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ON PARTIAL HOMOMORPHISMS OF SEMIGROUPS

B. D. ARENDT AND C. J. STUTH

Let S be a semigroup and T be a semigroup with zero
(Γ=Γ°). An ideal extension of S by T is a semigroup V
containing S as an ideal and such that the Rees quotient
V/S is isomorphic to T. A mapping a from T*=T—{0} into
S is said to be a partial homomorphism, if tu t2 e T*, tit2 Φ 0
implies (tit2)a=(tia)(t2a). Every partial homomorphism from
T* into S gives rise to an ideal extension of S by T. Further,
in certain cases every ideal extension of S by T is obtained
in this way. In this paper a characterization is given for all
partial homomorphisms from T* into S.

It is not known in general when all extensions of S by T are
determined by the partial homomorphisms of T* into S. Clifford has
shown this to be the case when S has an identity (see [2, §4.4]).
Further results in this direction have been obtained by Warne [4]
and Petrich [3]. The partial homomorphisms of a completely 0-simple
semigroup into an arbitrary semigroup have been determined by Clif-
ford [1].

An element x of a semigroup S is said to be prime if x does
not belong to S2. S is said to have unique factorization if every
nonzero element of S can be written uniquely as a product of powers
of primes. Of course, if S is not commutative, we must take the
order of the factors into account. We define the kernel of a homo-
morphism into a semigroup with zero to be the complete inverse image
of zero.

THEOREM 1. A [commutative] semigroup S has unique factoriza-
tion if and only if S is free [commutative] or the Rees quotient of
a free [commutative] semigroup.

Proof. Suppose S has unique factorization, and let X be the set
of primes of S. If OgS, then clearly S is free [commutative] on X.
So assume 0 e S, and let Fx be the free [commutative] semigroup on
X with homomorphism φ from Fx onto S such that xφ = x for all
xeX [2, p. 41]. Let K be the kernel of φ. Since S has unique
factorization, φ must be one-to-one on Fx — if, so S is isomorphic to
the Rees quotient FX\K. The converse is obvious.

COROLLARY 2. If S — S°, then there exists a semigroup U with
unique factorization and a homomorphism from U onto S with
trivial kernel.
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Proof. There exists a free semigroup F which is homomorphic
onto S with kernel K. Set U = F/K and use Theorem 1.6 of [2].

THEOREM 3. Let U be a semigroup with unique factorization
and let X be the set of primes of U. Let S be any semigroup. Then
any mapping a from X into S can be extended to a partial homo-
morphism of U* into S.

Proof. Omitted.

We denote by πa the equivalence relation induced by a mapping
a on its domain and use ^ for the usual partial ordering of rela-
tions on a set.

THEOREM 4. Let T = T° and S be semigroups. By Corollary 2
there exists a semigroup U with unique factorization and a homo-
morphism φ from U onto T with trivial kernel. Let a be any partial
homomorphism from U* into S such that πφ rg πa on U* and define

a': y* __*s as follows. If ye T* then there exists an xe Ϊ7* such
that y = xφ and we define yar — xa. Then ar is a partial homo-
morphism from T* into S. Conversely every partial homomorphism
of T* into S is determined in this manner. Finally, the mapping
a—*af is one-to-one.

Proof. ar is well defined since πφ S πa on Z7*, and it is a partial
homomorphism since a isβ Conversely, if a! is a partial homomorphism
from T* into S, then define xa = xφa' for xe £/*. If xλ, x2e U* with

Xix2 φ 0, then (XyX^φa! = {{x^){^))ocr and this in turn is equal to
(xίφaF)(x2φaf) since φ has trivial kernel. Thus a is a partial homo-
morphism from U* into S such that πφ <̂  πa on U*.

Now let a, β be partial homomorphisms from Z7* into S such
that πφ ^ πa, πφ ̂  πβ on U* and a' = β'. Thus for all xe U*,
xφa! — xφβ' => xa — xβ so a = β and the mapping is one-to-one.
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