SELF-ADJOINT DIFFERENTIAL OPERATORS

ARNOLD L. VILLONE

Let ${\mathscr H}$ denote the Hilbert space of square summable analytic functions on the unit disk, and consider the formal differential operator

$$L = \sum_{i=0}^{n} p_i D^i$$

where the p_i are in \mathscr{H} . This paper is devoted to a study of symmetric operators in \mathscr{H} arising from L. A characterization of those L which give rise to symmetric operators S is obtained, and the question of when such an S is self-adjoint or admits of a self-adjoint extension is considered. If A is a self adjoint extension of S and $E(\lambda)$ the associated resolution of the identity, the projection E_A corresponding to the interval A = (a, b] is shown to be an integral operator whose kernel can be expressed in terms of a basis of solutions for the equation $(L - \mathscr{L})u = 0$ and a spectral matrix.

Let ${\mathscr M}$ denote the space of functions analytic on the unit disk and ${\mathscr H}$ the subspace of square summable functions in ${\mathscr M}$ with inner product

$$(f, g) = \iint_{\mathbb{R}^2} f(z) \overline{g(z)} dx dy$$
.

Then \mathcal{H} is a Hilbert space with the reproducing property, i.e., for each z there exists a unique element K_z of \mathcal{H} such that

$$f(z) = (f, K_a).$$

Moreover, if the sequence $\{f_n\}$ converges to f in norm, $f_n(z)$ converges to f(z) uniformly on compact subsets of the disk. A complete orthonormal set for \mathcal{H} is provided by the normalized powers of z,

$$e_n(z) = [(n+1)/\pi]^{1/2} z^n, n = 0, 1, \cdots$$

From this it follows that \mathscr{H} is identical with the space of power series $\sum_{n=0}^{\infty} a_n z^n$ which satisfy

(1.1)
$$\sum_{n=0}^{\infty} |a_n|^2/(n+1) < \infty.$$

Consider the formal differential operator

$$L = p_n D^n + \cdots + p_1 D + p_0$$

where D=d/dz and the p_i are in \mathscr{A} . For f in \mathscr{H} the element Lf is in \mathscr{A} , but not necessarily in \mathscr{H} . To see this we take L=d/dz and $f(z)=\sum_{n=1}^{\infty}n^{-1/2}z^n$, from (1.1) it follows that f is in \mathscr{H} but Lf is not. In order to consider L as an operator in \mathscr{H} we must restrict the class of functions on which L acts in some suitable manner. Since our concern is with densely defined operators it is only natural to demand that powers of z be mapped into \mathscr{H} . This requires some restrictions on the coefficients of L. As an example consider the operator L=pD where $p(z)=\sum_{n=0}^{\infty}(n+1)z^n$.

We have $Le_k(z)=k(k+1)^{1/2}\pi^{-1/2}\sum_{n=k-1}^{\infty}(n-k)^{1/2}z^n$, and hence $Le_k\not\in\mathscr{H}$. A sufficient condition for the Le_k to be in \mathscr{H} is that the coefficients p_i be in \mathscr{H} .

Let $L = \sum_{i=0}^n p_i D^i$, where the p_i are in \mathscr{H} , and let \mathscr{D}_0 denote the span of the e_k and \mathscr{D} the set of all f in \mathscr{H} for which Lf is in \mathscr{H} . We now define the operators T_0 and T as follows.

$$T_{\scriptscriptstyle 0}f = Lf \;\; f \in \mathscr{D}_{\scriptscriptstyle 0}$$
 , $Tf = Lf \;\; f \in \mathscr{D}$.

THEOREM 1.1. T_0 and T are densely defined operators with range in \mathscr{H} , $T_0 \subseteq T$, and T is closed.

Proof. We first show that T is closed. Let $\{f_n\}$ be a sequence of functions in $\mathscr D$ such that $f_n \to f$ and $Tf_n \to g$, hence $f_n(z)$ and $Lf_n(z)$ converge uniformly on compact subsets to f(z) and g(z) respectively. But $Lf_n(z)$ also converges to Lf(z). Hence Lf(z) = g(z), |z| < 1, so $Tf \in \mathscr H$ and Tf = g.

Since \mathscr{D}_0 is dense in \mathscr{H} and $T_0f=Tf$ for $f\in \mathscr{D}_0\cap \mathscr{D}$ it suffices to show that the e_j are in \mathscr{D} . Since $Le_j=\sum_{i=0}^n p_i D^i e_j$ and $p_i D^i e_j$ is either zero or of the form $p_i e_k$ for some nonnegative integer k, it sufficies to show that $p_i e_k \in \mathscr{H}$. Let $p_i=\sum_{j=0}^\infty a_j e_j$, a simple computation yields

$$e_k e_j = [(k+1)\pi]^{1/2}[(j+1)/(j+k+1)]^{1/2}e_{j+k}$$

and consequently,

$$||e_k p_i||^2 \leq [(k+1)\pi] ||p_i||^2 < \infty$$
.

 $T_{\scriptscriptstyle 0}$ and T are respectively the minimal and maximal operators in ${\mathscr H}$ associated with the formal operator L. We now proceed to study the class of formal differential operators for which $T_{\scriptscriptstyle 0}$ is symmetric.

It is clear that the operator T_0 associated with the formal differential operator L is symmetric if and only if

$$(1.2) (Le_n, e_m) = (e_n, Le_m), n, m = 0, 1, \cdots.$$

We shall refer to those formal operators satisfying (1.2) as formally symmetric. As an example we have the real Euler operator

$$L=\sum\limits_{i=0}^{n}a_{i}z^{i}D^{i}$$
 ,

 a_i real. Then $Le_j = p(j)e_j$ where p is the characteristic polynomial

$$p(x) = a_0 + a_1x + \cdots + a_nx(x-1)\cdots(x-n+1)$$
.

