SYMPLECTIC BORDISM, STIEFEL-WHITNEY NUMBERS, AND A NOVIKOV RESOLUTION

DON PORTER

Using an Adams type spectral sequence due to Novikov, this paper presents a proof of:

THEOREM A. If M is a manifold representing a class in the symplectic bordism group Ω_m^{Sp} , $m \neq 8k$, then M bounds an unoriented manifold.

The method of proof yields some further information; a more precise statement may be found in §4 below.

The complex Thom spectrum MU defines a (generalized) cohomology theory U^* . The ground ring in this theory, $\Lambda_* = U^*(pt)$ is isomorphic to the complex bordism ring Ω^v_* , where Λ_* has nonpositive grading and Ω^v_* nonnegative. Novikov [8] computed the algebra A^v of operations for the theory $U^*, A^v \cong \Lambda^* \otimes S$. Here \otimes denotes completed tensor product over Z (cf. [5]), and S is a Hopf algebra over Z generated by the set of operations s_{α} , one for each partition α of an integer $|\alpha|$. Novikov also constructed a spectral sequence

$$E_2 = \operatorname{Ext} A^{\scriptscriptstyle U}(U^*(X), \Lambda^*) \Longrightarrow \pi_*(X)$$

converging to the stable homotopy ring of a ring spectrum X (cf. [1]). We apply this theory to derive information about $\Omega_*^{s_p}$, the homotopy of the symplectic Thom spectrum MSp. In section one the structure of $U^*(MSp)$ is investigated; section two describes a resolution for $U^*(MSp)$; section three computes the necessary part of the E_2 term of the spectral sequence; section four completes the proof of Theorem A.

1. Recall that Λ^* is a polynomial ring over Z on generators $t_i \in \Lambda_{-2i}$. Also $H^*(BSp)$ is a polynomial ring over Z on the symplectic Pontrjagin classes $P_i \in H^{*i}(BSp)$. It follows from the Thom isomorphism and the Atiyah-Hirzebruch spectral sequence that there is an isomorphism of Λ_* -modules

$$F: \Lambda_* \widehat{\otimes} H^*(BSp) \to U^*(MSp)$$

given by

$$F(1 \bigotimes P_i) = (-1)^i s_{A_{2,i}}(u)$$
.

Here u denotes the Thom class in $U^{\circ}(MSp)$ and \mathcal{A}_n is the partition of n consisting entirely of ones. The proof is similar to [3, p. 49]. In order to study the action of A^v on $U^*(MSp)$, let $E: A^v \to U^*(MSp)$ be the map which evaluates operations on the Thom class. We will determine the "top dimension" of $E(s_{\alpha})$. There is a natural transformation

$$B: U^*(\cdot) \to H_*(MU) \otimes H^*(\cdot)$$

defined by the commutativity of the diagram

$$U^{*}(X) \xrightarrow{B} H_{*}(MU) \widehat{\otimes} H^{*}(X)$$

$$\downarrow i \qquad \qquad \uparrow \cong$$

$$\operatorname{Hom} \left(H^{*}(MU), H^{*}(X)\right)$$

where *i* is defined by taking induced maps in integral cohomology. Note that on $U^*(pt) = \Lambda_*$, *B* is just the Hurewicz map. Consider the *Z* basis for $H^*(BU)$ consisting of an element c_{α} for every partition α , where c_{α} is the α symmetric function of the Chern classes $c_i = c_{A_i}$ [cf. 2]. Similarly consider the Λ_* -basis for $U^*(BU)$ consisting of the Conner-Floyd characteristic classes cf_{α} [4]. Finally let $H_*(MU)$ be given as the integral polynomial ring on classes $a_i \in H_{2i}(MU)$, and for $\omega = (i_1, \dots, i_n)$ let $a^{\omega} = a_{i_1} \dots a_{i_n}$.

