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ON A SIX DIMENSIONAL PROJECTIVE
REPRESENTATION OF THE HALL-

JANKO GROUP

J. H. LlNDSEY, II

It is shown that there is a unique group G with property
/: G is a central extension of Z2 by the Hall-Janko group of
order 604,800 in which a 7-SyIow subgroup S7 is normalized
by an element of order four. Also, G has a six-dimensional
complex representation X. The proof is rather round-about.
First, it is shown that there are at most two six-dimensional
linear groups X{G) projectively representing the Hall-Janko
group, and all such linear groups are algebraically conjugate.
The character table and generators found by M, Hall for
G/Z(G) are used. It is shown that a linear group L over
GF(9) coming from the one candidate for a six dimensional
group projectively representing the Hall-Janko group actually
satisfies property /. This is done by showing that L has a
permutation representation on 100 three-dimensional subspaces
of (GF(9))6 and the image is permutation isomorphic to HalΓs
permutation group. Hall later studied the geometry of these
subspaces. In the course of constructing the character table
of any group G with property I, G was found to have a six-
dimensional representation. Once this representation is known
to exist, it is possible to give two easier ways of construct-
ing generators. The faithful characters on G are given in
the appendix with only one representative of each pair of
algebraically conjugate characters.

This paper fills a gap in [11] concerning a six-dimensional re-
presentation X with character χ of a central extension G by the
Hall-Janko group. In § 3, G is the subgroup of <?L(6, 9) coming
from X(G) in § 2 taken modulo 3. In § 4, G is any group with
property I. In all cases, G turns out to be the same group. By
[11], §9, Z = Z{G) has order 2 and Q(χ(G)) = Q(VT). We let χ' be
the algebraic conjugate of χ and let Z = <—1>. The characters ψt

and Pi are the characters from character tables for the Hall-Janko
group and U3(3) respectively, in [9]. For p a prime, we let Sp be
a p-Sylow subgroup of G and let S7 = <7Γ7>. By [11], § 9, (7- ΐ)/t7 = 6 =
[N(S7): C(S7)] and C(S7) = S7Z. We let β, ε, and w be primitive
seventh, fifth, and third roots of unity, respectively. Also, i is an
element of order four in GF(9) and ά means a taken modulo a prime
ideal dividing 3.

Con way, [6, p. 86], independently discovered this projective re-
presentation from the existence of the Hall-Janko group as a section
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in Conway's group.

2* Construction of the matrix group χ(G). Using the notation
of [9], χχ' = t i and χχ = fQ + t u + either Ψ16 or f17. Let α, 6, c,
and £ correspond to those elements in [9]. We may let X{a) =

/0 1 0\ /0 1 0\
diag (β, β\ β\ β~\ β-\ /5-4), X(e) = 0 0 1 0 0 0 1 , and X(t) =

\1 0 0/ \1 0 0/

f r o r Since c^ac^tf, this corresponds to multiplying the
permutations in [9] from right to left. The permutation represen-
tation of G on 100 letters corresponds to ^0 + ^1 + ΊAY The permu-
tation representation of H on 36 letters corresponds to ft+ft+ft + ft,
where H p* U3(S), [9]. We may write X(b) = Σ Ae.f,gX(te)X(cf)X(a*)
with Σ over 0 ^ - e ^ 6 , 0 ^ - / ^ 2 , - l ^ ^ O . We may also
insist that Σo<^6 A_e,f>g = 0 for all /and g. For 0 ̂  F^ 6, 0 ̂  i ^ 2,
and O ^ G ^ l ; trace X(aEcFtGb) = trace

* ^ — E,-F,~G ~ 2^0^e^G^-e,-F,-G

By [11], §11, a central extension of Z2 by £73(3) is trivial and
G contains a subgroup H^ Z73(3) in which we take α, 6, and c. If
G = 0, then aEcFtGb e ίZ" and its cycle structure (using the permutation
representation giving p0 + pQ + ft + ft) will determine x(aEcFtGb) —
trace [X(α£JcFίGδ)] = 7A^Et^Ft^G. If G = 1, then the cycle structure
(using the permutation representation giving /Ψ\> + ΨΊ + 'ΨV) determines
the class of aEeFtGb within permutation of 7ΓX and π2, and within a
sign. Now if "t" is the element of order 3 in H with | CH("ί") I =
108, then 27 | | CG("Γ) | and "ί" corresponds to Γ, so X(Γ) has eigen-
values w, w, w, w, w, w. As C(T)/T & AQ and T is conjugate to T"1,
X|C(Γ) has two 3-dimensional constituents representing A6 projec-
tively. Allowing confusion of χ with χ', χ(π) = l + ε2 + ε~2 + ε2 + ε-2 + l
or l + ε + ε~1 + l + ε2+ε-2. It must be the former since χ(τr)χ(τr)' =
^(π) - - 4 where ε' = ε2. Therefore, χ(π) = 2Θ, and χ(πT) = - ^ =
( + 1 ± l/T)/2.