Since $p(j) = \overline{p(j)}$, L is formally symmetric. A characterization of formally symmetric L in terms of the coefficients p_i is given in the next section. We now proceed to the consideration of the adjoint operators T_0^* and T^* . In what follows we shall make use of the result that if L is formally symmetric of order n, then the coefficients p_i are polynomials of degree at most n+i, $i=0,1,\cdots,n$. A proof of this is given in Theorem 2.2.

THEOREM 1.2. If T_0 is symmetric, $T_0^* = T$ and $T^* \subseteq T$. The closure of T_0 , S, is self adjoint if and only if S = T.

Proof. By Theorem 2.2 the coefficients p_i are polynomials of degree at most n+i. This implies that T_0 maps \mathcal{D}_0 into itself. In particular,

(1.3)
$$Le_{m} = \sum_{i=0}^{n+m} \alpha_{i} e_{i} , \quad 0 \leq m \leq n , \\ Le_{n+j} = \sum_{i=0}^{2n+j} \alpha_{i} e_{i} , \quad j = 1, 2, \cdots .$$

Using this we show that $T_0^* \subseteq T$. Let $g = \sum_{j=0}^{\infty} a_j e_j$ and $g^* = \sum_{j=0}^{\infty} b_j e_j$ be in the graph of T_0^* and consider the sequence $\{g_p\}$ in \mathscr{D}_0 defined as $g_p = \sum_{j=0}^p a_j e_j$. Since $g_p \to g$ we have $(T_0 e_k, g_p) \to (T_0 e_k, g) = (e_k, g^*)$. Hence $(e_k, T_0 g_p) \to (e_k, g^*)$. Now Lg is in \mathscr{L} and $T_0 g_p$ converges to Lg uniformly on compact subsets. Since the e_j are just the normalized powers of z, the power series expansion of Lg can be written as $\sum_{j=0}^{\infty} c_j e_j(z)$. Since $Lg_p(z) = \sum_{j=0}^p a_j Le_j(z)$ converges uniformly to $\sum_{j=0}^{\infty} c_j e_j(z)$, it follows from (1.3) that Lg_p has the same coefficient of e_m as does Lg for p > n + m + 1. Hence $(e_m, T_0 g_p) = \overline{c}_m$ for p > n + m + 1 and since $(e_m, T_0 g_p) \to (e_m, g^*)$ we have $c_m = b_m$. Therefore $g^* = Lg$, so that $g \in \mathscr{D}$ and $g^* = Tg$.

To show that $T \subseteq T_0^*$ it will suffice to show that $(T_0e_m, g) = (e_m, Tg)$ for all g in $\mathscr D$ and $m = 0, 1, \cdots$. Let $g = \sum_{j=0}^\infty a_j e_j$ be in $\mathscr D$ and g_p as before. Since T_0 is symmetric and $g_p \to g$ we have $(e_m, T_0g_p) = (T_0e_m, g_p) \to (T_0e_m, g)$. By precisely the same argument

as before $(e_m, T_0g_p) = (e_m, Tg)$ for p > n + m + 1, from which it follows that $(e_m, Tg) = (T_0e_m, g)$ and $T_0^* = T$. Since $T_0 \subseteq T$, $T^* \subseteq T_0^* = T$.

The closure S of the symmetric operator T_0 is given by $T_0^{**} = T^* \subseteq T$. Since T is closed $T^{**} = T$, from which it follows that $S^* = T$. Hence S = T implies $S = S^*$. Conversely if S is self-adjoint we have $S = T^* = S^* = T$.

A sufficient condition for T to be self-adjoint is given by the following theorem.

THEOREM 1.3. For $f = \sum_{j=0}^{\infty} a_j e_j$ set $f_m = \sum_{j=0}^{m} a_j e_j$. If $\sup_m ||Tf_m|| < \infty$ for each f in \mathcal{D} , then S is self-adjoint.

Proof. Since $T^* \subseteq T$, T symmetric implies $T = T^*$ and hence $S = S^*$. We show that (Tf, g) - (f, Tg) vanishes for all f, g in \mathscr{D} . If L is of order n we have $(Tf_m, g_p) = (Tf, g_p)$ for m > n + p + 1. Using this fact and the symmetry of T_0 we obtain

$$egin{align} (Tf,\,g_{kn}) &= (Tf_{kn+n+1},\,g_{kn}) = (f_{kn+n+1},\,Tg_{kn}) \ &= (f_{kn-n-1},\,Tg_{kn}) + (f_{kn+n+1} - f_{kn-n-1},\,Tg_{kn}) \ &= (f_{kn-n-1},\,Tg) + (f_{kn+n+1} - f_{kn-n-1},\,Tg_{kn}) \ &\qquad k = 1,\,2,\,\cdots \,. \end{split}$$

Therefore,

$$(Tf, g) - (f, Tg) = \lim_{k \to \infty} (f_{kn+n+1} - f_{kn-n-1}, Tg_{kn}).$$

Since the Tg_{kn} are bounded in norm this implies (Tf, g) - (f, Tg) = 0.

COROLLARY. If L is a formally symmetric Euler operator, then S is self-adjoint.

Proof. For $f = \sum_{j=0}^{\infty} b_j e_j$ in \mathscr{D} , Tf and Tf_m are given by $\sum_{j=0}^{\infty} p(j)b_j e_j$ and $\sum_{j=0}^{m} p(j)b_j e^j$ respectively, where p(x) is the characteristic polynomial for L. Hence

$$||\ Tf_m\ ||^2 = \sum\limits_{i=0}^m p(j)^2 \, |\ b_j\ |^2 \leqq ||\ Tf||^2$$
 ,

and the result follows.

