Vol. 35, No. 1, 1970

TRANSVERSALLY PERTURBED PLANAR DYNAMICAL SYSTEMS

Roger C. McCann

Abstract

This paper investigates the behavior of limit cycles of a planar dynamical system which has been perturbed transversally. In particular, it is shown that if C is a limit cycle of the unperturbed dynamical system, then there are limit cycles of the perturbed dynamical systems arbitrarily close to C. Also, if C is an exterior limit cycle of the unperturbed dynamical system, then there is an outer neighborhood of C which consists solely of cycles of the perturbed dynamical systems.

In what follows R and R^{2} will denote the reals and the plane respectively.

A dynamical system is an ordered pair (X, π) consisting of a topological space X and a mapping π of $X \times R$ into X such that (where $x \pi t=\pi(x, t)$)
(i) $x \pi t=x \quad$ for all $x \in X$
(ii) $(x \pi t) \pi s=x \pi(t+s)=x_{\pi}(s+t) \quad$ for all $x \in X$ and $s, t \in R$
(iii) π is continuous in the product ropology.

A point $x \in X$ is called critical if and only if $x \pi t=x$ for every $t \in R$. A point $x \in X$ is called periodic if and only if x is noncritical and $x \pi t=x$ for some $t>0$; if X is Hausdorff the least such t is called the fundemental pariod of x. If x is periodic, $x \pi R$ is called a cycle. A cycle is a simple closed curve. Hence, if C is a cycle of a planar dynamical system (R^{2}, π), then C decomposes R^{2} into two components; one bounded and denoted by int C; the other unbounded and denoted by ext C. A subset A of X is called a trajectorial arc if and only if there is an $x \in X$ and a compact interval $[a, b], a \neq b$, such that $A=x \pi[a, b]$.

Let $\left(R^{2}, \pi\right)$ be a dynamical system. A subset T of R^{2} is called a transversal if and only if
(i) T is homeomorphic with either $[0,1]$ or S^{1}, the 1 -sphere
(ii) there is an $\varepsilon>0$ such that $T \cap(T \pi t)=\varnothing$ for $0<|t| \leqq \varepsilon$.

Our investigation depends heavily upon the following three propositions which may be found in [2, VII, 4.4], [2, VII, 4.7], and [2, VII, 4.8] respectively.

Proposition A. Let C be a trajectory and T a transversal of a planar dynamical system. If C or T is a closed curve, they have at most one intersection point; if both are closed curves, they do not

intersect.

Proposition B. Let $C \cup T$ be a simple closed curve with C a trajectorial are and T a transversal of a planar dynamical system. Then one component of $R^{2}-(C \cup T)$ is positively invariant, the second is negatively invariant, and neither is invariant. The result is also valid if $C=\varnothing$.

Proposition C. In a planar dynamical system the interior of each cycle, closed transversal, or simple closed curve consisting of a transversal and a trajectorial arc, all contain a critical point.

We are interested in studying a family of dynamical systems which is defined as follows. Let $\pi: R^{2} \times R \times R \rightarrow R$ be a mapping continuous in the product topology such that
(i) for each $a \in R$ the mapping $\pi_{a}: R^{2} \times R \rightarrow R^{2}$ defined by $\pi_{a}(x, t)=\pi(x, t, a)$ defines a dynamical system on R^{2}.
(ii) critical points of the dynamical systems are independent of the index.
(iii) the noncritical trajectories of π_{a} are transversal to the noncritical trajectories of π_{b} if $a \neq b$, i.e., if T is a trajectorial arc of π_{a}, then T is a transversal with respact to π_{b} if $a \neq b$.
$C_{a}(x), C_{a}^{+}(x), L_{a}^{+}(x)$, and $L_{a}^{-}(x)$ will denote the trajectory, positive semitraiectory, positive limit set, and negative limit set, respectively, of x with respect to π_{a}. The family of all trajectories of π_{a}, a fixed, will be called a system and the family of all trajectories will be called a complete family.

In [1] and [4] sufficient conditions are given which assure that the differential equations

$$
\dot{x}=P(x, y, a), \quad \dot{y}=Q(x, y, a)
$$

where the dots stand for differentiation with respect to the independent vaiable t and a is a paremeter, define a complete family.

