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BAD BEHAVIOR AND INCLUSION RESULTS
FOR MULTIPLIERS OF TYPE (/>, q)

GARTH I. GAUDRY

To my teachers, Bert Bundesen and Peter Lettice

This paper is concerned with the space of multipliers from
Lp(G) to LQ(G) for various pairs of indices p and q, where G
is an LCA group. We show that if l^p<2<q^co9 and
G is noncompact, then there are multipliers of type (p, q) whose
'Fourier transforms' are not measures. This is an extension
of a result of Hδrmander, and completes work begun in two
earlier papers (this journal, 1966). In the second part, we
show that if G is infinite, many of the natural inclusion re-
lations between spaces of multipliers are proper.

In his paper [10], Hδrmander established a large number of im-
portant results for multipliers from Lp(Rn) to Lq(Rn). Subsequently,
many of the results of the early parts of Hormander's paper have
been extended, by using quite different techniques, to the case where
Rn is replaced by a general (usually noncompact) LCA group. See
Figa-Talamanca [2], Gaudry [5], [6], [7] and Figa-Talamanca and
Gaudry [3]. However, some of Hormander's results (notably the
general form of his Theorem 1.9) have remained hitherto inaccessible
with only the techniques of the cited papers available.

The main purpose of this paper is to give a simple, all-embracing
approach which allows us to complete the process of generalization
and, moreover, provides a much simpler approach to many of the
results of [2], [3], [5], [6] and [7]. As an extra bonus, we are able
to show that the natural inclusion relations between spaces of multi-
pliers are proper whenever the underlying group is infinite. One such
result (Theorem 4.1) yields a qualitative extension of Theorem 2.4 of
Hormander's paper.

To set the notation and terminology, G and X will denote LCA
groups in duality. For 1 ^ p ^ oo, write LP(G) for the usual Lebesgue
space constructed relative to Haar measure on G. The spaces CC(G),
M(G) and MU{G) will be the spaces of continuous functions with compact
supports, of Radon measures, and of bounded Radon measures on G
respectively. S will denote the Fourier transform of the object S
whenever it is defined.

For 1 ^ p ^ q ^ co, the space L\ of multipliers of type (p, q) is
defined as follows. When p < oo, it is the space of continuous linear
operators T from Lp to Lq which commute with translations: Tτa — τaT
for all aeG, where τaf(x) = f(x — α). In case p = oo, it is further
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required that each T be continuous for the weak* topologies on domain
and range spaces. The norm on L% will be denoted | | ϊΊ | P f f f . It can
be shown [6] that the space L% is identifiable with a certain subspace
of the space of 'quasimeasures' on G (for the definition of the space
of quasimeasures, see [5]), each TeLq

p being defined by convolution
with a unique quasimeasure. Further, the space h% can be identified
in a natural way with the space Mξ(X) of Fourier transforms of re-
presenting quasimeasures. The elements of M${X) are quasimeasures
on X. We shall write f for the Fourier transform of the quasime-
asure which represents T. The results we present in § 3 can be
thought of as showing that the elements of M}{X) are in general very
for from being 'smooth'.

2* The basic construction* The methods used below center
around a construction, for general LCA groups, of analogues of the
Rudin-Shapiro polynomials. The latter objects are usually defined on
the circle group: see [11, Exercise 6, p. 33]. A construction similar
to that given below has been used by Hewitt and Ross [9] in a dif-
ferent but related context.

LEMMA 2.1. Let G and X be LCA groups in duality, with G
noncompact. Suppose that Ω is a fixed open relatively compact
subset of X and that φ = φ0 is a nonzero function in CC(X) with
support in Ω and φ e L\G). Then if δ > 0 is small and arbitrary,
and n is an arbitrary positive integer, there is a function φn e CC(X)
supported by Ω with the properties:

( i ) ψneV(G);
(Π) \\φn

(iii) | | £ .
(iv) \\φ

where C and D are positive constants independent of n and δ. When
G is discrete, δ may be taken to be zero.