2. Formal considerations. The formal operator $L = \sum_{i=0}^n p_i D^i$ is formally symmetric if

$$(Le_n, e_m) = (e_n, Le_m), n, m = 0, 1, \cdots$$

To obtain a characterization of the formally symmetric operators

in terms of their coefficients we first determine the action of L on e_k .

LEMMA 2.1. Let $L=\sum_{i=0}^n p_iD^i$ where $p_i(z)=\sum_{k=0}^\infty a_k(i)$ z^k . Then $Le_i=\sum_{j=0}^\infty c_{ij}e_j$ where

$$c_{ij} = A(i,j) \sum_{k=0}^{n} B(i,k) a_{j-i+k}(k) , \quad i,j = 0, 1 \cdots ,$$

$$A(i,j) = [(i+1)/(j+1)]^{1/2} ,$$

$$B(i,k) = i!/(i-k)! \quad i \ge k$$

$$= 0 \qquad \qquad i < k .$$

Proof. Consider the elementary operators $L_{pq} = z^p D^q$, $p, q = 0, 1, \cdots$. A simple calculation yields

$$L_{pq}e_m = B(m, q)A(m, m + p - q)e_{m+p-q}$$
.

Now consider Le_m (as an element of \mathcal{A}),

$$egin{align} Le_m(z) &= \sum\limits_{i=0}^n \sum\limits_{k=0}^\infty a_k(i) L_{ki} e_m(z) \ &= \sum\limits_{i=0}^n \sum\limits_{k=0}^\infty a_{k-m+i}(i) B(m,\,i) A(m,\,k) e_k(z) \ &= \sum\limits_{k=0}^\infty c_{mk} e_k(z) \quad |\,z\,| < 1 \;. \end{align}$$

But $e_k(z)$ is just a multiple of z^k , therefore it follows from the uniqueness of power series representation of elements of \mathscr{A} , that $\sum_{k=0}^{\infty} c_{mk} e_k$ converges to Te_m in \mathscr{H} .

It follows that L is formally symmetric if and only if the coefficients $a_k(z)$, z, $k = 0, 1, \dots$, satisfy the linear system

(2.2)
$$c_{ij} = \overline{c_{ji}}, \quad i, j = 0, 1, \cdots$$

The following provides a simplification of the system (2.2).

THEOREM 2.2. If $L = \sum_{i=0}^{n} p_i D^i$ is formally symmetric the p_i are polynomials of degree at most n + i.

Proof. Consider $c_{n+p,0}$ for $p \ge 1$. Since j-n-p<0 for $p \ge 1$ and $j=0,\cdots,n$, $a_{j-n-p}(j)=0$. Consequently $c_{n+p,0}=\overline{c}_{0,n+p}$ reduces to $A(0,n+p)a_{n+p}(0)=0$, $p\ge 1$, and p_0 is of degree at most n. We now proceed inductively. Consider

$$(2.3) c_{n+p,k+1} = \overline{c}_{k+1,n+p}, p \ge k+2.$$

Since k+1+j-n-p<0 for $p\geq k+2$ and $j=0,\,\cdots,\,n,$ (2.3) reduces to

$$A(k+1,\,n+p)\sum_{i=0}^{k-1}B(k+1,j)a_{n+p+j-k-1}(j)=0$$
 , $p\geqq k+2$.

Since $n+p+j-k-1 \ge n+j+1$, it follows from the inductive hypothesis that $a_{n+p+j-k-1}(j)=0$ for $j=0,\dots,k$, and hence

$$A(k+1, n+p)(k+1)! a_{n+p}(k+1) = 0, p \ge k+2.$$

Therefore degree $p_{k+1} \leq n + k + 1$.

This result allows a considerable simplification of the system (2.2). For each nonnegative integer p consider the subsystem S_p of (2.2)

$$c_{i,i+n}=\overline{c}_{i+n,i}$$
, $i=0,1,\cdots$.

Since the equation $c_{ij} = \overline{c}_{ji}$ appears only in $S_{|i-j|}$ we have a partition of (2.2). Since the p_i are polynomial of degree at most n+i,

$$a_{\ell+n}(\ell)=0 \quad p>n, \quad \ell=0, \dots, n,$$

from which it follows that S_p is trivial for p > n. From (2.1) we see that $a_{\swarrow}(i)$ appears only in $S_{|\swarrow-i|}$. Hence (2.2) is equivalent to the n+1 systems,

$$S_{v}: c_{i,i+v} = \bar{c}_{i+v,i}$$
, $i = 0, 1, \cdots$,

where the $a_{j+p}(j)$ appear only in S_p . Using (2.1) this becomes

$$(2.4) S_p: \sum_{k=0}^n a_{p+k}(k)B(i,k) = \sum_{k=0}^n \bar{a}_{k-p}(k)B(i+p,k)A^2(i+p,i) \; .$$

THEOREM 2.3. The system S_n is satisfied if and only if

$$(2.5) j! a_{i+n}(j) = R_0^j \quad j = 0, 1, \dots, n,$$

where $R_i^3 = \sum_{k=p}^n \bar{a}_{k-p}(k)B(i+p,k)A^2(i+p,i)$, and the R_i^i are obtained recursively by

$$(2.6) R_i^j = R_{i+1}^{j-1} - R_i^{j-1} .$$

Proof. For fixed p denote the left and right hand sides of the ith member of S_p by L_i^0 and R_i^0 respectively. We now employ a reduction scheme. Form the sequence of systems $\{L_i^1=R_i^1\}, \{L_i^2=R_i^2\}, \cdots$, where

$$egin{aligned} L_i^{j+1} &= L_{i+1}^j - L_i^j \ R_i^{j+1} &= R_{i+1}^j - R_i^j \end{aligned} \qquad i,j = 0,1,\cdots.$$

By induction on j it can be shown that

$$L_i^j = \sum_{k=0}^n a_{k+p}(k) B(i, k-j) P_j(k)$$

where $P_j(k) = k(k-1) \cdots (k-j+1)$. Consequently, $L_0^j = j! \, a_{j+p}(j)$ and the necessity follows.