By [9], C{TύK- Γi> ̂  A4. As X | ^ T J has some two dimensional
constituent with kernel contained in ^T^, by [1], C(T^jζT^ is iso-
morphic to SL(2,3). Therefore, Jx is conjugate to —Jx in C ^ )
and TiJi is conjugate to — TJγ. Similarly, C(π)/<X> is the nontrivial
central extension of Z% by Aδ and πJγ is conjugate to —πJλ. There-
fore, all faithful, irreducible characters of G vanish on Jιy T^u πjlf

and πVi As Jι with eigenvalues i,i,i, —i,—i,—i is represented
faithfully in each of the 2-dimensional constituents of C(π) ?&
<V> x SL(2,5), there is an element πδeC(π) of order 5 with χ(τr5)
or χ(πby = —3^ or —2^ — θ2. Clearly, π5 is not conjugate to π, and
τr5 - τrx or πξ. Since 1 - ψfa) = χ(π^χ(πy9 χ(π^ Φ - SO, Now χfa J) 2 =
1 + ̂ 14(̂ 1̂ ) + t16ori7^iJr) = 1 + θi and χ(τrxj) = ±θ<. Letting ^ = ± 1
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and θi = # l o r 2, and using the permutations and character tables in
[9]: becl(K) (write δ ~ K), 7AQy0y0 = 0; ab~K, 7i4LliO,o = 0; a2b~K,

7A_2,0,0 = 0; α 3 δ ~ c , 7A_3,0,0 = 0; α4δ ~ α, 7A_4,0,0 = - 1 ; aδb ~ tb±2>
7A_6fo,o = l; α6δ - c, 7A_6,o,o = 0; cδ - JfΓ, 7A0>-1,0 = 0; αcδ ~ α, 7 A _ w , 0 =
— 1; a2cb ~ tb±2, 7A-2,-i,o = 1; α3cδ ~ w, 7A-s,_1,0 = 2; a4cb~a, 7A^^u0 =
— 1; aδcb~c, 7A_5,_1,0 = 0; α 6 cδ~α, 7A_βf_i,0 = — 1; c2b~K, 7A0,_2,0 =
0; ac2b~tb4, 7A_1,_2,_0 = 1; αVδ~α, 7A_2,_2,0 = - 1 ; αVδ~u, 7A_8,_8,0 =
2; a*c*b~a, 7A_4,_2,0 = - 1 ; a5c2b~K> 7A_β,-2,o = 0; αVδ~α, 7A_6,_2,0 =
- 1 ; ί6 - ±τrΓ, ±τr2T, 7Ao,o,-i = δ^fl^; ±αί6 - Γ ^ , 7A^1,0,_1 = 0;
a2tb ~ ±TR, 7A_2>(W = δo; a*tb ~ ±π*Jx (here i = 1 or 2 will be
assumed), 7A_3,o,-i = 0; α4tf> - ±τrjj, 7A_4,0,_1 = δ_^_2; α5ίδ - ± 2 Έ ,
7A_5,o,_1 = ^ αβίδ ~ ± α , 7A_β>0,-i = ^ ^ίδ - ±ττje/, 7Λ,-i,-i = ^ 0 ;
actb ~ ±a, 7A_1,_1,_1 = δ4; a2ctb — ±JBΓ, 7A_2,_1,_1 = 0; cΛtfδ ^ 7Γe/"ir

7A_8,-if-i = 0; α4cίδ - ± α , 7A_4,_1,_1 = δδ; α5cίδ - ±π*Γ, 7A_B,-i,-i =
δ_3^_3; a?ctb~±a, 7A_6, 1̂,_1 = δ6; c?ti>~±πiT, 7A),_2,_1 = §A; αc2ί& -
±R, 7A_1,_2,_1 = 2δ_4; αVίδ - ± π ' Γ , 7A»lf_I,.1 - δ96>4; αVίδ - TΓV,,
7A_3,_2>_1 = 0; αVίδ ~ π*J lf 7A_4>_2,_1 = 0; αVίδ - ±7rfJ, 7A_5,_2,_1 =
M e ; αVίδ - ±τr;, 7A_6,_2,_1 = δ_5(l + θ6).

Making an arbitrary choice of ε and possibly conjugating by
— 7 3 0 7 3 and replacing t by — ί, we may take 0_L = 0X and cLL = —l
Now 0 = ΣeAe,0,_i is rational and —Θ1 + 8_φ_2 = 0 or — 1. As there
are 3 other terms —Θ1 + δ_2θ_2 is odd, and cL2#_2 = — θ2. Similarly,
δsθ0 + <5_36L3 is odd, and δ_dθ^ = δ3θ'o. In 0 = Σ.-Aβ,-2,-n 2δ_4 and δ_5

cannot have the same sign or the 4 other ^ terms could not cancel
the ± 3 . Therefore, we may let 2<5_4= -2<58 and <?_5(l + 06) = δB(l + θ6).

There exists a matrix P such that P~1X(G)P is unitary. For

all A in X(N(a)): P~ιA'P = P-'A-ψ = (P-'AP)-1 = (P-ιAF)' =
P'A'(P')"1 and PP'A'iPP')-1 = A!. As X\N(a) is irreducible PP' =
al6 for some scalar α. Then for BeX(G), B'1 = P(P~ιBP)-ιP~ι =

-1 = PP'B'(P')~ιP-1 - aI,B'cr% = B'. Therefore, X(G) is
forced to be unitary when X(N(a)) is taken in normal form.