Proof. Define the sequences (φk)o, (ψk)o inductively as follows.
Choose <pQ = ψQ = φe CC(X). For k > 0 define

[ψk = Φk~ι - Xk-iΨk-i

where the χh_x are characters chosen (by using the noncompactness.
of G) so that

( 2 )
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and
i\\φk\\l ^ (2 -
\\\ψk\\t ^ (2 - δ)mm(\\φk_x\\l l l ^ J l i ) .

It is not difficult to check that £>w so defined does indeed satisfy the
conclusions of the lemma (observe that

\\2 \fk\* = 2(1 <pk_x|
2 + It*-iI 2 ) = - 2* + 1 |φ 0 1 2 )

W i t h C= \ \ φ o \ \ l f D = \\φo\\2.

REMARK. If G is discrete, X = Ω and φ0 = 1, the function $>n

takes the values 0, ± 1 and has precisely 2* points in its support.

3* Multipliers whose transforms are not measures* Hormander
[10, Th. 1.9] proved that when G = Rn and l ^ p < 2 < g ^ o o , there
are multipliers of type (p, q) whose Fourier transforms are not
measures. His proof depends on the crucial Lemma 1.2, which is in
turn heavily dependent on the fact that the underlying group is Rn.
Our first main result is that Hormander's theorem continues to hold
when Rn is replaced by any noncompact LCA group. This has pre-
viously been established ([3, Th. 2.5]; [7, Th. 6.6]) in the case where
p = 1 by methods which are quite different from those employed here
to establish the more general result.

Before proceeding, it will be useful to recall that if pr denotes
the index conjugate to p, then Lq = L% with equality of norms.
Further, in the triangle x ^ y, 0 ^ x ^ 1, log || T\\Ptq is a convex func-
tion of (1/p, 1/q). For these facts we refer the reader to [10, Th.
1.3] or [1, Chapter 16].

THEOREM 3.1. Let G be a noncompact LCA group, 1 ^ p < 2 <
q <̂  oo. Then there are multipliers of type (p, q) whose Fourier trans-
forms are not measures.

Proof. Suppose the contrary: then if Ω is any open relatively
compact set in X, the mapping T —* t\Ω (the restriction of f to Ω)
carries LQ

P(G) into M(Ω), the space of (bounded) Radon measures on
Ω. Then by the closed graph theorem, there is a constant K with

( 4 )

for all TeLq

p(G). To show that the graph of the mapping is closed,
one uses for example the fact that the mapping T —• f is continuous
from Lq

p{G) into the space of quasimeasures on X, the latter space
being endowed with its weak* topology. For this, see [6]. By the
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duality result referred to above, we may suppose without loss of
generality that the point (1/p, 1/q) lies in the triangle bounded by the
lines x = 1, y = 1/2, x + y = 1. Join the points (1/p, 1/q) and (1/2,
1/2) by a straight line, and let it meet the line x = 1 in the point
(1,1/s). Then 2 < s. By convexity,

where 1/p = a/2 + (1 — a)/I, 1/q = a/2 + (1 — a)/s. But it is known
[10, Ths. 1.4,1.5] that L\(G) = L°°(X) with | |T | | 2 , 2 - \\f |U and that
Ll(G) = LS(G) with || T\\lfS = \\T\\LHG) if 1 < s ^ oo, in the first case
T being defined by pointwise multiplication of Fourier transforms by
the element of L°°(G) with which it is identified, and in the second
case the operation being ordinary convolution. So (4) yields

( 5 )

for all TeL\G) with TeCe(X) say.
Choose φ = φ0 to be a function in CC(X) with support in Ω,

U l̂lβo = 1, and φeL\X). For each positive integer n, let 9>Λ be the
function defined in Lemma 2.1 with δ = δn = 1/w. Since ^ e Γ Π L°°(G),
it follows that ^ e l j ( l ) , Define ρn = <pJ2in+1)/2. Then (a) H^JU ^ 1;
(b) H^IU ^ C(l + l/ri)*2-mn+1)-+0 as n - ^ oo; and (c)

\\pn\\2 ̂  (1 - l/2^) w / 2 ί)2- 1 / 2 ^exp(-l/4)i)2- 1 / 2 ^ 0

as w —• co. Since /0Λ is supported by the fixed relatively compact set

Ω, it follows from (a) and (c), PlanchereΓs theorem and Holder's in-

equality that i \ρn(χ)\dχ does not tend to zero as n—>oo. On the

other hand, since H^Hoo—>0 and \\pn\\2 is bounded, it follows from
Holder's inequality that ||/δw||β—>0. Substituting f = pn in (5) and
letting n—+oo, we have a contradiction.

