SYMPLECTIC BORDISM, STIEFEL-WHITNEY NUMBERS, AND A NOVIKOV RESOLUTION

Don Porter

> Using an Adams type spectral sequence due to Novikov, this paper presents a proof of:
> Theorem A. If M is a manifold representing a class in the symplectic bordism group $\Omega_{m}^{S p}, m \neq 8 k$, then M bounds an unoriented manifold.

The method of proof yields some further information; a more precise statement may be found in $\S 4$ below.

The complex Thom spectrum $M U$ defines a (generalized) cohomology theory U^{*}. The ground ring in this theory, $\Lambda_{*}=U^{*}(p t)$ is isomorphic to the complex bordism ring Ω_{*}^{U}, where Λ_{*} has nonpositive grading and Ω_{*}^{U} nonnegative. Novikov [8] computed the algebra A^{U} of operations for the theory $U^{*}, A^{U} \cong \Lambda^{*} \hat{\otimes} S$. Here $\hat{\otimes}$ denotes completed tensor product over Z (cf. [5]), and S is a Hopf algebra over Z generated by the set of operations s_{α}, one for each partition α of an integer $|\alpha|$. Novikov also constructed a spectral sequence

$$
E_{2}=\operatorname{Ext} A^{U}\left(U^{*}(X), \Lambda^{*}\right) \Rightarrow \pi_{*}(X)
$$

converging to the stable homotopy ring of a ring spectrum X (cf. [1]). We apply this theory to derive information about $\Omega_{*}^{S p}$, the homotopy of the symplectic Thom spectrum $M S p$. In section one the structure of $U^{*}(M S p)$ is investigated; section two describes a resolution for $U^{*}(M S p)$; section three computes the necessary part of the E_{2} term of the spectral sequence; section four completes the proof of Theorem A.

1. Recall that Λ^{*} is a polynomial ring over Z on generators $t_{i} \in$ $\Lambda_{-2 i}$. Also $H^{*}(B S p)$ is a polynomial ring over Z on the symplectic Pontrjagin classes $P_{i} \in H^{4 i}(B S p)$. It follows from the Thom isomorphism and the Atiyah-Hirzebruch spectral sequence that there is an isomorphism of Λ_{*}-modules

$$
F^{\prime}: \Lambda_{*} \hat{\otimes} H^{*}(B S p) \rightarrow U^{*}(M S p)
$$

given by

$$
F\left(1 \hat{\otimes} P_{i}\right)=(-1)^{i} s_{A_{2 i}}(u) .
$$

Here u denotes the Thom class in $U^{0}(M S p)$ and Δ_{n} is the partition of n consisting entirely of ones. The proof is similar to [3, p. 49].

In order to study the action of A^{U} on $U^{*}(M S p)$, let $E: A^{U} \rightarrow$ $U^{*}(M S p)$ be the map which evaluates operations on the Thom class. We will determine the "top dimension" of $E\left(s_{\alpha}\right)$. There is a natural transformation

$$
B: U^{*}(\cdot) \rightarrow H_{*}(M U) \hat{\otimes} H^{*}(\cdot)
$$

defined by the commutativity of the diagram

where i is defined by taking induced maps in integral cohomology. Note that on $U^{*}(p t)=\Lambda_{*}, B$ is just the Hurewicz map. Consider the Z basis for $H^{*}(B U)$ consisting of an element c_{α} for every partition α, where c_{α} is the α symmetric function of the Chern classes $c_{i}=c_{A_{i}}$ [cf. 2]. Similarly consider the Λ_{*}-basis for $U^{*}(B U)$ consisting of the Conner-Floyd characteristic classes $c f_{\alpha}$ [4]. Finally let $H_{*}(M U)$ be given as the integral polynomial ring on classes $a_{i} \in H_{2 i}(M U)$, and for $\omega=\left(i_{1}, \cdots, i_{n}\right)$ let $a^{\omega}=a_{i_{1}} \cdots \cdot a_{i_{n}}$.

Proposition 1. If $B: U^{*}(B U) \rightarrow H_{*}(M U) \hat{\otimes} H^{*}(B U)$ is the map defined above, then

$$
B\left(c f_{\Lambda_{k}}\right)=\sum a^{\omega} \hat{\otimes} c_{\Lambda_{k}} \cdot c_{\omega},
$$

where the sum is over all partitions ω of length at most k.

