+\alpha^{\prime}+\mu^{\prime}+1\right)}{\Gamma\left(k n+\alpha^{\prime}+1\right)} I^{\mu^{\prime}}\left[x^{\alpha^{\prime}} Z_{n}^{\alpha^{\prime}}(x ; k)\right]
$$

which is (4.1) with the letters α, μ accented. Ignoring the accents we can write

$$
\begin{equation*}
I^{\mu}\left[x^{\alpha} Z_{n}^{\alpha}(x ; k)\right]=\frac{\Gamma(k n+\alpha+1)}{\Gamma(k n+\alpha+\mu+1)} x^{\alpha+\mu} \boldsymbol{Z}_{n}^{\alpha+\mu}(x ; k) \tag{2.10}
\end{equation*}
$$

for $\operatorname{Re} \mu<0, \operatorname{Re} \alpha>-1$ and $\operatorname{Re}(\alpha+\mu)>-1$.
When $\operatorname{Re} \mu=0$, we write $I^{\mu}=I^{u+1} I^{-1}$ and the result easily follows; thus (2.7) is established for all complex μ with $\operatorname{Re} \mu>-\operatorname{Re}(1+\alpha)$.

Remark 1. When μ is a negative integer say $-m$, then (2.7) is written as

$$
\left(\frac{d}{d x}\right)^{m}\left[x^{\alpha} Z_{n}^{\alpha}(x ; k)\right]=\frac{\Gamma(k n+\alpha+1)}{\Gamma(k n+\alpha-m+1)} x^{\alpha-m} \boldsymbol{Z}_{n}^{\alpha-m}(x ; k)
$$

which can also be proved by direct differentiation provided $\operatorname{Re} \alpha>m-1$.

Remark 2. For $k=1$, (2.7) unifies the results ([3], 10.12(27)) and ([4], 13.1(49)) for Laguerre polynomials.
3. A singular integral equation. We show that the convolution equation

$$
\begin{equation*}
\int_{0}^{x}(x-t)^{\alpha} Z_{n}^{\alpha}(\lambda(x-t) ; k) f(t) d t=g(x) \tag{3.1}
\end{equation*}
$$

for $\operatorname{Re} \alpha>-1$ admits a locally integrable solution f given by

$$
\begin{equation*}
f(x)=\frac{n!}{\Gamma(k n+\alpha+1)} \int_{0}^{x}(x-t)^{l-\alpha-2} E_{k, l-\alpha-1}^{n}(\lambda(x-t))^{k} I^{-l} g(t) d t \tag{3.2}
\end{equation*}
$$

provided $I^{-l} g$ exists for $\operatorname{Re} l>\operatorname{Re} \alpha+1$ and is locally integrable in $(0, \delta), 0<x<\delta<\infty$.

The function

$$
\begin{equation*}
E_{a, b}^{c}(z)=\sum_{j=0}^{\infty} \frac{(c)_{j} z^{j}}{\Gamma(a j+b) j!} \quad \operatorname{Re} a>0 \tag{3.3}
\end{equation*}
$$

is a very special case of the generalized hypergeometric functions considered by Wright [16] and is also expressible as a Fox's H function [5]. On the other hand $E_{a, b}^{c}(z)$ is a most natural generalization of the Mittag-Leffler's function $E_{\alpha}(z)$ ([3], 18.1; [9]) and also contains the confluent hypergeometric function ${ }_{1} F_{1}(c ; d ; z)$ ([3], ch.VI), the Wiman's function $E_{a, b}(z)([3], 18.1(19))$ and several other fuctions as special cases. It is an entire function of order $(\operatorname{Re} \alpha)^{-1}$ and indeed has a number of properties which may be of independent interest. A fact of immediate interest to us is that the polynomials $Z_{n}^{\alpha}(x ; k)$ bear to $E_{a, b}^{c}(x)$ a relation which is analogous to that which the Laguerre polynomials $L_{n}^{\alpha}(x)$ bear to the confluent hypergeometric function ${ }_{1} F_{1}$; evidently

$$
\begin{equation*}
Z_{n}^{\alpha}(x ; k)=\frac{\Gamma(k n+\alpha+1)}{n!} E_{k, \alpha+1}^{-n}\left(x^{k}\right) \tag{3.4}
\end{equation*}
$$