Although the ^ and δ4 can be determined uniquely by X(b)
being unitary, it is easier to use p1 taken mod 3. This breaks up
into the sum of the 3-modular representation U obtained from the
definition of Z73(3) and its algebraic conjugate. We only have to
check this for 3-regular elements. Let U and its algebraic conjugate
have modular characters θ and θ\ respectively. As θ(a) is in GF(9)r

θ{a) = β*1 + β±2 + β±4 where β has order 7 in GF(S6), and θ'(a) =
- 1 - θ{a). Let i be in GF(9) with i2 = - 1 . As diag ( - 1 , i, i) is
not conjugate to its inverse, it corresponds to δ2. Then diag (1, ΐ, — i)
corresponds to u. These check since — I + ί + i — 1 — i — % — —2 =
^(δ 2 ) anάl + i - ί + l - i + i = 2 = p^u). As U(b2) = diag ( - 1 , i, i),

Z7(δ) may be taken with eigenvalues ±(—i), 1 - i, ±(1 - i). It
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must be —, otherwise, b and b2 have identical centralizers. Then
θφ) + θ'{b) = 0 = ft(δ).

In our normal form, X\ζa, c> taken mod 3 splits into distinct,
irreducible, 3-dimensional subspaces. Therefore, xί = x2 = xz — 0 and
x4 — χδ = χ6 = 0 are the unique irreducible, proper subspaces for
X\ζa, 6y taken mod 3, and one of these subspaces is invariant for
X\ H= <α, 6, c} taken mod 3. In taking mod 3, the top right or
bottom left 3 by 3 block of X(b) vanishes.

Let ί2 = — 1 in GF(9), and ' be the automorphism i—+—i of
GF(9). As(β+β2+β4) + (β+β2+βy=-land(β+β2+β4)(β+β2+βy =
2, β + β2 + β4 — 1 ± % in taking mod 3. As θ, + θ2 = 1 and θβ2 = - 1 ,
θ1->-l±i. Therefore, mod3 either -θλ = /3 + β2 + /34 and -0 2 =
/33 + /95 + βQ or -Θ2 = β + β2 + β4 and -θ, = β3 + β5 + βQ. The
upper right 3 by 3 block of X(6) is obtained from the lower left
block by replacing β by β~ι and changing signs of all terms. There-
fore, if one choice of -θt or — θ2 = β + /52 + /S4 makes the lower
right vanish, then the other choice makes the upper right vanish and
we may assume that the upper right vanishes. In the following,
work mod 3. Then the (1, 4) entry of X(b): Θ1-δoβ

2+θ2β
4-δ1β

5-δ2β
6~

0. Suppose -θx = /3s + β5 + β\ Then -θ2 = β + β2 + β4 and

- / 3 3 + /35 + β° - β - δcβ
2 - δβ* - δ2β

6 = 0 ,

impossible, as the coefficients of β and 1 are —1 and 0. Therefore,
-θx = β + /52 + β4 and -/5 - /34 + /32 - 1 - β* - δo/32 - δ,β5 - δ2β

Q = 0.
The coefficient of all /3* is - 1 , so δ0 = - 1 , δ1 = 1, and <52 = 1. By
t h e (1,6) entry : - & A - ^5/S2 - δ6β* - S4/S4 - S3%£6 = 0. If -θo =
-θλ = β + β2 + β\ then ί β (^ + β5 - β2 - β4) - δ5β

2 - δ6β
3 - δ,β4 = 0,

and the coefficients of 1 and β are 0 and <53, impossible. Therefore,
-ΘQ = -θ2 = β3 + βδ + β6 and δ3(l + /9 + /55 + /36-/33)-δ5/S2-δ6/53-δ4/54 Ξ 0.
The coefficient of all βi is <53 and δ5 = — δs, δ6 — δS9 and δ4 = — δ3.