PROPOSITION 1. If B: $U^*(BU) \to H_*(MU) \otimes H^*(BU)$ is the map defined above, then

$$B(cf_{{\scriptscriptstyle {\cal I}}_k})=\sum a^{\scriptscriptstyle \omega}\,\widehat{\otimes}\, c_{{\scriptscriptstyle {\cal I}}_k}\!\cdot\! c_{\scriptscriptstyle \omega}$$
 ,

where the sum is over all partitions ω of length at most k.

Proof. Suppose $g: CP(\infty) \to MU(1)$ is a homotopy equivalence representing a class $y \in U^2(CP(\infty))$ which generates $U^*(CP(\infty))$ as a polynomial ring over Λ_* . Similarly let $c \in H^2(CP(\infty))$ be a generator for $H^*(CP(\infty))$. Now if $b_i \in H^{2i}(MU)$ is dual to $a_i \in H_{2i}(MU)$, we have $g^*(b_i) = c^{i+1}$. So $B: U^*(CP(\infty)) \to H_*(MU) \otimes H^*(CP(\infty))$ is given by

$$B(y) = \sum\limits_{i \geq 0} a_i \, \widehat{\otimes} \, c^{i+1}$$
 .

In the limit $CP(\infty) = BU(1) \rightarrow BU$, this is the statement of the proposition for k = 1, since $c_{d_1} \cdot c_{(n)} = c_{(n+1)} \equiv (c_{d_1})^{n+1}$ modulo the ideal generated by c_2, c_3, \cdots . This ideal restricts to zero in BU(1), so $B(cf_{d_1})$ is as claimed. The proposition now follows by an application of the splitting principle.

Let $f: BSp \rightarrow BU$ classify the universal symplectic bundle γ over BSp. Then we have immediately:

PROPOSITION 2. The map $B: U^*(BSp) \to H_*(MU) \otimes H^*(BSp)$ is given by

$$B(cf_{{\scriptscriptstyle {\mathcal{A}}}_k}(\gamma)) = \sum a^{\omega} \widehat{\otimes} f^*(c_{{\scriptscriptstyle {\mathcal{A}}}_k} \cdot c_{\omega})$$

where the sum is over all partitions ω of length at most k.

Note that $f^*(c_{\alpha})$ is given by replacing the odd elementary symmetric functions in the α symmetric function with zero, and the 2*i*th elementary symmetric function with $(-1)^i P_i$. In particular,

$$f^*(c_{{\scriptscriptstyle {\cal I}}_{2k+1}}) = 0 \ f^*(c_{{\scriptscriptstyle {\cal I}}_{2k}}) = (-1)^k P_k \; .$$

Next we consider the following commutative diagram:

where Φ is the Thom isomorphism. By definition, $s_{\alpha} = \Phi(cf_{\alpha})$, so we have $E(s_{\alpha}) = (cf_{\alpha}(\gamma))$. Let K be the subring of $U^*(BU)$ generated by $\{cf_{J_{2i}}\}$, so that $U^*(f)|_{K}$ is an isomorphism of K with $U^*(BSp)$. Now since B is a monomorphism, it will determine the Hurewicz image of coefficients in Λ_* expressing $cf_{\alpha}(\gamma)$ in terms of $cf_{J_{2i}}(\gamma)$. But F was chosen so that $\Phi(cf_{J_{2i}}(\gamma)) = s_{J_{2i}}(u) = F(1 \otimes (-1)^i P_i)$, thus we have the coefficients in $F^{-1}(E(s_{\alpha}))$ determined recursively. The first step is given by

PROPOSITION 3. Let $\rho: \Lambda_* \otimes H^*(BSp) \to \Lambda_0 \otimes H^*(BSp)$ be projection on the top dimension in Λ_* . Then

$$ho\circ F^{-1}\circ E(s_lpha)=1\otimes f^*(c_lpha)$$
 .

Proof. Let $\rho': H_*(MU) \otimes H^*(BSp) \to H_0(MU) \otimes H^*(BSp)$ be projection, then by Proposition 2

$$ho' \circ B(cf_{{\scriptscriptstyle\mathcal{A}}_k}(\gamma)) = 1 \bigotimes f^*(c_{{\scriptscriptstyle\mathcal{A}}_k})$$
 .