REMARK 3.2. If l ^ p ^ g ^ 2 (equivalently 2 ^ p ^ q ^ oo), it
is easy to show that Jiί c L ί ( I ) (resp. Lfoc(X)). For this see [10>
Th. 1.6].

4* Proper inclusion relations. It is known [10, § 1.2] that
L\ = Mbd(G), that Ll(G) = I/^X), and that if 1 < pt < p2 < 2, then
L} c Ljj c LJ| c L?. It has recently been shown ([3], [12]) that when
G is infinite, the above inclusions are all strict. In this final section,
we wish to prove results of a similar type. It should be noted that
the elementary techniques used below can be applied to establish the
results on proper inclusions contained in [3] and [12].

Young's inequality, restated, yields the information that if 1 <
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p < q < oo and 1/p - 1 / 0 = 1 - 1/r, then Lr(G) c LJ(G). By using
the fact that L% = Z# for all pairs of indices (p, q) and applying the
Riesz convexity theorem, we see that if 1 < p0 < qQ < oo, p0 = gj, l/p0 —
l/<?o - 1 - 1/r, K ft < ft < ft < 2 and I/ft - l/g« = 1 - 1/r (i = 1, 2),
then 1/ c Ljj c Lq

v\ c Ljj. It is our aim to show that whenever G is
infinite, the inclusions are all strict.

Let us remark once for all that since for all pairs of indices
(ft <z), L} = Lp

q', there is another set of results which can be obtained
immediately from those below simply by passing to the conjugate
pairs of indices.

The proof that all the inclusions are strict proceeds step by step
as follows.

THEOREM 4.1. Let G be an infinite LCA group, 1 < p < q < oo.
and 1/p — 1/q = 1 — 1/r. Then the inclusion Lr(G) c Lq

p{G) is strict.

Proof. The proof divides into two cases.
( i ) G is discrete. If Lq

v(G) = sr(G), then there is a constant K
with

( 6 ) \\t\\r^K\\i\\p>g

for all trigonometric polynomials t on X (closed graph theorem). We
suppose without loss of generality that the point (I/ft 1/q) lies in the
triangle bounded by the lines x = 1, x + y = 1, x = y. Define the
point (1,1/s) as in the proof of Theorem 3.1. Then by convexity,

11/11 < l l / l l α II f\\1~a

II & \\p,q ^ l l H l o o II o \\s

where 1/q — a/2 + (1 — a)/s, so that (6) implies

for all trigonometric polynomials t on X. Since G is discrete, we may
define the Rudin-Shapiro sequence (φn) on X as in the lemma with
X = Ω s o a s t o s a t i s f y \\φn\U - 1, \\φn\U ^ 2 ( +1)/a, \\φn\\. = 2nl% \\φ»\\r =
2%/r, each <pn being a trigonometric polynomial. Substituting in (7),
we get

( 8 ) 2nlr ^ dg2nα/22α/22(1~α)*/β = K2nl92al2 .

But 1/p + 1/r - 1 = 1/q and p > 1. So 1/q < 1/r, and (8) is contradicted

when n —* °°.
(ii) G is nondiscrete; i.e., X is noncompact. As before, if we

assume that L% — Lr(G), we get an inequality

( 9 )
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for all φ e CC(G) say. Now manufacture a sequence (φn) of functions,
supported this time by a fixed open relatively compact subset of (?,
with \\φn\U bounded, | | £ J | β β - > 0 and \\φn\\2-A0. Each φn is in CC(G).
For such a sequence (φn), \\φn\\r does not tend to zero if r < 2 since
if it did, Holder's inequality would imply that \\φn\\2—*0. Again, if
r ^ 2, \\φn\\r does not tend to zero since all the functions φn are
supported by a fixed compact set and \\φn\\2 does not tend to zero.
In either case, we have a contradiction of (9).