Proof. Suppose $g: C P(\infty) \rightarrow M U(1)$ is a homotopy equivalence representing a class $y \in U^{2}(C P(\infty))$ which generates $U^{*}(C P(\infty))$ as a polynomial ring over Λ_{*}. Similarly let $c \in H^{2}(C P(\infty))$ be a generator for $H^{*}(C P(\infty))$. Now if $b_{i} \in H^{2 i}(M U)$ is dual to $a_{i} \in H_{2 i}(M U)$, we have $g^{*}\left(b_{i}\right)=c^{i+1}$. So $B: U^{*}(C P(\infty)) \rightarrow H_{*}(M U) \hat{\otimes} H^{*}(C P(\infty))$ is given by

$$
B(y)=\sum_{i \geqq 0} a_{i} \hat{\otimes} c^{i+1}
$$

In the limit $C P(\infty)=B U(1) \rightarrow B U$, this is the statement of the proposition for $k=1$, since $c_{A_{1}} \cdot c_{(n)}=c_{(n+1)} \equiv\left(c_{\Lambda_{1}}\right)^{n+1}$ modulo the ideal generated by c_{2}, c_{3}, \cdots. This ideal restricts to zero in $B U(1)$, so $B\left(c f_{4_{1}}\right)$ is as claimed. The proposition now follows by an application of the splitting principle.

Let $f: B S p \rightarrow B U$ classify the universal symplectic bundle γ over $B S p$. Then we have immediately:

Proposition 2. The $\operatorname{map} B: U^{*}(B S p) \rightarrow H_{*}(M U) \hat{\otimes} H^{*}(B S p)$ is given by

$$
B\left(c f_{\Lambda_{k}}(\gamma)\right)=\sum a^{\omega} \hat{\otimes} f^{*}\left(c_{A_{k}} \cdot c_{\omega}\right)
$$

where the sum is over all partitions ω of length at most k.
Note that $f^{*}\left(c_{\alpha}\right)$ is given by replacing the odd elementary symmetric fuctions in the α symmetric function with zero, and the $2 i$ th elementary symmetric function with $(-1)^{i} P_{i}$. In particular,

$$
\begin{gathered}
f^{*}\left(c_{\Lambda_{2 k+1}}\right)=0 \\
f^{*}\left(c_{A_{2 k}}\right)=(-1)^{k} P_{k} .
\end{gathered}
$$

Next we consider the following commutative diagram:

$$
\begin{array}{cc}
U^{*}(M U) & \stackrel{E}{\longrightarrow} U^{*}(M S p) \stackrel{F}{\longleftrightarrow} \Lambda^{*} \hat{\otimes} H^{*}(B S p) \\
\Phi \mid & \Phi \mid \\
U^{*}(B U) \xrightarrow{U^{*}(f)} U^{*}(B S p) \xrightarrow{B} H_{*}(M U) \hat{\otimes} H^{*}(B S p)
\end{array}
$$

where Φ is the Thom isomorphism. By definition, $s_{\alpha}=\Phi\left(c f_{\alpha}\right)$, so we have $E\left(s_{\alpha}\right)=\left(c f_{\alpha}(\gamma)\right)$. Let K be the subring of $U^{*}(B U)$ generated by $\left\{c f_{A_{2 i}}\right\}$, so that $\left.U^{*}(f)\right|_{K}$ is an isomorphism of K with $U^{*}(B S p)$. Now since B is a monomorphism, it will determine the Hurewicz image of coefficients in Λ_{*} expressing $c f_{\alpha}(\gamma)$ in terms of $c f_{\Delta_{2 i}}(\gamma)$. But F was chosen so that $\Phi\left(c f_{\Lambda_{2 i}}(\gamma)\right)=s_{د_{2 i}}(u)=F\left(1 \hat{\otimes}(-1)^{i} P_{i}\right)$, thus we have the coefficients in $F^{-1}\left(E\left(s_{\alpha}\right)\right)$ determined recursively. The first step is given by

