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SYMPLECTIC BORDISM, STIEFEL-WHITNEY NUMBERS,
AND A NOVIKOV RESOLUTION

DON PORTER

Using an Adams type spectral sequence due to Novikov,
this paper presents a proof of:

THEOREM A. If M is a manifold representing a class in
the symplectic bordism group Ω^f m Ψ Sky then M bounds an
unoriented manifold.

The method of proof yields some further information; a more
precise statement may be found in §4 below.

The complex Thorn spectrum MU defines a (generalized) cohomo-
logy theory Z7*. The ground ring in this theory, Λ* = U*(pt) is
isomorphic to the complex bordism ring Ωξ, where Λ* has nonpositive
grading and ΩZ nonnegative. Novikov [8] computed the algebra Au

of operations for the theory Z7*, AF = Λ* & S. Here 0 denotes com-
pleted tensor product over Z (cf. [5]), and S is a Hopf algebra over
Z generated by the set of operations sa, one for each partition a of
an integer \a\. Novikov also constructed a spectral sequence

E2 = Ext AU(U*(X), Λ*) => π*(X)

converging to the stable homotopy ring of a ring spectrum X (cf. [1]).
We apply this theory to derive information about Ω%p

f the homotopy
of the symplectic Thorn spectrum MSp. In section one the structure
of U*(MSp) is investigated; section two describes a resolution for
U*(MSp); section three computes the necessary part of the E2 term
of the spectral sequence; section four completes the proof of Theorem
A.

1* Recall that A* is a polynomial ring over Z on generators tt e
Λ_2i. Also H*(BSp) is a polynomial ring over Z on the symplectic
Pontrjagin classes Pt e H*%BSp). It follows from the Thorn isomorphism
and the Atiyah-Hirzebruch spectral sequence that there is an isomor-
phism of Λ* -modules

P: A* ® H*(BSp) -> U*(MSp)

given by

Here u denotes the Thorn class in U\MSp) and 4n is the partition of
n consisting entirely of ones. The proof is similar to [3, p. 49].
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In order to study the action of Au on U*(MSp), let E: Au ->
U*(MSp) be the map which evaluates operations on the Thorn class.
We will determine the "top dimension" of E(sa). There is a natural
transformation

B: #*(•) -> H*(MU) <g) H*( )

defined by the commutativity of the diagram

U*(X) -^-> H*(MU) ® H*(X)

Kom (H*(MU)9 H*(X))

where i is defined by taking induced maps in integral cohomology.
Note that on U*(pt) = Λ*, B is just the Hurewicz map. Consider the
Z basis for H*(BU) consisting of an element ca for every partition
a, where ca is the a symmetric function of the Chern classes ct = cΔ

[cf. 2]. Similarly consider the /f̂ -basis for U*{BU) consisting of the
Conner-Floyd characteristic classes cfa [41. Finally let H*(MU) be
given as the integral polynomial ring on classes ^e H2i(MU), and for
ω = (ilf , in) let αω = ah ain.

PROPOSITION 1. If B: U*{BU)-*H*{MU)® H*(BU) is the map
defined above, then

B{cfΔk) = Σ α β & < V c β ,

where the sum is over all partitions co of length at most k.

Proof. Suppose g: CP(°o)—+MU(1) is a homotopy equivalence
representing a class ye £72(CP(oo)) which generates ί7*(CP(oo)) as a
polynomial ring over Λ%. Similarly let ce H2(CP(oo)) be a generator
for H*(CP(oo)). Now if 6, e H2i(MU) is dual to α4 e H2i(MU), we have
^*(δ.) = ci+1. So 5: U*(CP(*o)) -^ H*(MU) (g) H*(CP(oo)) is given by

In the limit CP(oo) — BU(1) —> BU, this is the statement of the pro-
position for k = 1, since cΔl c(n) — c(w+1) Ξ (C^)^ 1 modulo the ideal
generated by c2, c3, . This ideal restricts to zero in BU(1), so B(cfA)
is as claimed. The proposition now follows by an application of the
splitting principle.