As usual let

$$
\begin{equation*}
L[f(t)]=\widehat{f}(p)=\int_{0}^{\infty} e^{-p t} f(t) d t \quad \operatorname{Re} p>0 \tag{3.5}
\end{equation*}
$$

denote the Laplace transform of f. Then it is easily verified that for $\operatorname{Re} \lambda, \operatorname{Re} p>0$,

$$
\begin{align*}
& L\left[t^{b-1} E_{a, b}^{c}(\lambda t)^{a}\right]=p^{-b+a c}\left(p^{a}-\lambda^{a}\right)^{-c} \quad \operatorname{Re} b>0 \tag{3.6}\\
& L\left[t^{\alpha} Z_{n}^{\alpha}(\lambda t ; k)\right]=\frac{\Gamma(k n+\alpha+1)}{n!p^{k n+\alpha+1}}\left(p^{k}-\lambda^{k}\right)^{n}, \quad \operatorname{Re} \alpha>-1 \tag{3.7}
\end{align*}
$$

We next note a general result on the Laplace transform of the r-times repeated indefinite integral as well as the r th order derivative of a function; in fact, we observe that

$$
\begin{equation*}
p^{\mu} \hat{f}(p)=L\left[I^{-\mu} f(t)\right] \tag{3.8}
\end{equation*}
$$

for suitable f, complex μ and p with $\operatorname{Re} p>0$. Evidently both ([4], 4.1(8)) and ([4], 4.1(9)) are included in (3.8) as special cases.

We are now prepared to solve (3.1). From (3.1), (3.4) and using ([4], 4.1(20)), we have

$$
\begin{equation*}
\frac{\Gamma(k n+\alpha+1)}{n!}\left(p^{k}-\lambda^{k}\right)^{n} p^{-k n-\alpha-1} \hat{f}(p)=\widehat{g}(p) \tag{3.9}
\end{equation*}
$$

For $\operatorname{Re} l>\operatorname{Re}(\alpha+1)$, (3.9) can be written (compare with [1]) as

$$
\begin{equation*}
\hat{f}(p)=\frac{n!}{\Gamma(k n+\alpha+1)}\left\{\left(p^{k}-\lambda^{k}\right)^{-n} p^{-l+k n+\alpha+1}\right\}\left\{p^{l} \widehat{g}(p)\right\} \tag{3.10}
\end{equation*}
$$

and we finally get

$$
f(x)=\frac{n!}{\Gamma(k n+\alpha+1)} \int_{0}^{x}(x-t)^{l-\alpha-2} E_{k, l-\alpha-1}^{n}(\lambda(x-t))^{k} I^{-l} g(t) d t
$$

using ([4], 4.1(20)), (3.6) and (3.8).
4. A general class of generating functions. For arbitrary λ, we prove the generating relation

$$
\begin{equation*}
(1-t)^{-\lambda} E_{\hat{k}, \alpha+1}^{\lambda}\left(\frac{-x^{k} t}{1-t}\right)=\sum_{n=0}^{\infty} \frac{(\lambda)_{n} Z_{n}^{\alpha}(x ; k) t^{n}}{\Gamma(k n+\alpha+1)} \tag{4.1}
\end{equation*}
$$

From (2.1), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{(\lambda)_{n} Z_{n}^{\alpha}(x ; k) t^{n}}{\Gamma(k n+\alpha+1)} & =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{(-1)^{m}(\lambda)_{n} x^{k m} t^{n}}{\Gamma(k m+\alpha+1)(n-m)!m_{u}^{n}!} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^{m}(\lambda)_{n+m} x^{k m} t^{n+m}}{\Gamma(k m+\alpha+1) n!m!} \\
& =\sum_{m=0}^{\infty} \frac{(\lambda)_{m}\left(-x^{k} t\right)^{m}}{\Gamma(k m+\alpha+1) m!} \sum_{n=0}^{\infty} \frac{(\lambda+m)_{n} t^{n}}{n!} \\
& =(1-t)^{-\lambda} E_{\hat{k}, \alpha+1}^{\lambda}\left(\frac{-x^{k} t}{1-t}\right) .
\end{aligned}
$$

For $k=1, \lambda=1+\alpha$, (4.1) yields the well-known generating function ([3], 10.12(7)) for the Laguerre polynomials.