For the sufficiency we use the fact that for a given system of linear equations, $L^j=R^j,\ j=0\cdots,n$, there exists a unique set of linear systems $\{\hat{L}^0_i=\hat{R}^0_i\},\cdots,\{\hat{L}^n_i=\hat{R}^n_i\}$ which have the properties P1 thru P3.

$$egin{aligned} P1 & \hat{L}_{i}^{j} = \hat{L}_{i+1}^{j-1} - \hat{L}_{i}^{j-1} \ & \hat{R}_{i}^{j} = \hat{R}_{i+1}^{j-1} - \hat{R}_{i}^{j-1} & j = 1, \, \cdots, \, n \ i = 0, \, 1, \, \cdots \ \end{pmatrix} \ P2 & \hat{L}_{0}^{j} = L^{j}, \, \hat{R}_{0}^{j} = R^{j} & j = 0, \, \cdots, \, n \ P3 & \hat{L}_{i}^{i} = L^{n}, \, \hat{R}_{i}^{i} = R^{n} & i = 0, \, 1, \, \cdots \ \end{pmatrix} \ .$$

This set is constructed in the following manner.

The system $\{\hat{L}^n_i=\hat{R}^n_i\}$ is defined by P3. To satisfy P1 and P2 we define the system $\{\hat{L}^{n-1}_i=\hat{R}^{n-1}_i\}$ inductively by $\hat{L}^{n-1}_0=L^{n-1}$, $\hat{R}^{n-1}_0=R^{n-1}$, $\hat{L}^{n-1}_i=\hat{L}^{n-1}_i+L^n$, and $\hat{R}^{n-1}_{i+1}=\hat{R}^{n-1}_i+R^n$. Similarly we define the system $\{\hat{L}^{n-2}_i=\hat{R}^{n-2}_i\}$ through $\{\hat{L}^0_i=\hat{R}^0_i\}$ by means of the equations

$$egin{aligned} \hat{L}_{\scriptscriptstyle 0}^{n-2} &= L^{n-2}, \; \hat{R}_{\scriptscriptstyle 0}^{n-2} &= R^{n-2} \ \hat{L}_{i+1}^{n-2} &= \hat{L}_{i}^{n-2} + \hat{L}_{i}^{n-1}, \; \hat{R}_{i+1}^{n-2} &= \hat{R}_{i}^{n-2} + \hat{R}_{i}^{n-1} \ \hat{L}_{\scriptscriptstyle 0}^{\scriptscriptstyle 0} &= L^{\scriptscriptstyle 0}, \; \hat{R}_{\scriptscriptstyle 0}^{\scriptscriptstyle 0} &= R^{\scriptscriptstyle 0} \ \hat{L}_{i+1}^{\scriptscriptstyle 0} &= \hat{L}_{i}^{\scriptscriptstyle 0} + \hat{L}_{i}^{\scriptscriptstyle 1}, \; \hat{R}_{i+1}^{\scriptscriptstyle 0} &= \hat{R}_{i}^{\scriptscriptstyle 0} + \hat{R}_{i}^{\scriptscriptstyle 1} \; . \end{aligned}$$

From the method of construction the systems $\{\hat{L}_i^0 = \hat{R}_i^0\}$ thru $\{\hat{L}_i^n = \hat{R}_i^n\}$ are the unique systems satisfying P1 thru P3.

Since $P_j(k)$ vanishes for $0 \le k \le j-1$ it follows that $L_i^j = 0$ for j > n and all i. Moreover, for j = n we have $L_i^n = n!$ $a_{n+p}(n)$, a constant independent of i. From (2.4) we see that $R_i^0 = \sum_{k=p}^n \bar{a}_{k-p}(k)C_k(i)$, where the $C_k(i)$ are polynomials in i of degree k. Hence $R_i^0 = R_{i+1}^0 - R_i^0$ can be written in the form $\sum_{k=p}^n \bar{a}_{k-p}(k)C_k^1(i)$, where the $C_k^1(i)$ are of degree k-1. Continuing in this manner we obtain

$$egin{aligned} R_i^j &= 0 & j > n & i = 0, 1, \cdots, \ R_i^n &= R_0^n & i = 0, 1, \cdots. \end{aligned}$$

Hence the systems $\{L_i^j=R_i^j\}\ j=0,\cdots,n$ satisfy P1 thru P3 where $L_0^j=R_0^j$ corresponds to the $L^j=R^j$ and the system $\{\hat{L}_i^0=\hat{R}_i^0\}$ corresponds to the system S_p . This yields the sufficiency.

This theorem provides an algorithm for determining all formally

symmetric operators of a given order. As an application we give the general formally symmetric first order operator. Use of 2.5 for p=0 and 1 yields

$$L = (cz^2 + az + \overline{c})d/dz + (2cz + b),$$

where a and b are real.

3. Self-adjoint extensions. The operator S has another characterization which will be of use in the study of self-adjoint extensions. For f and g in $\mathscr D$ consider the bilinear form

$$\langle fg \rangle = (Lf, g) - (f, Lg) ,$$

and let $\widetilde{\mathscr{D}}$ be the set of those f in \mathscr{D} for which $\langle fg \rangle = 0$ for all g in \mathscr{D} . Since $S = T^*$ and $\mathscr{D}(T^*) = \widetilde{\mathscr{D}}$, S has domain $\widetilde{\mathscr{D}}$.