Immediate consequences of Propositions A and C are the following two propositions.

Proposition 1. Cycles of distinct systems of a complete family do not interset.

Proposition 2. Let x be a noncritical point of a complete family, $a \neq b$, and suppose that $C_{a}(x)$ and $C_{b}(x)$ have a point $y, y \neq x$, in common. If the trajectorial arcs of $C_{a}(x)$ and $C_{b}(x)$ connecting the points x and y have only their endpoints in common, then the region
bounded by these trajectorial arcs contains a critical point.

Proposition 3. Let C be a cycle of π_{a}. Then int C is positively invariant with respect to π_{b} for all $b>a$ or int C is negatively invariant with respect to π_{b} for all $b>a$, but in neither case is int C invariant with respect to π_{b} for any $b>a$. A similar result holds for $b<a$.

Proof. Consider the sets
$A=\left\{b \in(a,+\infty): \operatorname{int} C\right.$ is positively invariant with respect to $\left.\pi_{b}\right\}$
$B=\left\{b \in(a,+\infty):\right.$ int C is negatively invariant with respect to $\left.\pi_{b}\right\}$. By Proposition B, int C is positively invariant or negatively invariant, but not both, with respect to each $\pi_{b}, b>a$. Thus $A \cup B=(a,+\infty)$ and $A \cap B=\varnothing$. We now show that both A and B are open. If $c \in(a,+\infty)-A=B$, then there exist $x \in \operatorname{int} C$ and $t>0$ such that $x \pi_{c} t \in \operatorname{ext} C$. Since π is continuous $x \pi_{b} t \in \operatorname{ext} C$ for all b sufficiently close to c. Hence B is open. Similarly A is open. The connectivity of ($a,+\infty$) implies either A or B must be empty. This completes the proof.

Proposition 4. Let C be a cycle of π_{a}. If int C is positively invariant with respect to every $\pi_{b}, b>a$, then ext C is positively invariant with respect to every $\pi_{b}, b<a$. A similar result holds if $b>a$ and $b<a$ are interchanged.

Proof. Let $x \in C$ and T be a trajectorial arc of $C_{c}(x), c>a$, which contains x as a nonend point. Then T is a transversal with respect to $\pi_{b}, b \neq c$, Moreover, if τ is the fundamental period of C, then $T \pi_{a}[-\tau, \tau]$ is a connected neighborhood of C which contains no critical points. Choose a neighborhood U of $x, 0<\sigma<|c-a|$, and $0<\varepsilon<\tau$ so small that $U \pi_{b}[-\varepsilon, \varepsilon] \subset T \pi_{a}[\tau, \tau]$ for all $b \in[a-\sigma, a+\sigma]$. This is possible because π is continuous. We can now define a mapping h of $[a, a+\sigma]$ into $S=\left\{x \pi_{b} \varepsilon: b \in[a, a+\sigma]\right\}$ by $h(b)=x \pi_{b} \varepsilon$. h is continuous since π is continuous. For $b \neq d, x \pi_{b} \varepsilon$ and $x \pi_{d} \varepsilon$ cannot be equal; for if they were Proposition 2 would imply that $T \pi_{a}[-\tau, \tau]$ contains a critical point. Hence h is one-to-one. Obviously, h is an onto mapping. A one-to-one continuous mapping of a compact space onto a Hausdorff space is a homeomorphism. Thus S is an arc. Since int C is, by assumption, positively invariant with respect to $\pi_{b}, b>a$, we have $S \subset \overline{\operatorname{int} C}$. Moreover, $\left(x \pi_{a}[0, \varepsilon]\right) \cup S \cup\left(x \pi_{a+\sigma}[0, \varepsilon]\right)$ forms a simple closed curve J such that int $J \subset T \pi[-\tau, \tau]$ and $\overline{\operatorname{int} J}$ is a neighborhood of $x \pi_{a} \varepsilon / 2$ relative to int $\overline{\text { int }}$ Let $y \in \operatorname{int} J$ and set

$$
J_{t}=\left(x \pi_{a}[0, t]\right) \cup\left(x \pi_{a+\sigma}[0, t]\right) \cup\left\{x \pi_{b} t: b \in[a, a+\sigma]\right\} .
$$

For each $t, 0<t<\varepsilon, J_{t}$ is a simple closed curve. Since π is continuous, $y \in \operatorname{ext} J_{t}$ for t sufficiently small. But for $t=\varepsilon, y \in \operatorname{int} J_{s}=$ int J. The continuity of π implies there is an $s \in(0, \varepsilon)$ such that $y \in J_{s}$. By the construction of J_{s} and since $y \in \operatorname{int} J, y$ must be an element of $\left\{x \pi_{b} s: b \in[a, a+\sigma]\right\}$. This shows that $\overline{\operatorname{int} J}$ consists solely of trajectorial arcs from the systems $\pi_{b}, b \in[a, a+\sigma]$.