Proposition 3. Let $\rho: \Lambda_{*} \hat{\otimes} H^{*}(B S p) \rightarrow \Lambda_{0} \otimes H^{*}(B S p)$ be projection on the top dimension in Λ_{*}. Then

$$
\rho \circ F^{-1} \circ E\left(s_{\alpha}\right)=1 \otimes f^{*}\left(c_{\alpha}\right) .
$$

Proof. Let $\rho^{\prime}: H_{*}(M U) \widehat{\otimes} H^{*}(B S p) \rightarrow H_{0}(M U) \otimes H^{*}(B S p)$ be projection, then by Proposition 2

$$
\rho^{\prime} \circ B\left(c f_{A_{k}}(\gamma)\right)=1 \otimes f^{*}\left(c_{\Lambda_{k}}\right) .
$$

Thus $\rho^{\prime} \circ B\left(c f_{\alpha}(\gamma)\right)=1 \otimes f^{*}\left(c_{\alpha}\right)$. Now the Hurewicz map $\Lambda_{0} \rightarrow H_{0}(M U)$ is the identity, so $\rho^{\prime} \circ B=\rho \circ F^{-1} \circ \Phi$, and the proposition follows. This formula is an explicit expression for the top dimension of $E\left(s_{\alpha}\right)$.
2. From this information on the A^{U}-module structure of $U^{*}(M S p)$, we will construct a resolution for $U^{*}(M S p)$. Let κ_{α} be the unique
element of the subring K of $U^{*}(B U)$ such that $U^{*}(f)\left(\kappa_{\alpha}\right)=U^{*}(f)\left(c f_{\alpha}\right)$. Let $\mathscr{R}_{\alpha}=\Phi\left(\kappa_{\alpha}\right)$, so $\left(s_{\alpha}-\mathscr{R}_{\alpha}\right)$ is an element of the kernel of E. Let θ_{n} be the set of those partitions ω of n which cannot be written $\omega=(\alpha, \alpha)$, and let $\Theta=\bigcup_{n>0} \theta_{n}$.

Theorem 1. The set $\left\{\left(s_{\beta}-\mathscr{R}_{\beta}\right): \beta \in \Theta\right\}$ generates the kernel of E as a free Λ_{*}-module.

For the proof of this theorem, we require some data on symmetric functions. Recall the classes $c_{\omega} \in H^{*}(B U)$, and define $c^{\alpha}=c_{A_{i_{1}}} \cdots \cdot c_{A_{i_{n}}}$, if $\alpha=\left(i_{1}, \cdots, i_{n}\right)$. Introduce a linear ordering, $>$, on the set of partitions of k by taking the longest first and ordering lexicographically among partitions of the same length. For every partition ω of k, we define another partition $T(\omega)$ of k as follows: $T(\omega)=\left(r_{1}+\cdots+r_{q}\right.$, $r_{2}+\cdots+r_{q}, \cdots, r_{q}$, where q is the largest integer in ω, and r_{j} is the number of j 's in ω. Note that $\beta \notin \Theta$ if and only if $T(\beta)=2 \alpha$. Then the following lemmas are elementary.

Lemma 1. There are integers $m(\alpha, \beta)$ for every pair of partitions α, β of k such that $c^{\alpha}=\sum m(\alpha, \beta) c_{\beta}$. Moreover, $m(\beta, T(\beta))=1$ and $m(\alpha, \beta)=0$ for $\beta>T(\alpha)$.

Lemma 2. There are integers $\bar{m}(\beta, \alpha)$ for every pair of partitions α, β of k such that $c_{\beta}=\sum \bar{m}(\beta, \alpha) c^{\alpha}$. Moreover, $\bar{m}(\beta, T(\beta))=1$ and $\bar{m}(\beta, T(\gamma))=0$ for $\gamma>\beta$.

Now suppose for every partition α of $|\alpha|$ there is given an element $x_{\alpha} \in \Lambda_{2|\alpha|-d}$, so that $\sum x_{\alpha} s_{\alpha}$ is an operation of degree d in A^{U}, written in Novikov's notation [8]. Suppose that $E\left(\sum x_{\alpha} s_{\alpha}\right)=0$, and that $x_{\alpha}=$ 0 for $|\alpha|<k$. We write ρ_{k} for the projection $S \hat{\otimes} \Lambda_{*} \rightarrow S_{k} \otimes \Lambda_{*}$ onto elements of degree k in S. Now proceeding by induction on k, for the proof of Theorem 1 it will suffice to show