Let \mathcal{D}^+ and \mathcal{D}^- denote the set of all solutions of the equations Lu = iu and Lu = -iu respectively, which are in \mathcal{H} . It is known from the general theory of Hilbert space [3, p. 1227-1230] that

and every $f \in \mathcal{D}$ has the unique representation

$$f=\widetilde{f}+f^++f^-$$
, $(\widetilde{f}\in\widetilde{\mathscr{D}},f^+\in\mathscr{D}^+,f^-\in\mathscr{D}^-)$.

Let the dimensions of \mathcal{D}^+ and \mathcal{D}^- be m^+ and m^- respectively. Clearly, m^+ and m^- cannot exceed the order of L. These integers are referred to as the deficiency indices of S, and S has self-adjoint extensions if and only if $m^+ = m^-$. Moreover S is itself self-adjoint if and only if $m^+ = m^- = 0$.

We assume that $m^+ = m^- = m$ and seek to characterize all self-adjoint extensions of S. Von Neumann has shown that the self-adjoint extensions of S are in a one-to-one correspondence with the unitary operators U of \mathcal{D}^+ onto \mathcal{D}^- . Corresponding to any such U there exists a self-adjoint extension A of S whose domain is the set of all $f \in \mathcal{D}$ which are of the form

$$f = \widetilde{f} + (I - U)f^+$$
, $(f \in \widetilde{\mathscr{D}}, f^+ \in \mathscr{D}^+)$,

where I is the identity operator on \mathcal{D}^+ . Conversly every such A has a domain of this type.

We now introduce the notion of abstract boundary conditions and indicate how the domain of any self-adjoint extension of S can be obtained. A boundary condition is a condition on $f \in \mathscr{D}$ of the form

$$\langle fh \rangle = 0$$
,

where h is a fixed function in \mathcal{D} . The conditions

$$\langle fh_i \rangle = 0$$
, $j = 1, \dots, n$,

are said to be linearly independent if the only set of complex numbers $\alpha_1, \dots, \alpha_n$ for which

$$\sum_{j=1}^{n} \alpha_{j} \langle f h_{j} \rangle = 0$$

identically in $f \in \mathscr{D}$ is $\alpha_1 = \cdots = \alpha_n = 0$. A set of n linearly independent boundary conditions $\langle fh_j \rangle = 0$, $j = 1, \dots, n$, is said to be self-adjoint if $\langle h_j h_k \rangle = 0$, $j, k = 1, \dots, n$.

The following theorem follows directly from the proof of Theorem 3 in the paper of Coddington [1].

THEOREM 3.1. If A is a self-adjoint extension of S with domain \mathcal{D}_A , then there exists a set of m self-adjoint boundary conditions,

$$\langle fh_j \rangle = 0 \qquad \qquad j = 1, \dots, m,$$

such that \mathscr{D}_A is the set of all $f \in \mathscr{D}$ satisfying these conditions. Conversly, if (3.3) is a set of m self-adjoint boundary conditions, there exists a self-adjoint extension A of S whose domain is the set of all $f \in \mathscr{D}$ satisfying (3.3)

Let ϕ_1, \dots, ϕ_m and ψ_1, \dots, ψ_m be orthonormal sets for \mathcal{D}^+ and \mathcal{D}^- respectively and (u_{jk}) a unitary matrix representing U, then the h_j are given by

(3.4)
$$h_j = \phi_j - \sum_{k=1}^m u_{jk} \psi_k$$
, $j = 1, \dots, m$.

Let A be a self-adjoint operator associated with L and $E(\lambda)$ the corresponding resolution of the identity. We shall show the projection E_{J} corresponding to J=(a,b] can be expressed as an integral operator with a kernel given in terms of a basis of solutions for $Lu-\lambda u=0$ and a certain spectral matrix. Our work was inspired by the treatment of E. A. Coddington [2] of the case when A arises from a formal differential operator in the space $L_{2}(I)$, I an open interval. We begin by showing that the resolvent operator of A,

$$R(\mathcal{L}) = (A - \mathcal{L})^{-1}$$
, $\operatorname{Im}(\mathcal{L}) \neq 0$,

is an integral operator with a nice kernel.

THEOREM 3.2. R(z) is an integral operator with kernel K,

$$(3.5) R(\operatorname{\mathscr{E}})f(z) = \iint\limits_{|w| < 1} K(z, w, \operatorname{\mathscr{E}})f(w)dudv , \quad f \in \mathscr{H} .$$

K is jointly analytic in z, \overline{w} , and \angle on the region |z| < 1, |w| < 1, Im $(\angle) \neq 0$.

Moreover, $K(z, w, \angle) = \overline{K(w, z, \overline{Z})}$ and

$$(3.6) (L-2)K(w,z,z) = K_z(w), \text{ for fixed } z \text{ and } z.$$

Proof. Since $R(\angle)f(z) = (R(\angle)f, K_z)$ and $R^*(\angle) = R(\overline{\angle})$, it follows that (3.1) holds with $K(z, w, \angle) = \overline{R(\overline{\angle})K_z(w)}$. Hence K is analytic in \overline{w} for fixed z and \angle . That $K(z, w, \angle) = \overline{K(w, z, \overline{\angle})}$ can be seen from the following computations,

$$K(z, w, \angle) = \overline{(R(\overline{\angle})K_z, K_w)} = \overline{(K_z, R(\angle)K_w)} = \overline{K(w, z, \overline{\angle})}$$
.

Hence $K(z, w, \angle)$ is analytic in z for fixed w and \angle . It follows from the analyticity of $R(\angle)$ for $\operatorname{Im}(\angle) \neq 0$ that $K(z, w, \angle) = (R(\angle)K_w, K_z)$ is analytic in \angle for fixed z and w on any region for which $\operatorname{Im}(\angle) \neq 0$. Since analyticity in each of the variables separately implies joint analyticity it only remains to verify (3.6). This follows from the fact that $K(w, z, \angle) = \overline{K(z, w, \overline{\angle})} = R(\angle)K_z(w)$.