Now let V be a neighborhood of $x \pi_{a} \varepsilon / 2$ such that $V \cap \operatorname{int} C \subset \operatorname{int} J$. Then there is an $\alpha, 0<\alpha<\sigma$, such that $x \pi_{b} \varepsilon / 2 \in V$ for all $b \in[\alpha-\alpha, 0]$. For $b \in[a-\alpha, 0), x \pi_{b} \delta / 2$ cannot be an element of $\overline{\operatorname{int} C}$ for then

$$
x \pi_{b} \varepsilon / 2 \subset V \cap \operatorname{int} C \subset \operatorname{int} J \subset \mathbf{U}\left\{x \pi_{c}[0, \varepsilon]: c \in[a, a+\sigma]\right\} .
$$

This, by Proposition 2, implies that $T \pi_{a}[-\tau, \tau]$ contains a critical point. Hence for $b \in[a-\alpha, 0)$ we have $x \pi_{b} \varepsilon / 2 \in \operatorname{ext} C$ and therefore, by Proposition $B, C_{b}^{+}(x) \subset \operatorname{ext} C$. Proposition 3 now implies the desired result.

Proposition 4 allows us to assume throughout the remainder of the paper that if C is a given cycle of π_{a}, then $\operatorname{int} C$ is positively invariant with respect to every $\pi_{b}, b<a$, and negatively invariant with respect to every $\pi_{b}, b>a$. If the opposite invariance properties hold, the following propositions remain valid after the obvious modifications are made.

Definition 5. Let C be a cycle of π_{a}. If there is an $x \in \operatorname{ext} C$ such that $L_{a}^{+}(x)=C$ or $L_{\bar{a}}^{-}(x)=C$, then C is called an external limit cycle or a external negative limit cycle, respectively. Similarily, if there is an $x \in \operatorname{int} C$ such that $L_{a}^{+}(x)=C$ or $L_{a}^{-}(x)=C$, then C is called an internal limit cycle or a internal negative limit cycle, respectively.

Definition 6. Let U be a neighborhood of a simple closed curve C. Then U-int C and U-ext C are called an outer neighborhood and an inner neighborhood, respectively, of C.

Proposition 7. Let C be an external limit cycle of π_{a}. Then, given any outer neighborhood U of C, there exists an $\varepsilon>0$ such that, for each $b \in[a, a+\varepsilon], U$ contains both an external limit cycle and an internal limit cycle of π_{b} (the two cycles may coincide). A similar result holds for C an internal limit cycle and $b \in[a-\varepsilon, a]$.