Let /: BSp—*BU classify the universal symplectic bundle 7 over
BSp. Then we have immediately:
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PROPOSITION 2. The map B: U*(BSp)~* H*(MU)<& H*(BSp) is
given by

where the sum is over all partitions ω of length at most k.

Note that f*(ca) is given by replacing the odd elementary sym-
metric fuctions in the a symmetric function with zero, and the 2ίth
elementary symmetric function with (—1)^. In particular,

Next we consider the following commutative diagram:

U*(MU) -^-» U*(MSp) Z- Λ* (g) H*(BSp)

Φ\ Φ\

U*(BU) — } U*(BSp) -£-> H*(MU) <g) H*(BSp)

where Φ is the Thorn isomorphism. By definition, sa = Φ(cfa), so we
have 2ίf(sα) = (cfa(i)). Let iΓ be the subring of U*{BU) generated by
{cfjzi}9 so that U*(f)\κ is an isomorphism of K with U*(BSp). Now
since 5 is a monomorphism, it will determine the Hurewicz image of
coefficients in Λ* expressing cfa(y) in terms of cfj2i(y). But F was
chosen so that Φ(cfj2i(j)) = si2.(u) = F(ί ® (-1)^^), thus we have the
coefficients in F^φfaa)) determined recursively. The first step is
given by

PROPOSITION 3. Let p: Λ* ® H*(BSp) —> Λ ® H*(BSp) be projec-
tion on the top dimension in Λ*. Then

Proof. Let p': H*(MU) <g) H*(BSp) -> fi"0(ilίi7) ® H*(BSp) be pro-
jection, then by Proposition 2

Thus |θ' o B(cfa(i)) = 1 <g> /*(O Now the Hurewicz map Λo -* H0(MU)
is-the identity, so /oΌj? = poF^oφ, and the proposition follows. This
formula is an explicit expression for the top dimension of

2* From this information on the A^-module structure of U*(MSp),
we will construct a resolution for U*(MSp). Let /rα be the unique
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element of the subring K of U*(BU) such that U*(f)(tca) = U*(f)(cfa).
Let &a = Φ(tca), so (sa — &a) is an element of the kernel of E. Let
Θn be the set of those partitions ω of n which cannot be written
ω = (a, a), and let Θ = \Jn>0Θn.

THEOREM 1. The set {(sβ - &β): βeΘ} generates the kernel of E
as a free Λ^-module.

For the proof of this theorem, we require some data on symmetric
functions. Recall the classescωe H*(BU), and define ca — cΔ. cΔ. ,
if a = (ί19 , in). Introduce a linear ordering, >, on the set of
partitions of k by taking the longest first and ordering lexicographically
among partitions of the same length. For every partition ω of k, we
define another partition T(ώ) of k as follows: T(ω) = (rt + + rq,
r2 + + rβ, , rq), where q is the largest integer in ω, and r3- is
the number of j?s in ω. Note that β $ Θ if and only if T(β) = 2a.
Then the following lemmas are elementary.

LEMMA 1. There are integers m(a, β) for every pair of partitions
a, β of k such that ca = X m(a, β)cβ. Moreover, m(β, T(β)) — 1 and
m(a, β) = 0 for β > T(a).

LEMMA 2. There are integers m(β, a) for every pair of partitions
a, β of k such that cβ = Σ m(β> a)ca Moreover, m(/3, T(β)) = 1 α^ώ
m(/5, Γ(τ)) - 0 /or 7 > /5.

Now suppose for every partition α of |a\ there is given an element
Wa£Λ2W{__d, so that Σ ^ α s α is an operation of degree d in Au, written
in Novikov's notation [8]. Suppose that E(Σxasa) = 0, and that xa =
0 for | α | < k. We write ^ for the projection S§§ Λ*—+SkξZ) Λ* onto
elements of degree k in S. Now proceeding by induction on k, for
the proof of Theorem 1 it will suffice to show

for some unique coefficients yβ e Λ.
First consider the case of odd k. For \a\ = k odd, we have aeθ.

