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TRANSVERSALLY PERTURBED PLANAR
DYNAMICAL SYSTEMS

ROGER C. MCCANN

This paper investigates the behavior of limit cycles of a
planar dynamical system which has been perturbed trans-
versally. In particular, it is shown that if C is a limit cycle
of the unperturbed dynamical system, then there are limit
cycles of the perturbed dynamical systems arbitrarily close to
C. Also, if C is an exterior limit cycle of the unperturbed
dynamical system, then there is an outer neighborhood of C
which consists solely of cycles of the perturbed dynamical
systems.

In what follows R and R2 will denote the reals and the plane
respectively.

A dynamical system is an ordered pair (X, π) consisting of a
topological space X and a mapping π of X x R into X such that
(where xπt = π(x, t))

( i ) xπt = x for all xe X
(ii) (xπt)πs=xπ(t + s) — xπ(s + t) for all xe X and s, te R
(iii) π is continuous in the product ropology.

A point x e X is called critical if and only if xπt = x for every t e R.
A point x e X is called periodic if and only if x is noncritical and
xπt = x for some t > 0 if X is Hausdorff the least such t is called
the fundemental pariod of x. If x is periodic, xπR is called a cycle.
A cycle is a simple closed curve. Hence, if C is a cycle of a planar
dynamical system (R2, π), then C decomposes R2 into two components;
one bounded and denoted by int C the other unbounded and denoted
by ext C. A subset A of X is called a trajectorial arc if and only
if there is an xeX and a compact interval [α, 6], aΦh, such that
A — xπ[a, b].

Let (R\ π) be a dynamical system. A subset T of R2 is called a
transversal if and only if

( i ) T is homeomorphic with either [0,1] or S1, the 1-sphere
(ii) there is an ε > 0 such that T f] (Tπt) = 0 for 0 < 11 \ g ε.

Our investigation depends heavily upon the following three pro-
positions which may be found in [2, VII, 4.4], [2, VII, 4.7], and
[2, VII, 4.8] respectively.

PROPOSITION A. Let C be a trajectory and T a transversal of a
planar dynamical system. If C or T is a closed curve, they have at
most one intersection point; if both are closed curves, they do not
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intersect.

PROPOSITION B. Let C U T be a simple closed curve with C a
trajectorial arc and T a transversal of a planar dynamical system.
Then one component of R2 — (C\J T) is positively invariant, the second
is negatively invariant, and neither is invariant. The result is also
valid if C = 0 .

PROPOSITION C. In a planar dynamical system the interior of
each cycle, closed transversalf or simple closed curve consisting of a
transversal and a trajectorial arc, all contain a critical point.

We are interested in studying a family of dynamical systems
which is defined as follows. Let π: R2 x R x R-+R be a mapping
continuous in the product topology such that

( i ) for each aeR the mapping πa: R2 x R—+R2 defined by
πa(x, t) = π(x, t, a) defines a dynamical system on R2.

(ii) critical points of the dynamical systems are independent of
the index.

(iii) the noncritical trajectories of πa are transversal to the non-
critical trajectories of πb if a Φ b, i.e., if T is a trajectorial arc of
πa, then T is a transversal with respact to πb if a Φ b.

Cα(x), C + (x), Li(x), and L~{x) will denote the trajectory, positive
semitraiectory, positive limit set, and negative limit set, respectively,
of x with respect to πa. The family of all trajectories of πa, a fixed,
will be called a system and the family of all trajectories will be
called a complete family.

In [1] and [4] sufficient conditions are given which assure that
the differential equations

* = P(x, y, a), y = Q(x, y, a),

where the dots stand for differentiation with respect to the inde-
pendent vaiable t and a is a paremeter, define a complete family.

Immediate consequences of Propositions A and C are the follow-
ing two propositions.

PROPOSITION 1. Cycles of distinct systems of a complete family
do not interset.

PROPOSITION 2. Let xbe a noncritical point of a complete family,
aφb, and suppose that Ca(x) and Cb(x) have a point y,yφχ, in
common. If the trajectorial arcs of Ca(x) and Ch(x) connecting the
points x and y have only their endpoints in common, then the region
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bounded by these trajectorial arcs contains a critical point.

PROPOSITION 3. Let C be a cycle of πa. Then int C is positively
invariant with respect to πb for all b> a or int C is negatively
invariant with respect to πb for all b > α, but in neither case is
int C invariant with respect to πb for any b > a. A similar result
holds for b < a.