COROLLARY 4.2. If G is an infinite LCA group and

1 < p < q < oo9l/p - l/q = 1 - l/r ,

then Lp*Lr(G) Φ Lg(G).

Proof. Actually more than this is true. For if the space Ap is
defined as in [4], then the dual of Ap is Lp [4, Th. 2]. However,
Lp* Lr(G) a Ar

p' a Lq(G), and since L;'(G) Φ Lq'{G), it is easy to deduce
that A '(G) Φ Lq(G).

REMARKS 4.3. ( i ) When G = Rn, there are well-known examples
of functions which are in Lq

p but not in Lr(G), for example φ(x) ~
(1 + \x\)~*lr. See [10, Th. 2.4].

(ii) Corollary 4.2 is a strong form of a special case of a theorem

due to Yap [14].

The second step in the program is to show that if 1 < p1 < p0 <
Qo < °°> Po = tfό> and ljPi — 1/Qi = 1 — l/r (i = 0,1), and G is infinite,
then Lq\ Φ Lq°0. We shall treat the noncompact case first, since it is
simpler.

THEOREM 4.4. Let G be an infinite (noncompact) LCA group,

1 < Po < Qo < °°, Po = QΌ, Qi < Qo, I/Pi - 1/ffi = 1 - l/r (i = 0, 1). Then

Proof. If the two spaces in question were identical, an applica-
tion of the closed graph theorem would yield the existence of a positive
constant K for which

(10) \\T\\Vvqι^K\\T\\p^.

We now interpolate in much the same kind of way as we did in the
proof of Theorem 4.1. Define a by the relations

1/p. = α/2 + (1 - α)/l
( ' l/?0 - a/2 .
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Then by convexity [10, Th. 1.3] for all φeCc(G), we have

(12)

(Recall that for 1 < s ^ oo, L[(G) = L8(G), with equality of norms.)
(10) and (12) taken together yield the inequality

(13) \\9*fK^κ\\φ\\^\\φ\\ιr\\f\\Pι

for all <p,fe CC(G). Choose and fix φ, fe CC{G). We now manufacture
two sequences (φn) and (ψn) of functions much as in the proof of
Lemma 2.1, but with a few modifications. Define

( <Po = ^ o = Ψ

(14) φ% = φ^ + t .- i ,^_ x (7t = 1, 2, .)

where the point xn^ is chosen so that the supports of φn_γ and ψn^1,Xn_1

are disjoint (^_i,a;%_1 is the α ̂ -translate of ψn^) and so that the
supports of f*<pn-i and (/*Ψv-i)χw_1 are disjoint. Then (14) leads to
the further relation

ίf*<Pn = f* Φn- , + (/ * Ψn-l)xn^

\f*ψn = f*Ψn-l ~ (/*ψV-l)*w_1

Arguing as in the proof of Lemma 2.1, we get that

Then substituting φn for φ in
(13), we deduce

(16) 2w/gi||<£>*/||,? ^Kt\\ψ\\aJ/l2\\φ\^za\\f\\v .

Now an/2 — n/q0 and l/q0 < 1/&. So we have a contradiction when
n—> oo.

In order to be able to establish Theorem 4.4 for the case of a
general infinite compact Abelian group, we shall construct modified
Rudin-Shapiro polynomials for the group G = ΠχZ(f) (complete direct
product) where r is a prime, and Z(r) is as usual the cyclic group
of order r. Our construction is itself a modification of an argument
due to Daniel Rider [13]. {We are grateful to Alessandro Figa-
Talamanca for drawing our attention to Rider's paper.}

*
LEMMA 4.5. Let r be a prime integer, G = ΠχZ(r), and X =

ΠχZ(r) (weak direct product). Write χ0, χ19 for the characters
of G induced by the elements ( 0 , 0 , • ) , ( 1 , 0 , 0 , •)> (0> 1> 0> 0 , •)>

••• of X. Write ζ = exp(2ττi/r). Then there exists a sequence {φk)T
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of trigonometric polynomials on G with the following properties.
( i ) φk has precisely rk points in its support.
(ii) φk is supported by the subgroup of X generated by χ0, , χk.
(iii) φk takes only the values 0, 1, ζ, , ζ r-\
(iv) Halloo ^ r ( fc+1)/2.