From Proposition 2 we have that p' o B(cfΔjc{i)) is zero for odd k. Thus
*<* = ^\r\>kV«cf7, and ρk(&a) = 0, and ρk(ΣXaSa) = Pk(Σ\a\=k %a(sa -

&a)). By Proposition 3, k ^ 1, so this also provides the initial case
for the induction, k = 1.

For k even, since E(Σ %aSa) = 0 we have

= 0 ,
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SO

Σ »β

and

for every 7 with 2 | τ | = k. Now by Lemma 2, these equations may
be solved uniquely for xaf ag Θ in terms of xa, ae Θ. Thus it suffices
to prove that the matrix indexed by a, βe Θk whose (a, β) entry is
the coefficient of sa in (sβ - &β) is invertible. Notice that Proposition
3 implies

= Σ (-
2\\ \β\

Then by Lemmas 1 and 2, if the coefficient of sv is &β is nonzero,
we have η < β. This completes the proof of Theorem 1.

We now construct the first stage of a resolution; the remaining-
stages may be obtained by a simple iteration. Let Co = Au and let
Cx be the free Att-module generated by {Gβ: β e Θ). Define d,: Cx -> Co

by d^Gfi) — sβ — ^ . Then the following sequence is exact:

0 < U*(MSp) JL- Co Jϊ- Cx .

There is an isomorphism Horn AU(AU, Λ*) = Ωl defined by evaluation
on the Thorn class followed by the Atiyah duality isomorphism. The
gradings are nonnegative here, so we take Ω% rather than A*. Thus
if gβ: CΊ —> A* is the dual of Gβ, we have

— Hom.σ

given by

3. At this point we may compute

El'* - Ext°;UU*(MSp), ΛJ = keτd* .

LEMMA 3. Let Xe Ω?n be dual toze A_2n. Then d?(X) = 0 if and
only if (sω — &ω)(z) = 0 for all ω e θn.

Proof. Suppose there is a β e Θ9 \ β | Φ n, such that (sβ — &β)(z) Φ 0.
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It will suffice to find ΎeΘn with (sr - &f)(z) Φ 0. Let (sβ - &β)(z) =
ye Λ_2k> V ̂  0, k Φ 0. Then there is an a, \a\ = k, such that sa(y) Φ
0eΛ0. By Theorem 1, we may express sa(sβ — &β) in terms of {s7 —
&r\ 7G Θ}, so there is a γ e θn with (sr - ^ r ) (2) =£ 0.

THEOREM 2. JE^'* is α polynomial ring over Z with one generator
Xi in every dimension Ai ̂  0.

Proof. Since El** is a subring of Ω% given as the kernel of a
map of free abelian groups, it suffices to count dimensions. The
theorem now follows from Lemma 3.

It is interesting to note that Lemma 3 together with Proposition
3 gives an explicit criterion for the elements X^ e 425. These elements
Xi are polynomial generators for Ωlp ® Q.

4. The proof of Theorem A requires two further facts.

PROPOSITION 6. For XeE°2>*, the image [X]2 of X in the un-
oriented bordism ring ϋft* is a fourth power.

Proof. It will suffice to show that the dual Stiefel—Whitney
numbers wa{X) vanish for a Φ (7, 7, 7, 7). Recall [10, p. 256] that
the ω symmetric function, ωeθ, is contained in the ideal generated
by 2 and the odd elementary symmetric functions. Thus plω](&ω) is
divisible by 2, and sω(z) = 0 (mod 2) for ω e θ2n, and z the dual of
Xekerdf in dimension 4n. But for such X and ω, sω(z) = cJpX),
the normal Chern numbers. These reduce mod 2 to the dual Stiefel—
Whitney numbers.

cω(vX) = wω,ω(X) mod 2 ,

so for ωeΘ2n, wW)W(X) = 0. Since XeΩl, [X]2 is a square [7], so
wa(X) = 0 for a Φ (ω, ω). The only possible a for which wa(X) Φ 0
is thus a = (7, 7, 7, 7)0

Novikov shows that Ext8^ (U*(Y), Λ*) is a torsion group for
s > 0, for any Y [8]. Thus integral multiples of the Xi are gener-
ators for ΩSJ. Moreover the E2 term contains only 2-torsion, as may
be seen from [6, 8], so the multipliers are all powers of two. Recall
the generators tζ e Ωξif and let tω = th tin for ω = (i19 , in).