Letting X(6) = (6^ ), then ΣJ>i,zbi>4 = 0. We may perform this
calculation in Q(l/5)[/3] and collect terms where β has a certain
exponent mod 7. The result is (constant) (1 + + β6). The constant
can be determined to be 0 by letting β = 1 since Σ Λ , / ) f f = 0 and the
biyj become 0. The coefficient of 1 in 49]>χ36 i > 4 is -SδQ - θ2 + 2^ -
2δ2 + 2δ5 + δBθ'Q - 2δ8 - δ9θ4 - δa(l + θ6) = 3 - θ2 + 2 - 2 - 2<53 + &A -
3δ8 - δ8θ6 - δ96>4 = 0. If δ3 = 1, then 1 - θ2 + θ1 - 3δ8 - δ8θ6 - δ9θ4 = 0.
The terms other t h a n — Sδ8 must add to ± 3 which is impossible.
Therefore, δd = - 1 , and 4 - 3δ8 - δ8θQ - δ9^4 = 0. Now δ8 = 1. Then
1 - £8#6 - δ9θ4 = 0, δ9 = 1, and θ'β = 6>4. From the coefficient of /9 in
Yf)i>zbit4 - 0: 0 = ̂  + δ0 - ^ + 2δ2 - 2δ4 + δ8ίί - 2δ7θ, - 2δ8 + 2S8(1 + θ9) =
- 2 - 2 δ A + 2^6. Then δ7 = - 1 and θz = θ[. From 0 = - Σ < A , - 2 , - i =
δ7^3 - 2δ8 + ^9^4 + δίQθ6 + ί β (l + ίβ) = -θί-2 + θ'β + δ1Qθ5 + l + ^6, so
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δ10 = 1 and Θb = 0J. The δlfB entry is θί + 2β2 - 0J/93 - θ'φ* - (1 + Θ6)β5 = 0.
If θ6 = θx = -β - β2 - β\ then the coefficient of 1 is - 1 and the
coefficient of β is 1, a contradiction. Therefore, θ6 = #2 and X(b) is
uniquely determined. G, a central extension of Z2 by the Hall-Janko
group with a representation of degree 6 is unique in the strong
representation group sense: If G1 and G2 are 2 such groups and φ is
an isomorphism: GJZ{G^) —> G2/Z(G2), then 0 lifts to an isomorphism
Φ of (?! —> G2. In particular, the outer automorphism of G/Z(G) lifts
to G.

3* T h e existence of G satisfying property /• We shall now
show that there exists a central extension of Z2 by the Hall-Janko
group with an element of order 4 in N(S7). First replace X(G) by

(A 0 A)X(G)(A 0 A)-1 where A = \ β2 /34 β I (Then the representa-
_ \β4 β β2)

tion is written over Q(λ/—7, i / 5 ) . In fact it may be written over
any field Ξ> Q(i/ 5) over which X(N{πΊ)) can be written. It cannot
be written over the reals since the 1-dimensional representation is not
a constituent of the symmetric tensors of X (g) X.) Now take X(G)
mod 3. (We shall now use G for the image of ζX(t), X(δ)> taken
mod 3 and no longer make assumptions about G, such as G/Z is the
Hall-Janko group or the representation of degree 6.) We set Θx =
— 1 + i and — β — β2 — β4 = —1 + i. Then identifying elements
with their matrices, t = X(t) = (-& Q J in 3 by 3 blocks with E =

(— 1 + i 1 ~~ ^ ~~i \ / 1 + i —1 — i

— i —1 + i 1 — i I and F = I — i 1 + i —1 — i ) . Also
1 - i — i -1 + i/ \-l-i

0 - i -l-i\

Q N)

W#£)with2SΓ=|-l

where bar is the nonidentity automorphism of GF(9).
Λ 1 1 I -i*\

I 1 1+i),
II 1 /

-1 l + ί\ / I 0
i i I, E becomes I — 1+i i — 1 ], and F becomes

-i i I \ 0 0 -i I
1-1 0 -l + ί\
( 1 + i i 1 . We may change coordinates again and replace
\ 0 0 -i j

( 1 0 l-i\
this last G by CGC-1 with C = -1-i -i -1 0 / 3 . Then E

\ 0 0 i /
I i 0 i \

becomes /3, JP becomes —/3, ΛΓ becomes I—1 — i — 1 + i — 1 I, N
V 0 0 1-i
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/ 1-ϊ -i -l-ί\
b e c o m e s d ί a g ( — i , — 1 — i, 1 + i ) , a n d Q b e c o m e s ( — 1 — 1 0 I.