We now split the kernel $K(z, w, \angle)$ into two parts one of which satisfies the homogeneous equation $(L-\angle)u=0$. Since the coefficients of L are polynomials, p_n has at most a finite number of zeros in the unit disk. Introducing radial brancheuts at these zeros, we obtain the region \widetilde{D} , simply connected relative to D, in which p_n never vanishes. Let $z_0 \in \widetilde{D}$, it follows from standard theorems that there exists a basis of solutions for the equation $(L-\angle)\phi=0$ such that:

- (i) $\phi_i({\Bbb Z}), \quad i=1,\, \cdots,\, n, \;\; {
 m are \;\; single-valued \;\; analytic \;\; functions \;\; on \; \widetilde{D}$
- $(ext{ii})$ $\phi_i^{(j-1)}(z_{\scriptscriptstyle 0}, arkappa) = \delta_{ij}, \; i,j=1,\, \cdots,\, n$,
- (iii) $\phi_i(w, \angle)$, $i = 1, \dots, n$, is entire in \angle for each $w \in \overline{D}$.

Theorem 3.3. The kernel $K(z, w, \angle)$ has the representation

(3.7)
$$K(z, w, \angle) = \sum_{i,j=1}^{n} \psi_{ij}(\angle) \phi_{i}(z, \angle) \overline{\phi_{j}(w, \overline{\angle})} + G(z, w, \angle) ,$$

where $G(z, w, \angle)$ is entire in \angle for fixed z and w.

Proof. For fixed $z \in \widetilde{D}$ and Im $(\nearrow) \neq 0$ it follows from (3.6) that

(3.8)
$$K(w,z,\overline{z}) = \sum_{j=1}^{n} \psi_{j}(z,z)\phi_{j}(w,\overline{z}) + \Omega(z,w,\overline{z}),$$

where $\Omega(z, w, \overline{z})$ is the particular solution furnished by the variation of parameters method and is entire in \overline{z} for fixed z, w. Moreover,

$$\frac{\partial^{i-1}}{\partial w^{i-1}} \Omega(z, z_0, \overline{z}) = 0 , \qquad i = 1, \dots, n.$$

Now consider the differential equation $(L_z - \angle)K(z, w, \angle) = K_w(z)$, where L_z denotes the fact that L is applied with respect to z. Differentiating with respect to \bar{w} and making use of the symmetry of K we obtain

$$(L_z-arnothing)rac{\partial^{j-1}}{\partial ar{w}^{j-1}}\overline{K(w,z,\overline{arnothing})}=rac{\partial^{j-1}}{\partial ar{w}^{j-1}}K_w(z)\;,\quad j=1,\,\cdots,\,n\;.$$

Using (3.8), (3.9) and the relationships

$$\phi_i^{(j-1)}(z_0, \mathscr{L}) = \delta_{ij}$$

we obtain

$$(L_z-arnothing)\overline{\psi_j(z,arnothing)}=rac{\partial^{j-1}}{\partial ar w^{j-1}}K_{z_0}\!(z)$$
 .

Variation of parameters yields

$$(3.10) \hspace{1cm} \psi_j(z, \angle) = \sum_{i=1}^n \overline{\psi}_{ij}(\angle) \overline{\phi_i(z, \angle)} + \overline{\Omega_j(z, \angle)} \;, \hspace{0.5cm} j = 1, \; \cdots, \; n \;,$$

where the $\Omega_j(z, \ell)$ are entire in ℓ for fixed z and satisfy

$$(3.11) \qquad \qquad \frac{\partial^{i-1}}{\partial z^{i-1}} \varOmega_j(z_{\scriptscriptstyle 0}, \, \varkappa) \, = \, 0 \,\, , \qquad \qquad i,j = 1, \, \cdots, \, n \,\, .$$

It follows from (3.8) and (3.10) that (3.7) holds where

$$G(z,\,w,\,ec{arphi}) = \overline{\varOmega(z,\,w,\,\overline{arphi})} \,+\, \sum_{j=1}^n \varOmega_j(z,\,arphi) \overline{\phi_j(w,\,\overline{arphi})}$$

is entire in \angle for each $z, w \in \widetilde{D}$.

Concerning the matrix $\psi = (\psi_{ij})$ we have the following.

THEOREM 3.4. The matrix ψ is analytic for $\operatorname{Im}(\angle) \neq 0$, $\psi^*(\angle) = \psi(\overline{\angle})$, and $\operatorname{Im} \psi(\angle)/\operatorname{Im}(\angle) \geq 0$, where $\operatorname{Im} \psi = (\psi - \psi^*)/2i$.

Proof. It follows from (3.9) and (3.10) that

$$\psi_{ij}(z) = rac{\partial^{i+j-2}}{\partial z^{i-1} \partial w^{j-1}} K(z_{\scriptscriptstyle 0}, z_{\scriptscriptstyle 0}, z) \; , \qquad i,j=1,\, \cdots,\, n \; ,$$

and hence ψ is analytic for $\operatorname{Im}(\mathcal{E}) \neq 0$. Using (3.12) and the symmetry of K we obtain $\psi_{ij}(\mathcal{E}) = \overline{\psi_{ji}(\mathcal{E})}$.