Proof. Let $V \subset U$ be an outer neighborhood of C containing no critical points and such that int $C \cup V$ is simply connected. Let $x \in C$, $y \in \operatorname{ext} C$ be such that $L_{a}^{+}(y)=C$, and $T \subset V$ be a trajectorial are of
$C_{c}(x), c<a$, containing x as an endpoint. Then T is a transversal with respect to $\pi_{b}, b \neq c$. Since $L_{a}^{+}(y)=C, y \in \operatorname{ext} C$, and V is an outerneighborhood of C, there is a $\tau>0$ such that $y \pi_{a}[\tau,+\infty) \subset V$. Let $y_{1}, y_{2} \in y \pi_{a}[\tau,+\infty)$ be consecutive points of intersection between $C_{a}^{+}(\mathrm{y})$ and T with $y_{2} \in C_{a}^{+}\left(y_{1}\right)$. Then the trajectial arc of $C_{a}^{+}(y)$ and the subarc of T connecting y_{1} and y_{2} form a simple closed curve $J \subset V$ such that int J-int $C \subset V$. Now $L_{a}^{+}\left(y_{1}\right)=L_{a}^{+}(y)=C \subset \operatorname{int} J$ and Proposition B imply $y_{2} \pi_{a}(0,+\infty) \subset \operatorname{int} J$. Since $y_{2} \in C_{a}^{+}\left(y_{1}\right)$ and π is continuous there is an $\varepsilon>0$ such that $C_{b}^{+}\left(y_{1}\right)$ intersects int J for $|b-a|<\varepsilon$. If $y_{1} \pi_{b} t \in \operatorname{int} J$ for some $t>0$, then $y_{1} \pi_{b}[t, \infty)$ must be a subset of $\operatorname{int} J$; for if it were not $y_{1} \pi_{b}[t, \infty)$ would intersect J and Proposition 2 would imply $\operatorname{int} J$-int C, and hence V, contains a critical point. Moreover, by the continuity of π, and the fact $L_{a}^{+}\left(y_{1}\right)=C$, we may assume that ε was chosen so small that $C_{b}^{+}\left(y_{1}\right),|b-a|<\varepsilon$, intersects T at least twice between y_{2} and x. This is true because $C_{a}^{+}\left(y_{1}\right)$ intersects T infinitely many times and the only limit point of the intersections is x, [2, VIII, 1.2] and [2, VIII, 1.5]. The trajectorial arc connecting two such consecutive points of intersection and the corresponding subarc of T form a simple closed curve J_{b} such that $\operatorname{int} J_{b} \subset \operatorname{int} J$ and int J_{b}-int $C \subset V$. Moreover, int J_{b} is positively invariant with respect to π_{b} by Propoisition B. Thus int J_{b} and ext C are both positively invariant with respect to π_{b}. Hence int J_{b}-int C is positively invariant, so that $\mathrm{C}_{b}^{+}(x) \subset \overline{\operatorname{int} J_{b} \text {-int } C}$ which is compact and contains no critical points. By the Poincaré-Bendixson Theorem, [2, VII, 1.14], $L_{b}^{+}(x)$ is a cycle C_{b}. Since int J_{b} is positively invariant, but not invariant by Proposition B, and $C_{b} \cap C=\varnothing$ by Proposition 1, we have $C_{b} \cap \partial\left(\operatorname{int} J_{b}-\operatorname{int} C\right)=\varnothing$. Thus C_{b} is an internal limit cycle of π_{b} contained in int $J_{b} \subset U$. For c sufficiently large $y_{1} \pi_{b}[c, \infty) \subset \operatorname{int} J_{b}$ and therefore $y_{1} \pi_{b}[c, \infty) \subset \operatorname{int} J_{b}-\overline{\operatorname{int} C_{b}}$. The Poincaré-Bendixson Theorem now implies the existence of an external limit cycle. This completes the proof.

In a similar manner it can be shown that

Proposition 8. Let C be an external negative limit cycle of π_{a}. Then, given any outer neighborhood U of C, there exists an $\varepsilon>0$ such that, for each $b \in[a-\varepsilon, a], U$ contains both an external negative limit cycle and an internal negative limit cycle of π_{b} (the two cycles may coincide). A similar result holds for C an internal negative limit cycle and $b \in[a, a+\varepsilon]$.

Lemma 9. Let D_{1} and D_{2} be cycles of a complete family such that $D_{1} \subset \operatorname{int} D_{2}$ and that int $D_{2}-\operatorname{int} D_{1}$ contains no critical points.

If C_{1} and C_{2} are distinct cycles in int $D_{2}-\operatorname{int} D_{1}$, then $C_{1} \subset \operatorname{int} C_{2}$ or $C_{2} \subset \operatorname{int} C_{1}$.

Proof. Since int $D_{2}-\operatorname{int} D_{1}$ contains no critical points, we must have $D_{1} \subset \operatorname{int} C_{i}, i=1$, 2. Thus int $C_{1} \cap \operatorname{int} C_{2} \neq \varnothing$. Then int $C_{1} \subset \operatorname{int} C_{2}$ or int $C_{1} \cap \operatorname{ext} C_{2} \neq \varnothing$. In the first case int $C_{1} \subset \overline{\operatorname{int} C_{2}}$. Therefore $C_{1} \subset \operatorname{int} C_{2}$ or $C_{1} \cap C_{2} \neq \varnothing$. The latter is impossible by Proposition 1. In the second case, ∂ (int C_{2}) $\cap \operatorname{int} C_{1} \neq \varnothing$. Therefore $C_{2} \cap \operatorname{int} C_{1} \neq \varnothing$ and $C_{2} \subset \operatorname{int} C_{1}$ since $\operatorname{int} C_{1}$ is either positively invariant or negatively invariant for the system containing C_{2} (Proposition 3).