$$
\rho_{k}\left(\sum x_{\alpha} s_{\alpha}\right)=\rho_{k}\left(\sum_{\beta \in \Theta} y_{\beta}\left(s_{\beta}-\mathscr{R}_{\beta}\right)\right)
$$

for some unique coefficients $y_{\beta} \in \Lambda$.
First consider the case of odd k. For $|\alpha|=k$ odd, we have $\alpha \in \Theta$. From Proposition 2 we have that $\rho^{\prime} \circ B\left(c f_{\Lambda_{k}}(\gamma)\right)$ is zero for odd k. Thus $\kappa_{\alpha}=\sum_{|r|>k} y_{\alpha} c f_{\gamma}$, and $\rho_{k}\left(\mathscr{R}_{\alpha}\right)=0$, and $\rho_{k}\left(\sum x_{\alpha} s_{\alpha}\right)=\rho_{k}\left(\sum_{|\alpha|=k} x_{\alpha}\left(s_{\alpha}-\right.\right.$ $\left.\mathscr{R}_{\alpha}\right)$). By Proposition $3, k \geqq 1$, so this also provides the initial case for the induction, $k=1$.

For k even, since $E\left(\sum x_{\alpha} s_{\alpha}\right)=0$ we have

$$
\rho \circ F^{-1} \circ E\left(x_{\alpha} s_{\alpha}\right)=0,
$$

so

$$
\sum_{|\alpha|=k} x_{\alpha} \otimes f^{*}\left(c_{\alpha}\right)=0
$$

and

$$
\sum_{|\alpha|=k}(-1)^{|r|} x_{\alpha} \bar{m}(\alpha, 2 \gamma)=0
$$

for every γ with $2|\gamma|=k$. Now by Lemma 2, these equations may be solved uniquely for $x_{\alpha}, \alpha \notin \Theta$ in terms of $x_{\alpha}, \alpha \in \Theta$. Thus it suffices to prove that the matrix indexed by $\alpha, \beta \in \Theta_{k}$ whose (α, β) entry is the coefficient of s_{α} in $\left(s_{\beta}-\mathscr{R}_{\beta}\right)$ is invertible. Notice that Proposition 3 implies

$$
\rho_{|\beta|}\left(\mathscr{R}_{\beta}\right)=\sum_{2|\gamma|=|\beta|}(-1)^{|\gamma|} \bar{m}(\beta, 2 \gamma)\left(\sum_{\eta} m(2 \gamma, \eta) s_{\eta}\right) .
$$

Then by Lemmas 1 and 2, if the coefficient of s_{η} is \mathscr{R}_{β} is nonzero, we have $\eta<\beta$. This completes the proof of Theorem 1 .

We now construct the first stage of a resolution; the remaining stages may be obtained by a simple iteration. Let $C_{0}=A^{U}$ and let C_{1} be the free A^{u}-module generated by $\left\{G_{\beta}: \beta \in \Theta\right\}$. Define $d_{1}: C_{1} \rightarrow C_{0}$ by $d_{1}\left(G_{\beta}\right)=s_{\beta}-\mathscr{R}_{\beta}$. Then the following sequence is exact:

$$
0 \longleftarrow U^{*}(M S p) \stackrel{E}{\longleftarrow} C_{0} \stackrel{d_{1}}{\longleftarrow} C_{1} .
$$

There is an isomorphism Hom $A^{U}\left(A^{U}, \Lambda_{*}\right) \cong \Omega_{*}^{U}$ defined by evaluation on the Thom class followed by the Atiyah duality isomorphism. The gradings are nonnegative here, so we take Ω_{*}^{U} rather than Λ_{*}. Thus if $g_{\beta}: C_{1} \rightarrow \Lambda_{*}$ is the dual of G_{β}, we have

$$
\Omega_{*}^{\sigma} \cong \operatorname{Hom}_{A^{U}}\left(C_{0}, \Lambda_{*}\right) \xrightarrow{d_{1}} \operatorname{Hom}_{A^{U}}\left(C_{1}, \Lambda_{*}\right)
$$

given by

$$
d_{1}^{*}(y)=\sum_{\beta \in \theta}\left(s_{\beta}-\mathscr{R}_{\beta}\right)(y) g_{\beta}
$$

3. At this point we may compute

$$
E_{2}^{0, *}=\operatorname{Ext}_{A U}^{0, *}\left(U^{*}(M S p), \Lambda_{*}\right)=\operatorname{ker} d_{1}^{*}
$$

Lemma 3. Let $X \in \Omega_{2 n}^{\sigma}$ be dual to $z \in \Lambda_{-2 n}$. Then $d_{1}^{*}(X)=0$ if and only if $\left(s_{\omega}-\mathscr{R}_{\omega}\right)(z)=0$ for all $\omega \in \Theta_{n}$.