Thus $\rho' \circ B(cf_{\alpha}(\gamma)) = 1 \otimes f^*(c_{\alpha})$. Now the Hurewicz map $\Lambda_0 \to H_0(MU)$ is the identity, so $\rho' \circ B = \rho \circ F^{-1} \circ \Phi$, and the proposition follows. This formula is an explicit expression for the top dimension of $E(s_{\alpha})$.

2. From this information on the A^{U} -module structure of $U^{*}(MSp)$, we will construct a resolution for $U^{*}(MSp)$. Let κ_{α} be the unique

element of the subring K of $U^*(BU)$ such that $U^*(f)(\kappa_{\alpha}) = U^*(f)(cf_{\alpha})$. Let $\mathscr{R}_{\alpha} = \varPhi(\kappa_{\alpha})$, so $(s_{\alpha} - \mathscr{R}_{\alpha})$ is an element of the kernel of E. Let Θ_n be the set of those partitions ω of n which cannot be written $\omega = (\alpha, \alpha)$, and let $\Theta = \bigcup_{n>0} \Theta_n$.

THEOREM 1. The set $\{(s_{\beta} - \mathscr{R}_{\beta}): \beta \in \Theta\}$ generates the kernel of E as a free Λ_* -module.

For the proof of this theorem, we require some data on symmetric functions. Recall the classes $c_{\omega} \in H^*(BU)$, and define $c^{\alpha} = c_{d_{i_1}} \cdots c_{d_{i_n}}$, if $\alpha = (i_1, \dots, i_n)$. Introduce a linear ordering, >, on the set of partitions of k by taking the longest first and ordering lexicographically among partitions of the same length. For every partition ω of k, we define another partition $T(\omega)$ of k as follows: $T(\omega) = (r_1 + \cdots + r_q, r_2 + \cdots + r_q, \dots, r_q)$, where q is the largest integer in ω , and r_j is the number of j's in ω . Note that $\beta \notin \Theta$ if and only if $T(\beta) = 2\alpha$. Then the following lemmas are elementary.

LEMMA 1. There are integers $m(\alpha, \beta)$ for every pair of partitions α, β of k such that $c^{\alpha} = \sum m(\alpha, \beta)c_{\beta}$. Moreover, $m(\beta, T(\beta)) = 1$ and $m(\alpha, \beta) = 0$ for $\beta > T(\alpha)$.

LEMMA 2. There are integers $\overline{m}(\beta, \alpha)$ for every pair of partitions α, β of k such that $c_{\beta} = \sum \overline{m}(\beta, \alpha)c^{\alpha}$. Moreover, $\overline{m}(\beta, T(\beta)) = 1$ and $\overline{m}(\beta, T(\gamma)) = 0$ for $\gamma > \beta$.

Now suppose for every partition α of $|\alpha|$ there is given an element $x_{\alpha} \in A_{2|\alpha|-d}$, so that $\sum x_{\alpha}s_{\alpha}$ is an operation of degree d in A^{U} , written in Novikov's notation [8]. Suppose that $E(\sum x_{\alpha}s_{\alpha}) = 0$, and that $x_{\alpha} = 0$ for $|\alpha| < k$. We write ρ_{k} for the projection $S \otimes A_{*} \to S_{k} \otimes A_{*}$ onto elements of degree k in S. Now proceeding by induction on k, for the proof of Theorem 1 it will suffice to show

$$ho_k(\sum x_{lpha} s_{lpha}) =
ho_k\left(\sum_{eta \in \Theta} y_{eta}(s_{eta} - \mathscr{R}_{eta})
ight)$$

for some unique coefficients $y_{\beta} \in \Lambda$.