Let D_{1} and D_{2} be as in the statement of Lemma 9. Then
Lemma 10. If C_{1} and C_{2} are distinct cycles in int $D_{2}-\operatorname{int} D_{1}$ such that $C_{1} \subset \operatorname{ext} C_{2}$, then $C_{2} \subset \operatorname{int} C_{1}$

Proof. By Lemma 9, $C_{2} \subset \operatorname{int} C_{1}$ or $C_{1} \subset \operatorname{int} C_{2}$. C_{1} cannot be contained in both $\operatorname{int} C_{2}$ and ext C_{2}. Therefore $C_{2} \subset \operatorname{int} C_{1}$.

In a topological space X, it is possible to define limits of nets of subsets $X_{i} \subset X$ as follows. Let $\lim \inf X_{i}$ consist of all limits of nets of points $x_{i} \in X_{i}$; let lim sup X_{i} consist of all limits of subnets of points $x_{i} \in X_{i}$. Obviously $\lim \inf X_{i} \subset \lim \sup X_{i}$. If equality holds, the net X_{i} is said to converge to its limit and we write

$$
\lim X_{i}=\lim \inf X_{i}=\lim \sup X_{i}
$$

Definition 11. A net $\left(R^{2}, \pi_{i}\right), i$ contained in a directed set containing 0 , of dynamical system is called regular if
(i) $\pi_{i} \rightarrow \pi_{0}$ in the sense that if $x_{i} \rightarrow x$ and $t_{i} \rightarrow t$ then $x_{i} \pi_{i} t_{i} \rightarrow x \pi_{0} t$.
(ii) critical points are independent of the index i.
(iii) to each noncritical point x there corresponds a subset T of R^{2} which is a transversal with respect to each π_{i} and contains x as a nonend point.

In [3] the following theorem is proved.
Theorem D. Let $\left(R^{2}, \pi_{i}\right)$ be a regular net of dynamical systems. Let $C_{i}\left(x_{i}\right)$ be a cycle of $\left(R^{2}, \pi_{i}\right)$ with fundamental period $\tau_{i}\left(x_{i}\right)$. If $\lim \inf C_{i}\left(x_{i}\right) \neq \varnothing$, then
(1) If $\tau_{i}\left(x_{i}\right) \rightarrow 0$, then $\lim C_{i}\left(x_{i}\right)$ exists and is a single critical point.
(2) If $\lim \inf C_{i}\left(x_{i}\right)$ intersects a cycle $C_{0}(x)$, then $\tau_{i}\left(x_{i}\right) \rightarrow \tau_{0}(x)$ and $\lim C_{i}\left(x_{i}\right)=C_{0}(x)$.

$$
\begin{equation*}
\text { If } \lim \inf C_{i}\left(x_{i}\right) \text { intersects a noncyclic trajectory, then } \tau_{i}\left(x_{i}\right) \tag{3}
\end{equation*}
$$ $\rightarrow+\infty$.

Definition 12. Let $C_{a}(x)$ be a cycle of π_{a}. Then $\tau_{a}(x)$ will denote the fundamental period of x with respect to π_{a}.

Proposition 13. Let C be an external limit cycle of π_{a}. There exists an outer neighborhood U of C and an $\varepsilon>0$ such that U consists entirely of periodic points of the systems $\pi_{b}, b \in[a, a+\varepsilon]$. A similar result holds for C an internal limit cycle and $b \in[a-\varepsilon, a]$.