From (4.1) we obtain, on applying Taylor's theorem

$$
\begin{equation*}
\frac{(\lambda)_{n} Z_{n}^{\alpha}(x ; k)}{\Gamma(k n+\alpha+1)}=\frac{1}{2 \pi i} \int_{C}(1-t)^{-2} E_{k, \alpha+1}^{\lambda}\left(\frac{-x^{k} t}{1-t}\right) t^{-n-1} d t \tag{4.2}
\end{equation*}
$$

C being a closed contour surrounding $t=0$ and lying within the disk $|t|<1$. Putting $u=x^{k} / 1-t$,

$$
\begin{equation*}
x^{k \lambda-k} Z_{n}^{\alpha}(x ; k)=\frac{\Gamma(k n+\alpha+1)}{(\lambda)_{n} 2 \pi i} \int_{C^{\prime}} \frac{u^{n+\lambda-1} E_{\hat{k}, \alpha+1}\left(x^{k}-u\right) d u}{\left(u-x^{k}\right)^{n+1}} \tag{4.3}
\end{equation*}
$$

where C^{\prime} is a circle $\left|u-x^{k}\right|=\rho$ of small radius ρ.
Choosing $\lambda=1$, we have in terms of Wiman's function

$$
\begin{equation*}
Z_{n}^{\alpha}(x ; k)=\frac{\Gamma(k n+\alpha+1)}{n!2 \pi i} \int_{C^{\prime}} \frac{u^{n} E_{k, \alpha+1}\left(x^{k}-u\right) d u}{\left(u-x^{k}\right)^{n+1}} . \tag{4.4}
\end{equation*}
$$

Also evaluating the integral (4.3) by the Cauchy's residue theorem, we obtain for arbitrary λ with $\operatorname{Re} \lambda>0$,

$$
\begin{equation*}
Z_{n}^{\alpha}(x ; k)=\frac{\Gamma(k n+\alpha+1)}{(\lambda)_{n} n!} x^{k-k \lambda} \frac{\partial^{n}}{\partial u^{n}}\left[u^{\lambda+n-1} E_{k, \alpha+1}^{\lambda}\left(x^{k}-u\right)\right]_{u=x^{k}} \tag{4.5}
\end{equation*}
$$

Since $E_{1, b}^{b}(z)=(1 / \Gamma(b)) e^{z}$, for $\mathrm{k}=1$ and $\lambda=\alpha+1$, (4.5) reduces to the Rodrigues for the Laguerre polynomials.

I am grateful to Professor U. N. Singh for his encoragement and interest in this work.

References

1. R. G. Buschman, Convolution equations with generalized Laguerre polynomial kernels, SIAM Review 6 (1962), 166-167.
2. E. T. Copson, Theory of functions of a complex variable, Oxford University Press, 1961.
3. A. Erdélyi et al., Higher transcendental functions, vols. 1-3, McGraw-Hill, New York, 1953.
4.
5. Charles Fox, G and H functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc. 98 (1961), 395-429.
6. P. R. Khandekar, On a convolution transform involving generalized Laguerre polynomial as its kernel, J. Math. Pure Appl. (9) 44 (1965), 195-197.
7. Joseph D. E. Konhauser, Some properties of biorthogonal polynomials, J. Math. Anal. Appl. 11 (1965), 242-260.
8. , Biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 21 (1967), 303-314.
9. G. M. Mittag-Leffler, Sur la représentation analytique d'une branche uniforme d'une fonction monogène, Acta Math. 29 (1905), 101-182.
10. Tilak Raj Prabhakar, Two singular integral equations involving confluent hypergeometric functions, Proc. Cambridge Phil. Soc. 66 (1969), 71-89.
11. S. Preiser, An investigation of biorthogonal polynomials derivable from ordinary differential equations of the third order, J. Math. Anal. Appl. 4 (1962), 38-64.
12. K. C. Rusia, An integral equation involving generalized Laguerre polynomial, Math. Japon. 11 (1966), 15-18.
13. L. Spencer and Fano, Penetration and diffusion of X-rays, calculation of spatial distributions by polynomial expansion, J. Research, National Bureau of Standards 46 (1951), 446-461.
14. D. V. Widder, The inversion of a convolution transform whose kernel is a Laguerre polynomial, Amer. Math. Monthly 70 (1963), 291-293.
15. E. M. Wright, On the coefficients of power series having exponential singularities, J. London Math. Soc. 8 (1933), 71-79.
16. The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc. 46 (1940), 389-408.

Received January 13, 1970.
Ramjas College
University of Delhi
Delhi-7. (India)