Proof. Suppose there is a $\beta \in \theta,|\beta| \neq n$, such that $\left(s_{\beta}-\mathscr{R}_{\beta}\right)(z) \neq 0$.

It will suffice to find $\gamma \in \Theta_{n}$ with $\left(s_{\gamma}-\mathscr{R}_{\beta}\right)(z) \neq 0$. Let $\left(s_{\beta}-\mathscr{R}_{\beta}\right)(z)=$ $y \in \Lambda_{-2 k}, y \neq 0, k \neq 0$. Then there is an $\alpha,|\alpha|=k$, such that $s_{\alpha}(y) \neq$ $0 \in \Lambda_{0}$. By Theorem 1, we may express $s_{\alpha}\left(s_{\beta}-\mathscr{R}_{\beta}\right)$ in terms of $\left\{s_{\gamma}-\right.$ $\left.\mathscr{R}_{r}: \gamma \in \mathcal{O}\right\}$, so there is a $\gamma \in \Theta_{n}$ with $\left(s_{r}-\mathscr{R}_{r}\right)(z) \neq 0$.

Theorem 2. $E_{2}^{0, *}$ is a polynomial ring over Z with one generator X_{i} in every dimension $4 i \geqq 0$.

Proof. Since $E_{2}^{0, *}$ is a subring of Ω_{*}^{U} given as the kernel of a map of free abelian groups, it suffices to count dimensions. The theorem now follows from Lemma 3.

It is interesting to note that Lemma 3 together with Proposition 3 gives an explicit criterion for the elements $X_{i} \in \Omega_{4 i}^{J}$. These elements X_{i} are polynomial generators for $\Omega_{*}^{S p} \otimes Q$.
4. The proof of Theorem A requires two further facts.

Proposition 6. For $X \in E_{2}^{0, *}$, the image $[X]_{2}$ of X in the unoriented bordism ring \mathfrak{n}_{*} is a fourth power.

Proof. It will suffice to show that the dual Stiefel-Whitney numbers $\bar{w}_{\alpha}(X)$ vanish for $\alpha \neq(\gamma, \gamma, \gamma, \gamma)$. Recall [10, p. 256] that the ω symmetric function, $\omega \in \theta$, is contained in the ideal generated by 2 and the odd elementary symmetric functions. Thus $\rho_{|\omega|}\left(\mathscr{R}_{\omega}\right)$ is divisible by 2 , and $s_{\omega}(z) \equiv 0(\bmod 2)$ for $\omega \in \Theta_{2 n}$, and z the dual of $X \in \operatorname{ker} d_{1}^{*}$ in dimension $4 n$. But for such X and $\omega, s_{\omega}(z)=c_{\omega}(\nu X)$, the normal Chern numbers. These reduce mod 2 to the dual StiefelWhitney numbers.

$$
c_{\omega}(\nu X) \equiv \bar{w}_{\omega, \omega}(X) \bmod 2,
$$

so for $\omega \in \Theta_{2 n}, \bar{w}_{\omega, \omega}(X)=0$. Since $X \in \Omega_{*}^{U},[X]_{2}$ is a square [7], so $\bar{w}_{\alpha}(X)=0$ for $\alpha \neq(\omega, \omega)$. The only possible α for which $\bar{w}_{\alpha}(X) \neq 0$ is thus $\alpha=(\gamma, \gamma, \gamma, \gamma)$.