\ - l - i 1 1 /

We consider permutations in [9] as acting with letters on the right

and matrices as acting with vectors on the right. From [9], we may-

define the letters in the following way: 00 = 00, 01 = ίOO, 02 = δίOO,

03 = bHbHOO, 04 = btbHbHOO, 05 = btbHbHOO, 06 = tbtbHOO, 07 = tbHbHOO,

08 = btbHOO, 09 = δ2ί00, 10 = tbHbHOO, 11 = bHbHOO, 12 = bHbHOO, 13 =

tbHOO, 14 = btbHbHOO, 15 = bHbHOO, 16 = &3ί00, 17 = δ7ί00, 18 = bHbHOO,

19 = btbtbHOO, 20 = δ5ί00, 21 = tbHbHOO, 22 = δWίOO, 23 = bHOO, 24 =

bHbHOO, 25 = b'tbHOO, 26 = tbHbHOO, 27 = btb5abH00, 28 = δWίOO, 29 =

btbHOO, 30 = bHOO, 31 = 62ί6eί00, 32 = tbHbHOO, 33 = &7έδ2ί00, 34 = tbHOO,

35 = δWίOO, 36 = btbHbHOO, 37 = t6ί63ί00, 38 = &βέ65ί00, 39 = tbHbHOO,

40 = bHbHbHOO, 41 = btbHbHOO, 42 = bHbHOO, 43 = 65ί6rί00, 44 = tbHbHOO,

45 = btbHbHbHOO, 46 = bHbHbHOO, 47 = tbtbHOO, 48 = bHbHOO, 49 = bHbHOOr

50 = tbtbHOO, 51 = tbHbHOO, 52 = tbHbHOO, 53 = tbHOO, 54 = tbtbHOO,

55 = tbHbHOO, 56 = tbtbHbHOO, 57 = 65ί64έ00, 58 = tbHbHOO, 59 = tbHbHOO,

60 = 6ί6ίOO, 61 = btbHbHOO, 62 = tbtbtbHOO, 63 = tbHbHOO, 64 = δWίOO,

65 = tbHbHOO, 66 = bHbHOO, 67 = ίδ sί00, 68 = btbHbHOO, 69 = bHbHOO,

70 = #>7ί00, 71 = ί63έ00, 72 = btbHbHOO, 73 = 64ί6sέ00, 74 = ί&ίOO, 75 =

tbtbHOO, 76 = bHbHOO, 77 = 6ί65έ00, 78 = bHbHbHOO, 79 = bHbHOO, 80 =

bHbHOO, 81 = btbtbHOO, 82 = btbHbHOO, 83 = 6W£00, 84 = δWίOO, 85 =

bHbHOO, 86 = 62ίδ4ί00, 87 = tbtbHbHOO, 88 = bHbHbHOO, 89 = δWίOO,

90 = bHbHOO, 91 = δίδ3ί00, 92 = δWίOO, 93 = btbHOO, 94 = bHbHOO, 95 =

tbHbHOO, 96 = 6ί5rί00, 97 = ibHbHbHOO, 98 = UbtbtbHOO, 99 = 62ί65ί00.

We let 00 be the space xλ = xϊ — x3 = 0. We have just defined

the spaces i for 00 5Ξ ί ^ 99. Checking that G permutes these spaces

in the same way that [9] permutes letters involves the following

typical calculation: t(bHbH)OO = tO2. = 73 = bHbHOO to equivalent to

(using δ8 = 1) bHbHbHb\tOO) = tOO. Fixing ίOO is equivalent to having

all O's in the bottom left 3 by 3 block of the matrix over GF(9).

It is sufficient to check, as George Shapiro has done by computer,

that the following matrices have all O's in the bottom left 3 by 3

block: bHbHbHb*, bHbHbHbHb1, btbWtbtbHV, btbHbWtb2, btbtbHbtbHtf,

bHbHbHb2, bHbtbHbHV, bHbWtbtbHb7, bHbtbHV, bHbHbHb2, bHbHbHbttf,

bHbHbHbtbtV, bHbtbHbW, bWtbHbHb\ bWtbtbtV, bHbHbHb5, bHbHbtbW,

bHbHbHbHb7, bHbHbHbHb6, bHbHbHb*, bHbtbHb7, bHbHbtbW, btbWtbHbtbHbHb5,

bHbHbHbHbHbHV, bibHbHW, bHbHbtbtb\ bHbHbtbtb8, btbHbtbHb2,

bHbHbHbtbtbHb4, bHbHb, bHbWtbtbHb7, btbHbtbHb4, bHbHV, bHbHbtbHb2,.

bHbHbHbHb6, bHbHbHbHb7, btbtbtbtb2, bHbHbHb4, bHbHbHbtb7, bWtbW,

bHbHbHbtbtbHb6, bHbHbHbHb6, UbtbHbHbW, btbHbHbHbtbtb7.

This permutation representation of these matrices gives a non-

trivial (t interchanges xί = x2 = x3 — 0 and xt = a;5 = »6 = 0) homo-

morphism of the matrix group <jf, &)> onto the permutation group
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<Ί£, by. The latter is transitive, b has order 8 and fixes 00, and tb
has order 15. Therefore, (3)(8)(100) divides the order of the per-
mutation group ζt, by, which, by the classification in [9] of the large
subgroups of the Hall-Janko group, must be the Hall-Janko group.
Suppose that M is in the kernel K of this permutation representa-
tion. As M fixes 00 and 01, M = (£ ^ in 3 by 3 blocks. We shall
use the coordinates in which N, the top left block of δ, is diagonal.
Now b-'Mb e ίChas diagonal block form and b~1Mb = (^f~1 % ( ^ ^ )

Then (Lr ®) commutes with M where W=QN~1 = ( 1

We may use b2 instead of b and then W is replaced by V=l i
\1

/0 -i
For U= W, V, or Y where Γ = W + iV = 0 - 1 - i - i we

\1 - /
have Z7A = i??7. Also, as Y is nonsingular, A and 5 are similar

/-1 + i -i 0\
and F F " 1 commutes with J5. Now, F F " 1 = [ — 1 — i i i) has

\ - l 1 + i 1/
characteristic polynomial — a;3 — ώ 2 + ia; — 1 which has distinct roots:
— ΐ, 1 — i, and —1 + i. Therefore, the top 3 by 3 constituent of if,
and, similarly, the bottom, has a matrix with distinct eigenvalues in
GF(d) in its commuting algebra and can be diagonalized over GF(9).