Proof. Consider the sets
A = {b e (α, + oo): int C is positively invariant with respect to πb\
B = {6 G (α, + oo): int C is negatively invariant with respect to TΓJ

By Proposition B, int C is positively invariant or negatively invariant,
but not both, with respect to each πb, b> a. Thus A U B = (α,+ <*>)
and Af]B = 0 . We now show that both A and B are open. If
c e (a, + oo) — A = Bf then there exist a? 6 int C and £ > 0 such that
xπct e ext C. Since π is continuous xπbt e ext C for all 6 sufficiently
close to c. Hence B is open. Similarly A is open. The connectivity
of (α, +oo) implies either A or B must be empty. This completes
the proof.

PROPOSITION 4. Let C be a cycle of πa. If int C is positively in-
variant with respect to every πb, b> a, then ext C is positively in-
variant with respect to every πb, b<a. A similar result holds if
b > a and b < a are interchanged.

Proof. Let xeC and T be a trajectorial arc of Cc(x), c>af

which contains x as a nonend point. Then T is a transversal with
respect to τrδ, b Φ c, Moreover, if τ is the fundamental period of C,
then Tπa[ — τ,τ] is a connected neighborhood of C which contains
no critical points. Choose a neighborhood U of x, 0 < σ < \c-a\, and
0 < ε < τ so small that Uπb[ — s, ε] c Tπa[τ, τ] for all δ € [α-σ, α + σ]
This is possible because π is continuous. We can now define a map-
ping h of [α, α + tf] into S = {xπbε:,be [α, α + σ]} by λ(6) = #τrδε. Λ, is
continuous since π is continuous. For b Φ d, xπbε and xπdε cannot
be equal; for if they were Proposition2 would imply that Tπa[ — τ,τ]
contains a critical point. Hence h is one-to-one. Obviously, h is an
onto mapping. A one-to-one continuous mapping of a compact space
onto a Hausdorff space is a homeomorphism. Thus S is an arc. Since
int C is, by assumption, positively invariant with respect to πb, b > a,
we have S c int C. Moreover, (xπa[0, e]) U S U (xπa+σ[0, e]) forms a
simple closed curve J such that int J c Tπ[ — r, τ] and i n t J is a
neighborhood of xπaε/2 relative to int C. Let j/ e int J and set



190 ROGER C. McCANN

Jt = (xπa[0, t\) U (xπa+σ[0, ί]) U {xπbt: be [a, a + σ]} .

For each t, 0 < t < ε, Ĵ  is a simple closed curve. Since π is con-
tinuous, y e ext J f for t sufficiently small. But for t = ε, ye int Jε =
intJ . The continuity of π implies there is an se(0, ε) such that
yeJs. By the construction of Js and since y e int J", 7/ must be an

element of {xπb s: b e [a, a + σ]}. This shows that int J consists solely
of trajectorial arcs from the systems πb1 be [a, a + σ].

Now let V be a neighborhood of xπaε/2 such that V Π int C c int J.
Then there is an a, 0<a<σ, such that xπbe/2e V for all 6e[α-α:,0].
For b e [a-a, 0), xπbe/2 cannot be an element of int C for then

xπbε/2 c F π int C c int J c [J{xπc[0, ε]: ce [α, a + σ]} .

This, by Proposition 2, implies that T7ra[-r, τ] contains a critical point.
Hence for b e [a-a, 0) we have xπbε/2 e ext C and therefore, by Pro-
position B, Ci(x) c ext C. Proposition 3 now implies the desired result.

Proposition 4 allows us to assume throughout the remainder of
the paper that if C is a given cycle of τrα, then int C is positively
invariant with respect to every πb, b < a, and negatively invariant
with respect to every πb, b>a. If the opposite invariance properties
hold, the following propositions remain valid after the obvious modi-
fications are made.

DEFINITION 5. Let C be a cycle of πa. If there is an x e ext C
such that Li(x) = C or L~(x) = C, then C is called an external limit
cycle or a external negative limit cycle, respectively. Similarily, if
there is an x e int C such that Lt(x) = C or L~(x) = C, then C is
called an internal limit cycle or a internal negative limit cycle, res-
pectively.

DEFINITION 6. Let U be a neighborhood of a simple closed curve
C. Then Z7-int C and U-ext C are called an outer neighborhood and
an inner neighborhood, respectively, of C.