Moreover, φt{r~~l) — <Pk* *Ψk<> the (r — l)th convolution power

of φk, also has the properties (i)-(iv).

Proof. Observe first of all that if s is an integer, then

r-ι s. ίr (s = 0 mod r)

3=o (o otherwise.

Therefore if c0, , cr_! are arbitrary complex numbers,

(17)
r—1

Σ
r—1

3=0

2

=

r—1

3=0

Now define the sequence {Pi, , Pi"""1} k = 0,1, of r-tuples of poly-
nomials on G as follows. Define Po° = = PΓι = 1. Then define Ps

k+1

inductively as follows:

ps

k+1 = Σraχi+£sjPi (s = o, l , . . . , r - i ) .

It is easy to check that each of the functions Pk (s — 0,1, , r — 1)
has as its spectrum the subgroup of X generated by χ0, -Tk and has
Fourier coefficients taking the values 0,1, •• ,ζ r~ 1 only. Now by
virtue of (17),

since |χfc+1| = 1. Therefore | P | + 1 | ^ r{k+2)/2 (s = 0, 1, - •, r - 1; k =
0,1, •••). Define φk ~ P°k. Then the sequence (φk) enjoys properties
(i)-(iv).

Now it is not hard to see that the (r — l)th convolution power
% * *99fc of φk also satisfies conditions (i)-(iv). For its Fourier
transform is just the complex conjugate of that of φk.

We shall need one further result, namely a simple lemma relating
the space of multipliers on a group G to the corresponding space of
multipliers on a quotient group of G.

LEMMA 4.6. Let G be a compact Abelian group with dual X.
Suppose that Xo is a subgroup of X, and that 1 ^ p ^ q ^ <x>. Let
ψ be a bounded function on Xoy and ψr the function on X which
coincides with ψ on XQ, and is zero off Xc. Then ψ e M%(X0) if and
only if f eJlίJ(I).
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Proof. Write Go for the annihilator of Xo in G, so that the dual
of G/Go is Xo. Suppose first that ψeMq

p(X0). If f'eLp(G), then it
is well known that the function v on XQ obtained by restricting / '
to Xo is the Fourier transform of a function in LP(G/GO). On the
other hand, it is easy to see that the function on X obtained by ex-
tending ψv so that it is 0 off J o , is the Fourier transform of a function
(constant on cosets of Go) in Lq(G). We conclude that φ'eM}(X).
The converse is proved in a similar manner.

The compact case of Theorem 4.4 now follows.

THEOREM 4.7. Let G be an infinite compact Abelian group,

1 < Vo < Qo < °°, Po = q'o, ?i < ?o, l/2>» - I/?* = 1 - 1/r (ί = 0, 1) .

Then L%\ g L%\.

Proof. Lemma 4.6 shows that it suffices to prove the theorem
for a suitable quotient of G.

There are several cases to consider, depending on the group
theoretic structure of X, the dual of G.

Case ( i ) . X is not a torsion group. Then X contains a copy
of Z, the additive group of the integers. To establish this case, it
suffices to prove the theorem when G = T, the circle group.

If L%\ = L j , it follows that L%\ = !#}, and as in the proof of
Theorem 4.4, we deduce the inequality

(130 lly/llp'x^^ll^llill^llirll/ll.'!

I for all trigonometric polynomials / and φ, where l/qQ — a/2. Now
manufacture a sequence (φn) of Rudin-Shapiro polynomials with φjjc) =
± 1 for 0 ^k ^2n - 1, φn(k) = 0 for k ^ 2W, and ||^n||«» ^ 2(Λ+1)/2.
Replace both / and <p in (13') by <pn. Now |?>»*9>» — exp (2n — l)ix\ =
|Z?2»-i-il* where Z)fc denotes the Dirichlet kernel of order k. Now
[1, Exercise 7.5] \\Dk\\v,λ — k11* as i;->oo when 1 < pt < oo. (13')
yields the estimate

II A - i - i l U ^ ίr'.i.2% ( 1-α ) / 22w / 2 + l
= ϋΓ'2%/?Ό + 1

so that as ̂  —> oo, 2nlPl ^ ilf2%/3>0 for some constant M. But l/pt >
so we have a contradiction.