Let L be the subgroup of G fixing the spaces 00 and 01. Then
by [9], L is in diagonal 3 by 3 block form and L/K ^ PSL(2, 7).
Either the top left of bottom right 3 by 3 constituent of L has
PSL(2, 7) as a constituent, say the former. Let U be the top left
component of L and V the top left component of K. Then U permutes
the homogeneous spaces of V. As U is not solvable, these homo-
geneous spaces are not 1-dimensional. Suppose that V has homo-
geneous spaces of dimensions 1 and 2. As V was diagonalizable over

la 0 0\
GF(9), U may have its elements taken in the form: (0 b c I. This

\0 d el
is impossible as then 7 | | PSL(2, 7) 11 (P* c))\ \ (80)(72), a contradic-

\\a ejI i
tion. Therefore, there is only one homogeneous space and V is
scalar. As the bottom component of V is similar to the top, K is
scalar. By unimodularity, K has order 2.

4* Existence of the six^dimensional representation of G* We
now prove the following theorem:

THEOREM. There is a unique central extension G of Z2 by the
Hall-Janko group with N(S7) having an element of order 4. Further-



182 J. H. LINDSEY, II

more, G has a representation of degree 6. Uniqueness is in the
strong sense that if Gx and G2 are two such groups and φ is an
isomorphism: GJZ(G^) —> G2/Z(G2), then φ lifts to an isomorphism
Φ: GX->G2

We shall use the following lemma:

LEMMA. Let the p-block B have P as a defect group where P is
nonahelian of order p3. Let Z(P) £ Z(G) and ζ e B be a character
of G faithful on Z(P). The p2\\\G |/ζ(l).

Proof of the lemma. By [7], (87.18) there exists a p-regular
class Cn with element c such that P is a Sylow-p-subgroup of
C(c), and | G |ζ(c)/| C(c) |ζ(l) equals some p-loaύ unit. Now P has p2

linear characters with Z(P) in the kernel and (p — 1) characters of
degree p distinguished by their action on Z(P). As Z{P) g Z(G),
the representation U corresponding to ζ is scalar on Z(P) and U\ P =
Im®V where V has degree p. By [7], (51.2), U\C(F) = W<g>Ip,
where W is some representation of C(P). Then as ce C(P), p \ ζ(c).
Let pa\\\G\. Now p divides ζ(l) to the same power as it divides
paζ(c)/p3, and it divides at least to the pa~2 power. It cannot divide
to a higher power or ζ would be in a p-block of defect 1.

Now, let G be the G in the theorem. As in [9], ψ3 and ψ5 are
in a block Bx{2) with defect group equal to a defect group of the
class of π. Then the defect group is Q, the quaternions. Let χif

i = 1, •••, n, with degrees xt = δ< (mod 7), δ{ — ± 1 , be characters in
jBi(2) Π Bt(7), where JS1(7) is the nonprincipal 7-block for G. By
(7Γ7, -1) block orthogonality: Σ » ^ * = 2 8 8 ~ 1 6 0 β y (^^ ~^7) block
orthogonality: Σ<5 = 1 + 1. Then B^Ί) has exactly 2 characters, χL

and χ2 in ^(2) Π 5,(7) and Σ ^ ^ = 128. By the lemma 64 ||.τ,. For
some xi9 (xiy 3) = 1 and x{ = 265α. As ^ = ± 1 (mod 7), x{ = 26 and
xi — 64 = the other .τ̂  . Let i; = χλ and /i = Z2 Field automorphisms
take ^ 3 to ψ3, ^(2) to ^(2), ^(7) to ^(7), and Bx{2) Π ̂ (7) to
^(2) Π -Bi(7). Therefore, i; and /i are either a complete set of algebraic
conjugates, or are rational.

The characters v and ψ3 lie in J5L(2) and give the same modular
linear character.

Therefore, | G |v(Γ)/(2160)(64) = \ G |(16)/(2160)(160) = 0 (mod2), 81 v(T)
and v{T) = - 8 (mod 24). By (T, ~πΊ) block orthogonality in βL(2):
μ(T) + v(T) = ψδ(T)-fz(T) = - 1 6 . As 322+162 > 1080, ^( ϊ 7 ) - - 8 .
Similarly, v(Γ 1)Ξ//(Γ 1) = - 2 (mod 6), ^(Γ1) + MΓ1) = ^ ( Γ 1 ) - ψ 4

8 ( Γ i ) = - 4 .
and v(ϊ\) = - 2 . Similarly, μ(7rT) + v{πT) = Ψ6(πT) - ψz(πT) = - 1 .
Now ^(TΓΓ) = v(T) = 2 (modl/"5"). If V(TΓΓ) is rational, then for μ
or v, say v, | v{πT) | ^ 3 and | v(πT) \2 + | v{π2T) |2 ^ 18 > 15, a con-
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tradiction. Therefore, v and μ are algebraic conjugates contained
in Q(ε + έ).

Since JΊ has an inverse image in G of order 4, by an earlier
argument, characters faithful on G are 0 on J1 } TJX, πJlf and π2J19

or any other class C conjugate to — C. By [8], v in Bx(2) vanishes
on elements whose 2-singular part is not conjugate to an element
in the defect group of ^(2), that is not conjugate to 1, —1, or Jx.
Therefore, v vanishes on J", R, K, TJ, TR, πj, and π\J.