First consider the case of odd k. For $|\alpha| = k$ odd, we have $\alpha \in \Theta$. From Proposition 2 we have that $\rho' \circ B(cf_{d_k}(\gamma))$ is zero for odd k. Thus $\kappa_{\alpha} = \sum_{|\gamma|>k} y_{\alpha} cf_{\gamma}$, and $\rho_k(\mathscr{R}_{\alpha}) = 0$, and $\rho_k(\sum x_{\alpha} s_{\alpha}) = \rho_k(\sum_{|\alpha|=k} x_{\alpha}(s_{\alpha} - \mathscr{R}_{\alpha}))$. By Proposition 3, $k \geq 1$, so this also provides the initial case for the induction, k = 1.

For k even, since $E(\sum x_{\alpha}s_{\alpha}) = 0$ we have

$$\rho \circ F^{-1} \circ E(x_{\alpha} s_{\alpha}) = 0 ,$$

 \mathbf{SO}

$$\sum\limits_{|lpha|=k} x_lpha \bigotimes f^*(c_lpha) = 0$$
 ,

and

$$\sum_{|\alpha|=k} (-1)^{|\gamma|} x_{\alpha} \overline{m}(\alpha, 2\gamma) = 0$$

for every γ with $2|\gamma| = k$. Now by Lemma 2, these equations may be solved uniquely for $x_{\alpha}, \alpha \notin \Theta$ in terms of $x_{\alpha}, \alpha \in \Theta$. Thus it suffices to prove that the matrix indexed by $\alpha, \beta \in \Theta_k$ whose (α, β) entry is the coefficient of s_{α} in $(s_{\beta} - \mathscr{R}_{\beta})$ is invertible. Notice that Proposition 3 implies

$$ho_{\scriptscriptstyle |\beta|}(\mathscr{R}_{\scriptscriptstyle eta}) = \sum\limits_{2\mid \gamma\mid =\mid \beta\mid} (-1)^{\mid \gamma\mid} ar{m}(eta,\,2\gamma) \Bigl(\sum\limits_{\eta} m(2\gamma,\,\eta) s_{\eta}\Bigr)$$

Then by Lemmas 1 and 2, if the coefficient of s_{η} is \mathscr{R}_{β} is nonzero, we have $\eta < \beta$. This completes the proof of Theorem 1.

We now construct the first stage of a resolution; the remaining stages may be obtained by a simple iteration. Let $C_0 = A^{U}$ and let C_1 be the free A^{u} -module generated by $\{G_{\beta}: \beta \in \Theta\}$. Define $d_1: C_1 \to C_0$ by $d_1(G_{\beta}) = s_{\beta} - \mathscr{R}_{\beta}$. Then the following sequence is exact:

$$0 \longleftarrow U^*(MSp) \xleftarrow{E} C_{\scriptscriptstyle 0} \xleftarrow{d_1} C_{\scriptscriptstyle 1}$$
 .

There is an isomorphism Hom $A^{v}(A^{v}, \Lambda_{*}) \cong \Omega_{*}^{v}$ defined by evaluation on the Thom class followed by the Atiyah duality isomorphism. The gradings are nonnegative here, so we take Ω_{*}^{v} rather than Λ_{*} . Thus if $g_{\beta}: C_{1} \to \Lambda_{*}$ is the dual of G_{β} , we have

$$\mathcal{Q}^{\scriptscriptstyle U}_*\cong\operatorname{Hom}_{_{A^U}}(C_{\scriptscriptstyle 0},\, \varLambda_*) \overset{d_1}{\longrightarrow}\operatorname{Hom}_{_{A^U}}(C_{\scriptscriptstyle 1},\, \varLambda_*)$$

given by

$$d_{\scriptscriptstyle 1}^*(y) = \sum\limits_{\scriptscriptstyleeta \,\in\, \Theta} \, (s_{\scriptscriptstyleeta} - \mathscr{R}_{\scriptscriptstyleeta})(y) g_{\scriptscriptstyleeta}$$
 .

3. At this point we may compute

$$E_{2}^{_{0},*}=\mathrm{Ext}_{_{\mathcal{A}}U}^{^{_{0}},*}(U^{*}(MSp),\, arLambda_{*})=\ker\, d_{_{1}}^{*}$$
 .