Case (ii). X is a torsion group, but contains elements of arbi-
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trarily large order. We may therefore assume that there is a sequence
Xlf X21 of cyclic subgroups of X of orders nly n2, where nk —> oo.
For each k, define the positive integer sk by the condition 2s k ^ nk <
2SA+1. Now manufacture a trigonometric polynomial tk on G (as in
the proof of Lemma 2.1) with tk = Σ i ^ ^ χί where cs = ± 1 and χΛ

is the generator of Xfc. Notice that the support of tk contains pre-
cisely 2Sk points.

If Lli = Lq

p\, we deduce (13') as before. Now (tk * ί*)^ is the charac-
teristic function of the subset {χ{:j = 0, - , 2s* - 1} of Xk. If Gk is
the annihilator of Xk9 then there are precisely nk cosets of Gk in (?,
each having measure l/nk. On one of these cosets, namely Gk itself,
tk*tk = 2s*. Therefore

\\tk*tk-\\p, ̂  M - ί

On the other hand, \\tk\\q[ £ 2 ( s ^ 1 ) / 2 , | | t t | U = 1, and IJί^U ^ 2 ( *+ 1 > / ί.

Subst i tut ing tk = φ = f in (13'), we derive the inequality

' ^

since l/g0 = α/2 and p0 = gj. Now if l/g0 < 1/QΊ, it follows that
1/Po < 1/Pi Since sk —> oo as fc —> oo, (18) leads to a contradiction.

Case (iii). X is a group of bounded order. In this case, appeal
to a known structure theorem [8, A.25] allows us to claim that X
contains a subgroup isomorphic to the weak direct product *Π?Z(r)
where r is a prime integer. It therefore suffices to prove the theorem
in the case where X = *ΠχZ(r). We seek, as before, to contradict
the inequality (13'). By Lemma 4.5, there exists a sequence (φk) of
trigonometric polynomials on G, having the properties (i)-(iv); further,
the sequence of (r — l)th powers (?>**•••* φk) also have properties
(i)-(iv). Observe now that the Fourier transform of the r th convolu-
tion power φk

r is precisely the characteristic function of the group
Xk generated χo>

 # >Zft Denote by Gk the annihilator of Xk in G.
Then Gk has precisely rk distinct cosets in G, each of measure l/τk.
Substituting φ — φky f — φk

{r~ι) in (13'), we derive the inequality
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^ '

where ikΓ is a constant, since <pΛ and φT~ι both have property (iv) of
Lemma 4.5, l/g0 = a/29 and p0 = q[. Since 1/^ > l/p0, (19) is contra-
dicted when k—> oo, The proof is now complete.

The final step in the train of argument puts Theorems 4.1, 4.4
and 4.7 together and interpolates so as to give the complete chain
of proper inclusions.

THEOREM 4.8. Let G bz any infinite LCA group, 1 < p1 < p2 <
pQ < 2, pQ — go, I/Pi — I/ft = 1 — 1/r (i = 0 , 1 , 2). Then the inclusions

Lr c Z4j c Z#|j c Lli are all proper.

Proof. We have already shown that Lrξ^Lq

p{ and that L*2giL*°.
It remains to show that L%\^Lq

v\.
If the last two spaces are equal, then the topologies on them

must be the same. (The spaces are both Banach, and [10, Th. 1.3]
shows that the embedding of Lq

v\ into L%\ is continuous.) Since, however,
1 < Pi < V2 < Po> there is an index a with 0 < a < 1, such that

l/p2 = alp, + (1 - a)/pQ ,

and

(20)

for all TeL}\9 by the Riesz convexity theorem. On the other hand,
since Lq

v\ Φ Ljj, there is a sequence (Tn) of elements of Lq\ with

WTn\\p0,QQ—*Q a n ( i II ΓJIpi.ffi = 1; substituting in (20), we deduce that
\\Tn\\p2,q2—>0- Since \\ Tn\\Pl>qi = 1 and the norms on the spaces Lq\
and Lq2

2 are equivalent, we have arrived at a contradiction.
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