As in [11], §9, the automorphism of Q(χ̂ : χ̂  a character of G)
which comes from lifting the automorphism of the 7-modular field:
x —> x7, gives an automorphism of the tree of 2 (̂7) interchanging μ
and y, and, therefore, flipping the stem. Therefore, B^l) has 3
pairs of algebraically conjugate characters of degrees 64, α, and b;
and a rational character in the middle of the stem of degree z.
Also, B^l) has another character other than μ or v with a degree
not divisible by 3. This degree must be 8, 400, 64, or 50, for 54r
any degree as shown later.

Suppose G has a character ζ of degree 8, Then ζ\H^ Z73(3) =
ft+2ft, ft+ft, ft+ft, or ρ7+po. By reciprocity and pg = Ψo + Ψi + f?,
(Ψi\H> Po) = 1 if i = 0, 1, or 7, and 0 otherwise. In the case ζ | H =
ft + 2p0 or ρδ + pQ, (ζ21H, p0) ^ 2. The possibly reducible characters
a and β of the skew-symmetric and symmetric tensors, respectively,
corresponding to ζ2 have (a \ H, p0) ^ 1, (β \ H, /o0) ^ 1, and we must
have equalities. This is a contradiction as BQ(7) of G has no character
of degree = —1 (mod 7) and < 28. In the case ζ | H= p9 + p0 or
p7 + ft, ζ is not real and (ζ2, to) = 0. As (ζ21 ίί", ft) - 1, β (defined
as before) - ψλ. Then 4 = ψ,(J) = β(J) = ((3 + I)2 + 8)/2 = 12, a
contradiction.

Suppose G has a rational character ζ of degree 400. Then ζ is
0 on 5-regular elements and 0 = (yf ζ) = 8/189 + 1/7-ζ(Γ)/135-C(Γ1)/18 =
5/27 - ζ(Γ)/135 - CίΓJ/lβ. Now, 2|ζ(Γx) and ζ(Γ,) = Ijmod3), so
C(2\) - 4 or - 2 . If ζ(Tx) - - 2 , then ζ(Γ) - 40 > τ/1080 and im-
possible. Therefore, ζ(Tλ) = 4, ζ(Γ) = - 5 . The contribution to
1 = (ζ, ζ) from β, α, Γ, and ϊ\ is 50/189 + 1/7 + 5/216 + 4/9 - 7/8
and 1/8 remains. Now, ζ(TJ) = ζ(Γ) Ξ ζ(Γβ) = ~5 (mod2.) Then,
I ζ(TJ) I = I ζ(TR) I = 1 and 0 is left in (ζ, ζ). Then 0 = ζ(J) = ζ(TJ) =
± 1 (mod 3), a contradiction.

If the degree 400 occurs, it is in a pair and we already have
degrees 64, 64, 400, 400 all = 1 (mod 7). There can only be one
more 64, 50, or 400, otherwise, the last degree is greater than
64 + 64 + 400 + 400. As 3 |64 + 64 + 400 + 400, z = 50. Then the
final pair consists of odd degrees, impossible, as then the unimodular
subgroup of the linear group in the final pair complements Z2.
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If z = 64, then let rj be the rational character of this degree. Then
0 = rj(J) = ηfaj) (mod 5) and ηiπj) = 0. Furthermore, η(πx) = ηfaj) = 0
(mod 2), η(π^ = 4 (mod 10), and ηfa) = 4, otherwise, η(πL) + η(π§ ^
62 + 62>50. Also, yiTJzzηiTJjΈΞO (mod 2), η{T,) = U (mod 3), and
1 y(Tj) I ;> 2. Now, ^(TΓΪ7) = 0, as otherwise,

^ I ?(α) |2/7 + I ^(7\) 1736 + | η{π,) |2/50 + 1^(TΓ2) |a/50

^ 1/7 + 1/9 + 8/25 + 8/25 + 1/15 + 1/15 > 1.

Then η(T) = η(πT) = 0 (mod 5), 4|^(Γ), ^(T) Ξ 1 (mod 3),
(mod 60), and η(T) = -20. Then

1 = (97,7?) ^ 1/7 + 1/9 + 400/1080 + 8/25 + 8/25 > 1 ,

a contradiction.
If both a, b = 64, then z — (6)(64) corresponds to a character in

a 2-block of G of defect 1. By (1, -1) block orthogonality, this block
has a character with Z in the kernel a contradiction. If a = 64, 6 Φ 64,
then jf?:(7) has 1 (mod 3) characters with degree 50, and z = 50.
This is impossible as 6 would then be odd.

Therefore, α, 6, and 2 are all distinct from 8, 64, and 400. The
number of degrees equal to 50 is 2 (mod 3). Therefore, we may take
a = 50, and b = z = 0 (mod 3). As 3 ||228 = 2(50 + 64), b or z is
divisible exactly by 3. Such a degree must be 6; 48; 384 has 2-defect
1, impossible; or 300. The possibilities are 228-12 = 216, 228-96 = 132,
600 - 228 = 372, 114 - 3 = 111, 114 - 24 = 90 divisible exactly by 5,
and 150 — 114 = 36. The last case is impossible by 3 — 7 block
separation as 36 is the only degree in J5X(7) corresponding to a 3-block
of defect 1. The degree equation must be 50 + 50 + 64 + 64 = 6 + 6 + 216
and G has a representation of degree 6. Some G has been given by
6 by 6 matrices over GF(9) and uniqueness of G follows from the
uniqueness of X(b). The character table of G is completed in the
appendix. As t7 = 1 for G, if Gλ\>G and Gx has a unimodular re-
presentation of degree 6, then by [10], 7| | | G | . As in the proof of
[3], 3F, CGι(S7) = ZiG^. As [NGl(S7): CQι(Sr)] = [NG(S7): CG(S7)) = 6,

Gx = GZ(GX).