LEMMA 3. Let $X \in \Omega_{2n}^{\sigma}$ be dual to $z \in \Lambda_{-2n}$. Then $d_1^*(X) = 0$ if and only if $(s_{\omega} - \mathscr{R}_{\omega})(z) = 0$ for all $\omega \in \Theta_n$.

Proof. Suppose there is a $\beta \in \Theta$, $|\beta| \neq n$, such that $(s_{\beta} - \mathscr{R}_{\beta})(z) \neq 0$.

It will suffice to find $\gamma \in \Theta_n$ with $(s_{\gamma} - \mathscr{R}_i)(z) \neq 0$. Let $(s_{\beta} - \mathscr{R}_{\beta})(z) = y \in \Lambda_{-2k}, y \neq 0, k \neq 0$. Then there is an $\alpha, |\alpha| = k$, such that $s_{\alpha}(y) \neq 0 \in \Lambda_0$. By Theorem 1, we may express $s_{\alpha}(s_{\beta} - \mathscr{R}_{\beta})$ in terms of $\{s_{\gamma} - \mathscr{R}_i: \gamma \in \Theta\}$, so there is a $\gamma \in \Theta_n$ with $(s_{\gamma} - \mathscr{R}_i)(z) \neq 0$.

THEOREM 2. $E_2^{0,*}$ is a polynomial ring over Z with one generator X_i in every dimension $4i \ge 0$.

Proof. Since $E_2^{0,*}$ is a subring of Ω_*^{U} given as the kernel of a map of free abelian groups, it suffices to count dimensions. The theorem now follows from Lemma 3.

It is interesting to note that Lemma 3 together with Proposition 3 gives an explicit criterion for the elements $X_i \in \Omega_{4i}^{r}$. These elements X_i are polynomial generators for $\Omega_*^{sp} \otimes Q$.

4. The proof of Theorem A requires two further facts.

PROPOSITION 6. For $X \in E_2^{0,*}$, the image $[X]_2$ of X in the unoriented bordism ring \mathfrak{N}_* is a fourth power.

Proof. It will suffice to show that the dual Stiefel—Whitney numbers $\bar{w}_{\alpha}(X)$ vanish for $\alpha \neq (\gamma, \gamma, \gamma, \gamma)$. Recall [10, p. 256] that the ω symmetric function, $\omega \in \Theta$, is contained in the ideal generated by 2 and the odd elementary symmetric functions. Thus $\rho_{|\omega|}(\mathscr{R}_{\omega})$ is divisible by 2, and $s_{\omega}(z) \equiv 0 \pmod{2}$ for $\omega \in \Theta_{2n}$, and z the dual of $X \in \ker d_1^*$ in dimension 4n. But for such X and ω , $s_{\omega}(z) = c_{\omega}(\nu X)$, the normal Chern numbers. These reduce mod 2 to the dual Stiefel—Whitney numbers.

$$c_{\omega}(\boldsymbol{\nu}X) \equiv \overline{w}_{\omega,\omega}(X) \mod 2$$

so for $\omega \in \Theta_{2n}$, $\overline{w}_{\omega,\omega}(X) = 0$. Since $X \in \Omega_*^{\mathcal{Y}}$, $[X]_2$ is a square [7], so $\overline{w}_{\alpha}(X) = 0$ for $\alpha \neq (\omega, \omega)$. The only possible α for which $\overline{w}_{\alpha}(X) \neq 0$ is thus $\alpha = (\gamma, \gamma, \gamma, \gamma)$.

Novikov shows that $\operatorname{Ext}_{A^U}^{s,*}(U^*(Y), \Lambda_*)$ is a torsion group for s > 0, for any Y [8]. Thus integral multiples of the X_i are generators for Ω_{4i}^{Sp} . Moreover the E_2 term contains only 2-torsion, as may be seen from [6, 8], so the multipliers are all powers of two. Recall the generators $t_i \in \Omega_{2i}^{\sigma}$, and let $t^{\omega} = t_{i_1} \cdots t_{i_n}$ for $\omega = (i_1, \cdots, i_n)$.