In order to demonstrate the positivity of ${\rm Im}\,\psi({\it c})/{\rm Im}\,({\it c}) \geqq 0$ we consider the functionals ${\it c}_k$ defined by

$$\mathscr{C}_k(f)=f^{\scriptscriptstyle (k-1)}(z_{\scriptscriptstyle 0})\;,\qquad f\!\in\!\mathscr{H},\,k=1,\,\cdots,\,n\;.$$

Since convergence in \mathcal{H} implies uniform convergence on compact subsets, the \mathcal{L} are bounded linear functional on \mathcal{H} . Consequently there exist functions K_1, \dots, K_n in \mathcal{H} for which

$$f^{(k-1)}(z_0) = (f, K_k)$$
,

all f in \mathscr{H} . Let ξ_1, \dots, ξ_n be any set of n complex numbers and consider the function $f = \sum_{k=1}^n \xi_k K_k$. The inner product $(R(\ell)f, f) = \sum_{i,j=1}^n \xi_i \xi_j (R(\ell)K_i, K_j)$. Now $R(\ell)K_i(z) = (K_i, K_z\ell)$, where $K_z\ell(w) = \overline{K(z, w, \ell)} = K(w, z, \overline{\ell})$. Consequently,

$$R({m Z})K_i(z)=rac{\widehat{\partial}^{i-1}}{\widehat{\partial}w^{i-1}}K(z_{\scriptscriptstyle 0},\,z,\,\overline{{m Z}})$$
 ,

and

$$(R({m Z})K_i,\,K_j)=rac{\partial^{i+j-2}}{\partial^{i-1}ar{y_0}\partial z^{j-1}}K(z_{\scriptscriptstyle 0},\,z_{\scriptscriptstyle 0},\,{m Z})=\psi_{ji}({m Z})$$
 .

Using the resolvent equation it is not hard to see that

$$\operatorname{Im} (R(\mathcal{L})f, f)/\operatorname{Im} (\mathcal{L}) = ||R(\mathcal{L})f||^2 \ge 0$$

and hence

$$\sum\limits_{i,j=1}^{n}rac{\mathrm{Im}\,\psi_{ji}(\mathscr{E})}{\mathrm{Im}\,(\mathscr{E})}\xi_{i}ar{\xi}_{j}\geqq 0$$
 .

This completes the proof.

It is shown in [2] that Theorem 3.4 implies the existence of a spectral matrix ρ for the resolvent R.

Theorem 3.5. The matrix ρ defined by

$$ho(\lambda) = \lim_{arepsilon
ightarrow 0} rac{1}{\pi} \int_0^{\lambda} \! \mathrm{Im} \, (
u \, + \, i arepsilon) d
u$$

exists, is nondecreasing, and is of bounded variation on any finite interval.

We now consider the projections E_{d} corresponding to the interval $\Delta = (a, b]$. It follows from the proof of Theorem 3.2, that E_{d} is an integral operator with kernel $e_{d}(z, w) = \overline{E_{d}K_{z}(w)}$. The following theorem shows how $e_{d}(z, w)$ can be described in terms of the basis $\phi_{1}, \dots, \phi_{n}$ and the spectral matrix given by Theorem 3.5.

THEOREM 3.6. If a and b are continuity points of E then

(3.13)
$$e_{d}(z, w) = \int_{d} \sum_{i,j=1}^{n} \phi_{i}(z, \nu) \overline{\phi_{j}(w, \nu)} d\rho_{ij}(\nu) ,$$

where $\rho = (\rho_{ij})$ is the spectal matrix given by Theorem 3.5.

Proof. The idea is to use the inversion formula

$$(E_{\scriptscriptstyle d}f,\,g)=\lim_{arepsilon o +0}rac{1}{2\pi i}\int_{\scriptscriptstyle d}((R(
u\,+\,iarepsilon)f,\,g)\,-\,(R(
u\,-\,iarepsilon)f,\,g))d
u\;,$$

for all f and g in \mathcal{H} , a and b continuity points of E_{λ} . Since E_{λ} is self-adjoint $e_{\lambda}(z, w) = (E_{\lambda}K_{w}, K_{z})$ and hence

$$egin{aligned} e_{\scriptscriptstyle d}(z,\,w) &= \lim_{arepsilon o +0} rac{1}{2\pi i} \int_{\scriptscriptstyle d} \{(R(
u\,+\,iarepsilon)K_{\scriptscriptstyle w},\,K_{\scriptscriptstyle z}) - (R(
u\,-\,iarepsilon)K_{\scriptscriptstyle w},\,K_{\scriptscriptstyle z})\} d
u \;. \ &= \lim_{arepsilon o +0} rac{1}{2\pi i} \int_{\scriptscriptstyle d} K(z,\,w,\,
u\,+\,iarepsilon) - K(z,\,w,\,
u\,-\,iarepsilon) d
u \;. \end{aligned}$$

For $z, w \in \widetilde{D}$, this becomes

$$egin{aligned} &\lim_{arepsilon o +0} rac{1}{2\pi i} \int_{J} \sum_{i,j=1}^{n} \psi_{ij}(
u+iarepsilon) \phi_{i}(z,
u+iarepsilon) \overline{\phi_{j}(w,
u-iarepsilon)} \ &-\psi_{ij}(
u-iarepsilon) \phi_{i}(z,
u-iarepsilon) \overline{\phi_{j}(w,
u+iarepsilon)} d
u \ &+\lim_{arepsilon o +0} rac{1}{2\pi i} \int_{J} G(z,w,
u+iarepsilon) - G(z,w,
u-iarepsilon) d
u \ . \end{aligned}$$

Since $G(z, w, \angle)$ is entire in \angle the later integral tends to zero as $\varepsilon \to +0$.