As I dπJKπ^ \ = 20 < 52, Cfa)/<7c^ has no 5-block of defect 0,
and by [7], 88.8, is not a defect group. Since Jλ has order 4 in C(π),
C(ττ)/<V> & SL(2, 5) and has no character of 5-defect 0 faithful on
<—l>. Therefore, G has only 1 5-block of defect 1 and representa-
tions in this block have Z in the kernel. Then 5 does not exactly
divide any degree of a faithful irreducible character of G.

5* An alternative construction* There is a simple way to con-
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struct matrix generators of G, but it would be hard to show directly
that these generators generate a finite group. Let Q c G be a
common 2-Sylow subgroup of C(π) and C(T^) isomorphic to the
quaternions, by choosing Tι appropriately. If U is the unique
irreducible nonlinear representation of Q, then X\ Q ~ I3 0 U. By
[7], (51.7), X(N(Q)) = R(g)S for some linear groups R and S. From
C(T1)KTiy^SL(29S)9 we see that S\[N(Q):C(Q)] and S\[S:Z(S)].
By [7], (51.2), π and 2\ lie in R®I2 so 22 | | [S: Z(S)] and S~SL(2, 3).
As no conjugate of 2\ commutes with TΓ, i? does not have a normal
5-Sylow subgroup. By [l]'s classification of two and three-dimensional
groups, R/Z(R) ~ Aδ. If R has a two dimensional constituent, then
an element diag(l, —1, —1)0 72 is centralized by SL(2, 5) x SL(2, 3),
a contradiction. This determines R since the 3-dimensional representa-
tions of Aδ are related by automorphism from S5. An element u of
order three in J3 0 S is centralized by TΓ in i? 0 J2, so u has eigen-
values w, w, w, w, w, w. This determines S.

We may take v = diag (ε, έ, 1) e R and π = v 0 /2 G X(G). Then
X((C(ττ))') is block diagonal in 2 by 2 blocks and each diagonal block
represents SL(29 5). The diagonal blocks differ by conjugation by
matrices and possible algebraic conjugation: ε—> ε2. As the matrix
conjugation fixes S elementwise, the conjugating matrices are scalar.
We shall add to R 0 S an element y = A® B@C in 2 hγ 2 blocks
with <S, A) ~ SL(2, 5). As before, S uniquely determines the matrix
group <S, A> and we may take A with eigenvalues ε, έ. Then πy
has an eigenvalue one and is conjugate to π or π2. As πy has
another eigenvalue 1, B has eigenvalues ε, ε. Then C has eigen-
values ε2 and ε~2. These eigenvalues determine the representations
of SL(2, 5) by the second and third diagonal blocks and determine B
and C. Then <j/, R 0 S> is a subgroup of order at least 5[(2)(720)]
of G and, by [9]'s classification of large subgroups of G/Z(G), is G.

Alternatively, we could have replaced v by C(u) of order 2(1080).
This is facilitated by replacing R(& S by S(&R and taking S(u) to
be diagonal. Then C(u) is block diagonal in 3 by 3 blocks. The
two diagonal blocks elementwise are related by interchanging w and
iϋ, and are identical elementwise on N(Q) Π C(u) ~Z6x Aδ. In either
of these constructions generators of X(G) may be gotten from the
generators of the two and three-dimensional groups in [1].
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Appendix

G/Z ~ Hall-Janko group \Z\ = 2, the notation follows [9],

e

6

50

216

β4

14

84

126

252

56

448

350

336

a

- 1

1

- 1

1

0

0

0

0

0

0

0

0

J

- 2

10

24

0

6

4

- 1 0

- 2 0

- 8

0

- 1 0

16

R

2

2

0

0

2

4

2

4

0

0

- 6

0

IT

0

2i

0

0

0

0

0

0

0

0

0

0

TJ

1

1

0

0

0

1

- 1

1

- 2

0

2
2

TR

- 1

- 1

0

0

2

1

- 1

1

0

0

0

0

ZΓleT"

0

- 1

0

1

- 1

0

0

- 0 2

0

0

1

g

5

0

- 8

- 4

- 1 5

- 9

9

2

16

- 1 0

- 6

0

2

0

- 2

2

0

0

0

2
2

2

0

202

0

6

2-h4&>

4

- 6

4-60i

2

202

- 2

0

- 4

- 1 - 0 1

0

1

-201

- 1

20i

2

-1-01

- 2

0

1

- 0 i

0

0

- 0 2

1

0

1
1

- 0 1

1

0

- 1
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