Novikov shows that $\operatorname{Ext}_{A V}^{s, *}\left(U^{*}(Y), \Lambda_{*}\right)$ is a torsion group for $s>0$, for any Y [8]. Thus integral multiples of the X_{i} are generators for $\Omega_{4 i}^{S p}$. Moreover the E_{2} term contains only 2 -torsion, as may be seen from [6, 8], so the multipliers are all powers of two. Recall the generators $t_{i} \in \Omega_{2 i}^{U}$, and let $t^{\omega}=t_{i_{1}} \cdots \cdot t_{i_{n}}$ for $\omega=\left(i_{1}, \cdots, i_{n}\right)$.

Proposition 7. Let X_{i} be as in Theorem 2, with $X_{i}=\sum a(\omega) t^{\omega}$ for integer coefficients $a(\omega)$. Suppose $\left[X_{i}\right]_{2} \neq 0$. Then there is an $\omega=$ $(2 \alpha, 2 \alpha)$ with $\alpha(\omega) \equiv 1(\bmod 2)$.

Proof. By Proposition 6 there are $Y, Y^{\prime} \in \Omega_{*}^{U}$ such that $X_{i}=$ $Y^{2}+2 Y^{\prime}$, since $\left[Y^{2}\right]_{2}$ is a fourth power, by [7]. Thus $a(\omega) \equiv 0(\bmod$ 2) unless $\omega=(\beta, \beta)$. However if β contains an odd number the symplectic Pontrjagin numbers of t^{β} are all zero for dimensional reasons. Thus if $a(2 \alpha, 2 \alpha) \equiv 0(\bmod 2)$ for all α, the Stiefel-Whitney numbers of X_{i} vanish, and $\left[X_{i}\right]_{2}=0$.

Theorem 3. Suppose $X \in \Omega_{*}^{S p}$ and $[X]_{2} \neq 0$. Then X is in the subring of $\Omega_{*}^{S p}$ generated by those $X_{2 i} \in E_{2}^{0,8 i} \subset \Omega_{8 i}^{U}$ on which all differentials in the spectral sequence vanish.

Proof. Since $|(2 \alpha, 2 \alpha)|=4|\alpha|$, it follows from Proposition 7 that $\left[X_{i}\right]_{2} \neq 0$ implies i is even. The rest of the statement follows immediately from the existence of the spectral sequence.

Now Theorem A is just a simplification of Theorem 3. It should be noted that the map $\Omega_{*}^{S p} \rightarrow \mathfrak{N}_{*}$ factors thru Ω_{*}^{U}, so any torsion element of $\Omega_{*}^{S p}$ bounds in \Re_{*}. Moreover $\Omega_{*}^{S p} \otimes Q$ is a polynomial algebra on $X_{i} \in \Omega_{4 i}^{S p} \otimes Q$, so for $X \in \Omega_{n}^{S p},[X]_{2}=0$ unless $n=4 k$. Thus the content of Theorem A is that $\left[\Omega_{8 k+4}^{S p}\right]_{2}=0$.

The author has been informed of some recent work of E. E. Floyd which overlaps considerably with the above results. Using very different methods, Floyd gives a more refined upper bound for the image of $\Omega_{*}^{S p}$ in \mathfrak{R}_{*}.

This work formed part of the author's doctoral thesis at Northwestern University, under the direction of Professor Mark Mahowald. A summary appeared as [9].

References

1. J. F. Adams, Lectures on generalized cohomology, in category theory, homology theory and their applications III, Springer, Berlin, 1969.
2. , S. P. Novikov's work on complex cobordism, lecture notes, University of Chicago, 1967.
3. P. E. Conner, and E. E. Floyd, Differentiable periodic maps, Springer, Berlin, 1964.
4. - The relation of cobordism to k-theories, Springer, Berlin, 1966.
5. P. S. Landweber, Cobordism operations and Hopf algebras, Trans. Amer. Math. Soc. 129 (1967), 94-110.
6. J. W. Milnor, On the cobordism ring Ω^{*} and a complex analogue, Amer. J. Math. 82 (1960), 505-521.
7. - On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223-230.
8. S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism
theory, Izv. Akad. Navk SSSR (Ser. Mat.) 31 (1967), 855-956 (Math. USSR-Izv. 1 (1967), 827-913).
9. D. D. Porter, Novikov resolutions for symplectic cobordism, Notices Amer. Math. Soc. 17 (1970), 150-151.
10. R. E. Stong, Notes on cobordism theory, Princeton, 1968.

Received February 17, 1970.
State University of New York at Albany