We now rewrite the first integrand as

$$\begin{split} &\sum_{i,j=1}^n \left[\psi_{ij}(\nu + i\varepsilon) - \psi_{ij}(\nu - i\varepsilon) \right] \! \phi_i(z,\nu) \overline{\phi_j(w,\nu)} \, + \\ &\sum_{i,j=1}^n \psi_{ij}(\nu + i\varepsilon) [\phi_i(z,\nu + i\varepsilon) \overline{\phi_j(w,\nu - i\varepsilon)} - \phi_i(z,\nu) \overline{\phi_j(w,\nu)}] \, + \\ &\sum_{i,j=1}^n \psi_{ij}(\nu - i\varepsilon) [\phi_i(z,\nu) \overline{\phi_j(w,\nu)} - \phi_i(z,\nu - i\varepsilon) \overline{\phi_j(w,\nu + i\varepsilon)}] \; , \end{split}$$

and denote the three sums by $I_1(\nu, \varepsilon)$, $I_2(\nu, \varepsilon)$, and $I_3(\nu, \varepsilon)$ respectively. Consider $I_1(\nu, \varepsilon)$,

$$\lim_{arepsilon o +0} rac{1}{2\pi i} \int_{ec{arphi}} I_{\scriptscriptstyle 1}(
u,\,arepsilon) d
u = \lim_{arepsilon +0} rac{1}{\pi} \int_{ec{arphi}} \sum_{i,j=1}^n {
m Im} \; \psi_{ij}(
u +\, iarepsilon) \phi_i(z,\,
u) \overline{\phi_j(w,\,
u)} d
u = \lim_{arepsilon o +0} rac{1}{\pi} \int_{ec{arphi}} \sum_{i,j=1}^n {
m Im} \; \psi_{ij}(
u +\, iarepsilon) \phi_i(z,\,
u) \overline{\phi_j(w,\,
u)} d
u = \lim_{arphi o +0} rac{1}{\pi} \int_{ec{arphi}} \sum_{i,j=1}^n {
m Im} \; \psi_{ij}(
u +\, iarphi) \phi_i(
u +\, iarphi) \overline{\phi_j(u,\,
u)} d
u = \lim_{arphi o +0} \frac{1}{\pi} \int_{ec{arphi}} \sum_{i,j=1}^n {
m Im} \; \psi_{ij}(
u +\, iarphi) \phi_i(
u +\, iarphi) \overline{\phi_j(u,\,
u)} d
u = \lim_{arphi o 0} \frac{1}{\pi} \int_{ec{arphi}} \sum_{i,j=1}^n {
m Im} \; \psi_{ij}(
u +\, iarphi) \phi_i(
u +\, iarphi) \overline{\phi_j(u,\,
u)} d
u = \lim_{arphi o 0} \frac{1}{\pi} \int_{ec{arphi}} \sum_{i,j=1}^n {
m Im} \; \psi_{ij}(
u +\, iarphi) \phi_i(
u +\, iarphi) \overline{\phi_j(u,\,
u)} d
u = \lim_{arphi o 0} \frac{1}{\pi} \int_{ec{arphi}} \sum_{i,j=1}^n {
m Im} \; \psi_{ij}(
u +\, iarphi) \phi_i(
u +\, iarphi) \overline{\phi_j(u,\,
u)} d
u = \lim_{arphi o 0} \frac{1}{\pi} \int_{ec{arphi}} \frac{1}{\pi} \int_{ec{arph$$

Now

$$ho(\lambda) = \lim_{\varepsilon \to +0} rac{1}{\pi} \int_{\mathcal{A}} \operatorname{Im} \psi(\mathbf{v} + i\varepsilon) d\mathbf{v}$$

and it follows from a theorem of Helly that

$$(3.14) \qquad \lim_{\varepsilon \to +0} \frac{1}{2\pi i} \int_{\mathcal{A}} I_1(\nu, \, \varepsilon) d\nu = \int_{\mathcal{A}} \sum_{i,j=1}^n \phi_i(z, \, \nu) \overline{\phi_j(w, \, \nu)} d\rho_{ij}(\nu) .$$

As is shown in [2] we have the following estimate

$$(3.15) \qquad \qquad \sum_{i,j=1}^{n} \int_{A} |\psi_{ij}(\nu \pm i\varepsilon)| \, d\nu = O\left(\log \frac{1}{\varepsilon}\right) \qquad (\varepsilon \to +0) .$$

Since the $\phi_i(z, \angle)$ are entire in \angle for fixed z there exists a constant M > 0 such that for ε sufficiently small

$$(3.16) \qquad |\phi_i(z,\nu+i\varepsilon)\overline{\phi_i(w,\nu-i\varepsilon)} - \phi_i(z,\nu)\overline{\phi_i(w,\nu)}| < M\varepsilon$$

for all $\nu \in \Delta$.

Combining (3.15) and (3.16) we see that

$$rac{1}{\pi}\int_{4}I_{\scriptscriptstyle 2}\!(
u,\,arepsilon)d
u = O\!\!\left(arepsilon\lograc{1}{arepsilon}
ight) \qquad \qquad (arepsilon
ightarrow +0)$$
 ,

which tends to zero as $\varepsilon \rightarrow +0$. A similar result holds for

$$rac{1}{\pi}\int_{arDelta}I_{\scriptscriptstyle 3}(
u,\,arepsilon)d
u$$
 .

Consequently we have

(3.13)
$$e_{\scriptscriptstyle d}(z,w) = \int_{\scriptscriptstyle d} \sum_{i,j=1}^{n} \phi_{i}(z,\nu) \overline{\phi_{j}(w,\nu)} d\rho_{ij}(\nu) .$$

The author wishes to express his gratitude to Professor Earl Coddington for his encouragement and guidance in this work.

BIBLIOGRAPHY

- 1. E. A. Coddington, The spectral representation of ordinary self-adjoint differential operators, Ann. of Math. **60** (1954), 192-211.
- 2. _____, Generalized resolutions of the identity for symmetric ordinary differential operators, Ann. of Math. 68 (1958), 378-392.
- 3. N. Dunford and J. Schwartz, *Linear Operators*, Part II, Interscience Publishers, 1963.

Received February 20, 1970. This work is part of a doctoral dissertation written at the University of California at Los Angeles under Professor Earl Coddington and supported in part by NSF Grant GP-3594.

University of California, Los Angeles and San Diego State College