Proof. Let $x \in C$ and V be an outer neighborhood of C which contains no other cycles of π_{a} or critical points and such that $V \cup$ int C is simply connected. Moreover, by Theorem D, V may be chosen along with a $\sigma>0$ such that if $C_{b}(y)$ is a cycle of π_{b} in V with $|b-a|<\sigma$, then $\left|\tau_{a}(x)-\tau_{b}(y)\right|<1 / 2 \tau_{a}(x)$. By Proposition 7 there is an $\varepsilon, 0<\varepsilon<\sigma$ such that, for each $b \in[a, a+\varepsilon], V$ contains a cycle of π_{b}. Thus the fundamental periods cycles of $\pi_{a+\varepsilon}$ which lie in V are contained in $\left[1 / 2 \tau_{a}(x), 3 / 2 \tau_{a}(x)\right]$. This, Theorem D with each $i=a+\varepsilon$, and the fact that cycles of distinct systems do not intersect imply that there is a cycle D of $\pi_{a+\varepsilon}$ in V such that int D-int C contains no cycle of $\pi_{a+\varepsilon}$. Set $U=\overline{\operatorname{int} D}-\operatorname{int} C . \quad U$ is an outer neighborhood of C by Lemma 10. Let A denote the set of periodic points of $\pi_{b}, b \in[a, a+\varepsilon]$, which are contained in U. We will show that $A=U$. Assume the contrary that there exists a $w \in U-A$ and consider the sets

$$
\begin{aligned}
& F=\left\{\overline{\operatorname{int} C_{b}(y)}: \quad y \in A, C_{b}(y) \text { a cycle }, w \in \operatorname{ext} C_{b}(y)\right\} \\
& G=\cup F .
\end{aligned}
$$

Since $w \in U$, we have $w \in \operatorname{ext} C=\operatorname{ext} C_{a}(x)$, so that $F \neq \varnothing$. If $C_{b}(y) \subset G \subset U$, then $\tau_{b}(y) \in\left[1 / 2 \tau_{a}(x), 3 / 2 \tau_{a}(x)\right]$. Proposition 7 and Theorem D now imply, respectively, that $\partial G \cap \operatorname{ext} C \neq \varnothing$ and ∂G consists entirely of periodic points. Lemma 9 implies that $\partial G \cap \operatorname{ext} C$ is a cycle $C_{d}(z)$ where $z \in U$ and $d \in[a, a+\varepsilon]$. Moreover, since $w \in \operatorname{ext} C_{b}(y)$ for each $\overline{\operatorname{int} C_{b}(y)}$ in F and $C_{b}(w)$ is not a cycle for any $b \in[a, a+\varepsilon]$, we have $w \in \operatorname{ext} C_{d}(z) . d \neq a$ since $C_{d}(z)=\partial G \cap \operatorname{ext} C \subset V$ and the only cycle of π_{a} in V is C. Since $U \neq A, C_{d}(z) \neq D$. Hence $d \neq a+\varepsilon$. Also, by the construction of $C_{d}(z)$, there is no cycle B of $\pi_{b}, b \in[a, a+\varepsilon]$, in U such that $C_{d}(z) \subset \operatorname{int} B$ and $w \in \operatorname{ext} B$. Thus C_{d} is either an external limit cycle or an external negative limit cycle, [2, VIII, 3. 3]. Proposition 7 or 8, respectively, now implies the existence of a $c \in[\alpha, \alpha+\varepsilon]$ such that a cycle C_{1} of π_{c} has the property that $C_{d}(z) \subset \operatorname{int} C_{1}$ and $w \in \operatorname{ext} C_{1}$. This contradiction implies $A=U$. This completes the proof.

In a similar manner it can be shown that
Proposition 14. Let C be an external negative limit cycle of π_{a}. There exists an outer neighborhood U of C and an $\varepsilon>0$ such that U consists entirely of periodic points of the systems $\pi_{b}, b \in[\alpha-\varepsilon, a]$. A similar result holds for C an internal negative limit cycle and $b \in[a, a+\varepsilon]$.

References

1. G. D. F. Duff, Limit-cycles and rotated vector fields, Ann. of Math. 57 (1953), 1531.
2. Otomar Hajek, Dynamical Systemsron the Plane, Academic Press, London, 1968.
3. Roger C. McCann, Cycle periods of perturbed dynamical systems, (to appear)
4. George Seifert, Rotated vector fields and an equation for ralaxation oscillations, Contributions to the Theory of Nonlinear Oscillations 4, Princeton, 1958, 125-139.

Received December 22, 1969.
Case Western Reserve University
Cleveland, Ohio