PROPOSITION 7. Let C be an external limit cycle of πa. Then,
given any outer neighborhood U of C, there exists an ε > 0 such that,
for each be [α, α + ε], U contains both an external limit cycle and an
internal limit cycle of πb (the two cycles may coincide). A similar
result holds for C an internal limit cycle and be [α-ε, a].

Proof Let V c U be an outer neighborhood of C containing no
critical points and such that int C U V is simply connected. Let x e C,
yeextC be such that Li(y) = C, and Γ c F b e a trajectorial arc of
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Ce(x), c < α, containing x as an endpoint. Then T is a transversal
with respect to πbf bΦc. Since L+(y) = C, 3/eextC, and F is an
outerneighborhood of C, there is a τ > 0 such that yπa[τ, + o o ) c F .
Let yγ, y2e yπa[τ, +00) be consecutive points of intersection between
Ci(γ) and T with y2eC + (y1). Then the trajectial arc of Ci(y) and
the subarc of T connecting y1 and y2 form a simple closed curve Ja V
such that int J-int C a V. Now Li (yj = Li(y) = C a int J and Pro-
position B imply y2πa(0, +oo)cintJ ' . Since y2eCi(y^) and π is con-
tinuous there is an e > 0 such that Ct(y^ intersects int J for \b-a\ < ε.
If ytπbt e int J for some £ > 0, then yjch[t, ©o) must be a subset of
int J ; for if it were not yjcb[t, 00) would intersect J and Proposition 2
would imply int J— int C, and hence V, contains a critical point.
Moreover, by the continuity of π, and the fact Li{y^ = C, we may
assume that ε was chosen so small that Ci{yγ), |δ-α|<ε, intersects
T at least twice between y2 and x. This is true because Ci(y^
intersects T infinitely many times and the only limit point of the
intersections is x, [2, VIII, 1.2] and [2, VIII, 1.5]. The trajectorial
arc connecting two such consecutive points of intersection and the
corresponding subarc of T form a simple closed curve Jb such that
int Jb c int J and int J>int C c F . Moreover, int Jb is positively in-
variant with respect to πb by Propoisition B. Thus int Jb and ext C
are both positively invariant with respect to πb. Hence int Jδ-int C
is positively invariant, so that Ci(x) c i n t Jb — int C which is compact
and contains no critical points. By the Poincare-Bendixson Theorem,
[2, VII, 1.14], Li{x) is a cycle Cb. Since int Jb is positively invariant,
but not invariant by Proposition B, and Cbf] C — 0 by Proposition 1,
we have Cb Π 3(int Jδ-int C) = 0 . Thus Cb is an internal limit cycle of
πb contained in int Jb c Z7. For c sufficiently large yjch [c, 00) c int Jb and
therefore yjrb[c, °o)c int Jb — int Cb. The Poincare-Bendixson Theorem
now implies the existence of an external limit cycle. This completes
the proof.

In a similar manner it can be shown that

PROPOSITION 8. Let C be an external negative limit cycle of πa.
Then, given any outer neighborhood U of C, there exists an ε > 0
such that, for each 6e[α-ε, α], U contains both an external negative
limit cycle and an internal negative limit cycle of πb (the two cycles
may coincide). A similar result holds for C an internal negative
limit cycle and be[a, a + ε].

LEMMA 9. Let Dλ and D2 be cycles of a complete family such
that D1dintD2 and that int D2—int Dx contains no critical points.
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// d and C2 are distinct cycles in int Dz—int A> then d c i n t d or
C2 c int d

Proof. Since int D2—int A contains no critical points, we must have
A c int Cit i = 1, 2. Thus int d Π int C2 ̂  0 . Then int d c int C2 or
int d Π ext C2 ̂  0 . In the first case int d c int d Therefore
d c: int C2 or d Γl d =£ 0 The latter is impossible by Proposition 1.
In the second case, d (int C2) Π int Cι Φ 0 . Therefore C2 n int CtΦ 0
and C2 c int d since int d ίs either positively invariant or negatively
invariant for the system containing C2 (Proposition 3).

Let A and A be as in the statement of Lemma 9. Then

LEMMA 10. If C1 and C2 are distinct cycles in int A —int A
such that d c e χ t d» then C2 c int Cx

Proof. By Lemma 9, C2 c int C1 or d ^ int d d cannot be
contained in both int C2 and ext d Therefore C2 c int d

In a topological space X, it is possible to define limits of nets of
subsets XidX as follows. Let lim infX; consist of all limits of
nets of points xt e Xi let lim sup X{ consist of all limits of subnets
of points Xi e Xt. Obviously lim inf X{ c lim sup X{. If equality holds,
the net Xi is said to converge to its limit and we write

lim Xi = lim inf Xi = lim sup Xt .