PROPOSITION 7. Let Xt be as in Theorem 2, with Xi = Σ α(ω)ίω /or
integer coefficients α(ω). Suppose [Xi]2 Φ 0. Tfcew ίfeβrβ is α^ ω =
(2a:, 2a:) w iΛ a(ω) Ξ 1 (mod 2).
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Proof. By Proposition 6 there are Y, Y' e Ω% such that Xt =
Y2 + 2Γ', since [Y% is a fourth power, by [7]. Thus a(ω) = 0 (mod
2) unless ω = (β, β). However if β contains an odd number the
symplectic Pontrjagin numbers of tβ are all zero for dimensional reasons.
Thus if a(2a, 2a) = 0 (mod 2) for all a, the Stiefel—Whitney numbers
of Xi vanish, and [Xi}2 = 0.

THEOREM 3. Suppose XeΩs/ and [X]2 Φ 0. Then X is in the
subring of Ωs/ generated by those X2i e E°2>

8i c Ωξ{ on which all differ-
entials in the spectral sequence vanish.

Proof. Since \(2a, 2a)\ = 4\a\, it follows from Proposition 7 that
[Xi]2 Φ 0 implies i is even. The rest of the statement follows im-
mediately from the existence of the spectral sequence.

Now Theorem A is just a simplification of Theorem 3. It should
loe noted that the map Ω%* —> Sft* factors thru β j , so any torsion ele-
ment of Ωs/ bounds in 9?*. Moreover Ω%p 0 Q is a polynomial algebra
on XieΩi?®Q, so for XeΩs

n

p, [X]2 = 0 unless n = 4k. Thus the
content of Theorem A is that [Ωξξ+4\2 = 0.

The author has been informed of some recent work of E. E. Floyd
which overlaps considerably with the above results. Using very
different methods, Floyd gives a more refined upper bound for the
image of Ω%* in 9Ϊ*.

This work formed part of the author's doctoral thesis at North-
western University, under the direction of Professor Mark Mahowald.
A summary appeared as [9].

REFERENCES

1. J. F. Adams, Lectures on generalized cohomology, in category theory, homology
theory and their applications III, Springer, Berlin, 1969.
2. , S. P. Novikov's work on complex cobordism, lecture notes, University of
Chicago, 1967.
S. P. E. Conner, and E. E. Floyd, Differentiate periodic maps, Springer, Berlin,
1964.
4. , The relation of cobordism to k-theories, Springer, Berlin, 1966.
5. P. S. Landweber, Cobordism operations and Hopf algebras, Trans. Amer. Math. Soc.
129 (1967), 94-110.
β. J. W. Milnor, On the cobordism ring Ω* and a complex analogue, Amer. J. Math.
82 (1960), 505-521.
7. , On the Stiefel—Whitney numbers of complex manifolds and of spin mani-
folds, Topology 3 (1965), 223-230.
8. S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism



212 DON PORTER

theory, Izv. Akad. Navk SSSR (Ser. Mat.) 31 (1967), 855-956 (Math. USSR—Izv. 1
(1967), 827-913).
9. D. D. Porter, Novikov resolutions for symplectic cobordism, Notices Amer. Matlu
Soc. 17 (1970), 150-151.
10. R. E. Stong, Notes on cobordism theory, Princeton, 1968.

Received February 17, 1970.

STATE UNIVERSITY OF NEW YORK AT ALBANY