PROPOSITION 7. Let X_i be as in Theorem 2, with $X_i = \sum a(\omega)t^{\omega}$ for integer coefficients $a(\omega)$. Suppose $[X_i]_2 \neq 0$. Then there is an $\omega = (2\alpha, 2\alpha)$ with $a(\omega) \equiv 1 \pmod{2}$.

Proof. By Proposition 6 there are $Y, Y' \in \Omega_*^{\mathcal{T}}$ such that $X_i = Y^2 + 2Y'$, since $[Y^2]_2$ is a fourth power, by [7]. Thus $a(\omega) \equiv 0 \pmod{2}$ unless $\omega = (\beta, \beta)$. However if β contains an odd number the symplectic Pontrjagin numbers of t^{β} are all zero for dimensional reasons. Thus if $a(2\alpha, 2\alpha) \equiv 0 \pmod{2}$ for all α , the Stiefel—Whitney numbers of X_i vanish, and $[X_i]_2 = 0$.

THEOREM 3. Suppose $X \in \Omega_*^{S_p}$ and $[X]_2 \neq 0$. Then X is in the subring of $\Omega_*^{S_p}$ generated by those $X_{2i} \in E_2^{0,8i} \subset \Omega_{8i}^{T}$ on which all differentials in the spectral sequence vanish.

Proof. Since $|(2\alpha, 2\alpha)| = 4|\alpha|$, it follows from Proposition 7 that $[X_i]_2 \neq 0$ implies *i* is even. The rest of the statement follows immediately from the existence of the spectral sequence.

Now Theorem A is just a simplification of Theorem 3. It should be noted that the map $\Omega_*^{s_p} \to \mathfrak{N}_*$ factors thru Ω_*^{σ} , so any torsion element of $\Omega_*^{s_p}$ bounds in \mathfrak{N}_* . Moreover $\Omega_*^{s_p} \otimes Q$ is a polynomial algebra on $X_i \in \Omega_{4i}^{s_p} \otimes Q$, so for $X \in \Omega_n^{s_p}$, $[X]_2 = 0$ unless n = 4k. Thus the content of Theorem A is that $[\Omega_{8k+4}^{s_p}]_2 = 0$.

The author has been informed of some recent work of E. E. Floyd which overlaps considerably with the above results. Using very different methods, Floyd gives a more refined upper bound for the image of $\Omega_*^{S_p}$ in \mathfrak{N}_* .

This work formed part of the author's doctoral thesis at Northwestern University, under the direction of Professor Mark Mahowald. A summary appeared as [9].

References

1. J. F. Adams, Lectures on generalized cohomology, in category theory, homology theory and their applications III, Springer, Berlin, 1969.

^{2.} _____, S. P. Novikov's work on complex cobordism, lecture notes, University of Chicago, 1967.

^{3.} P. E. Conner, and E. E. Floyd, *Differentiable periodic maps*, Springer, Berlin, 1964.

^{4.} ____, The relation of cobordism to k-theories, Springer, Berlin, 1966.

^{5.} P. S. Landweber, *Cobordism operations and Hopf algebras*, Trans. Amer. Math. Soc. **129** (1967), 94-110.

^{6.} J. W. Milnor, On the cobordism ring Ω^* and a complex analogue, Amer. J. Math. 82 (1960), 505-521.

^{7.} _____, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223-230.

^{8.} S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism

DON PORTER

theory, Izv. Akad. Navk SSSR (Ser. Mat.) **31** (1967), 855-956 (Math. USSR-Izv. **1** (1967), 827-913).

9. D. D. Porter, Novikov resolutions for symplectic cobordism, Notices Amer. Math. Soc. 17 (1970), 150-151.

10. R. E. Stong, Notes on cobordism theory, Princeton, 1968.

Received February 17, 1970.

STATE UNIVERSITY OF NEW YORK AT ALBANY