DEFINITION 11. A net (R\ πt)9 i contained in a directed set con-
taining 0, of dynamical system is called regular if

( i ) 7Γ; —> π0 in the sense that if Xi—+x and U —> t then xfliti —> xπot.
(ii) critical points are independent of the index i.
(iii) to each noncritical point x there corresponds a subset T of

R2 which is a transversal with respect to each π{ and contains x as
a nonend point.

In [3] the following theorem is proved.

THEOREM D. Let (i22, τr€) be a regular net of dynamical systems.
Let Ci(Xi) be a cycle of (R2, π^ with fundamental period Ti(Xi). If
lim inf dfe) ̂  0> then

(1) // TiiXi) —»0, then lim d ( ^ ) exists and is a single critical
point.

(2) // lim inf d(^») intersects a cycle CQ(x), then τ{ (x^ —̂  τ0 (x)
and lim Ci(Xi) — C0(x).
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(3) // lim inf C ^ ) intersects a noncyclic trajectory, then

DEFINITION 12. Let Ca(x) be a cycle of πa. Then τa{x) will denote
the fundamental period of x with respect to πa.

PROPOSITION 13. Let C be an external limit cycle of πa. There
exists an outer neighborhood U of C and an ε > 0 such that U con-
sists entirely of periodic points of the systems πb, be [a, α + ε]. A
similar result holds for C an internal limit cycle and be [α-ε, α].

Proof Let xeC and V be an outer neighborhood of C which con-
tains no other cycles of πa or critical points and such that V U int C is
simply connected. Moreover, by Theorem D, V may be chosen along
with a σ > 0 such that if Cb (y) is a cycle of πb in V with | b-a \ < σ,
then I τa(x)-τb(y) | < l/2τa(x). By Proposition 7 there is an ε, 0 < ε < σ
such that, for each be [a, a + s],V contains a cycle of πb. Thus the
fundamental periods cycles of πa+ε which lie in V are contained in
[l/2τa(x), 3/2τβ(a?)]. This, Theorem D with each i = a + ε, and the
fact that cycles of distinct systems do not intersect imply that there
is a cycle D of πa+e in V such that int D—int C contains no cycle of πa+ε.
Set Z7 = int D—int C. U is an outer neighborhood of C by Lemma 10.
Let A denote the set of periodic points of πb9 be [α, α + ε], which are
contained in U. We will show that A = U. Assume the contrary that
there exists B, we U— A and consider the sets

F = {int Cb(y): ye A, Cb(y) a cycle, w e ext Cb(y)}
G = UF.

Since weU, we have weextC = extCa(x), so that FφQ)- If
Cb(y) (zGdU, then τb(y) e [l/2τa(x), 3/2τa(x)]. Proposition 7 and
Theorem D now imply, respectively, that dG Π ext C Φ 0 and dG
consists entirely of periodic points. Lemma 9 implies that dG Γi ext C
is a cycle Cd(z) where zeU and de[af α-f-ε]. Moreover, since
w e ext C6(2/) for each int Cb(y) in F and Cb(w) is not a cycle for any
b e [α, α + ε], we have w e ext Cd(z). dφa since C^z) = dG Π ext C c F
and the only cycle of πa in F is C. Since U Φ A, Cd(z) Φ D. Hence
d Φ a + ε. Also, by the construction of Cd(z), there is no cycle B of
τr6, b e [α, α + ε], in U such that C^z) c int B and w e ext JB. Thus Cd

is either an external limit cycle or an external negative limit cycle,.
[2, VIII, 3. 3]. Proposition 7 or 8, respectively, now implies the existence
of a ce[a, α + ε] such that a cycle Cλ of πc has the property that
Cd(z) c int Ci and w e ext Cx. This contradiction implies A— U. This-
completes the proof.
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In a similar manner it can be shown that

PROPOSITION 14. Let C be an external negative limit cycle of πa.
There exists an outer neighborhood U of C and an ε > 0 such that
U consists entirely of periodic points of the systems πb1 be [α-ε, a].
A similar result holds for C an internal negative limit cycle and
be [α, α + ε].
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