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SELF-ADJOINT DIFFERENTIAL OPERATORS

ARrNoLD L. VILLONE

Let 57 denote the Hilbert space of square summable
analytic functions on the unit disk, and consider the formal
differential operator

L = Z piD"
=0

where the p; are in 57°. This paper is devoted to a study
of symmetric operators in 57 arising from L. A charac-
terization of those L which give rise to symmetric operators
S is obtained, and the question of when such an S is self-
adjoint or admits of a self-adjoint extension is considered.
If A is a self adjoint extension of S and E(2) the associated
resolution of the identity, the projecticn £, corresponding to
the interval 4 = (a,b] is shown to be an integral operator
whose kernel can be expressed in terms of a basis of sciutions
for the equation (L — Z)u = 0 and a spectral matrix.

Let &7 denote the space of functions analytic on the unit disk
and 57 the subspace of square summable functions in .9 with inner
product

(o) = || f@aGdzdy .

lzi<1

Then 27 is a Hilbert space with the reproducing property, i.e., for
each z there exists a unique element K, of £# such that

) =) K,) .

Moreover, if the sequence {f,} converges to f in norm, f,(z) con-
verges to f(z) uniformly on compact subsets of the disk. A complete
orthonormal set for 57 is provided by the normalized powers of z,

e.(2) = [(n + )/x]"2", m = 0,1, .-+ .

From this it follows that 57 is identical with the space of power
series >.o .a,2" which satisfy

. Sla.n+1) < .
Consider the formal differential operator

L=pD"+ -+ + 0D+ p,
517
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where D = d/dz and the p; are in &% For f in &# the element Ljf
is in %7 but not necessarily in 52 To see this we take L = d/dz
and f(z) = Do n'%", from (1.1) it follows that f is in 5# but Lf
is not. In order to consider L as an operator in 5 we must
restrict the class of functions on which L acts in some suitable
manner. Since our concern is with densely defined operators it is
only natural to demand that powers of z be mapped into 52 This
requires some restrictions on the coefficients of L. As an example
consider the operator L = pD where p(z) = > o(n + 1)z".

We have Le,(z) = k(k + 1)*z—* 3> ,_(n — k)2, and hence
Le, ¢ 57, A sufficient condition for the Le, to be in 57 is that the
coefficients p; be in 2

Let L = >\ ,p, D', where the p;, are in S~ and let &, denote
the span of the ¢, and &7 the set of all f in &# for which Lf is
in 22 We now define the operators T, and T as follows.

Tof=Lf fe=,
Tf=Lf fez.

THEOREM 1.1. T, and T are densely defined operators with
range in 37, T, = T, and T is closed.

Proof. We first show that T is closed. Let {f,} be a sequence
of functions in & such that f, —f and Tf,—g¢g, hence f,(2) and
Lf,(2) converge uniformly on compact subsets to f(z) and g(z) re-
spectively. But Lf,(z) also converges to Lf(z). Hence Lfiz) = g(z),
lz] <1, so Tfes” and Tf = g.

Since &, is dense in 57 and T,f = Tf for fe 2, N < it suffices
to show that the ¢; are in &. Since Le; = 31 p;De; and p;De; is
either zero or of the form p.e, for some nonnegative integer k, it
sufficies to show that pie, e 52 Let p;, = > 7.a;e;, a simple com-
putation yields

exe; = [(k + D][(5 + /(5 + k& + D]'Pe;pp s
and consequently,
lewp: P = [(k + D] || 2 []F < oo .

T, and T are respectively the minimal and maximal operators
in 57 associated with the formal operator L. We now proceed to
study the class of formal differential operators for which 7T, is
symmetric.

It is clear that the operator T, associated with the formal
differential operator L is symmetric if and only if
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(1.2) (Le,, e,) = (e,, Le,) , m,m = 0,1, «-. .

We shall refer to those formal operators satisfying (1.2) as formally
symmetric. As an example we have the real Euler operator

L = Zn aiziDi ’
=0
a; real. Then Le; = p(j)e; where p is the characteristic polynomial
P@) =ay+ ax + o0 +az@—1) s (x—n+1).

Since p(j) = p(j), L is formally symmetric. A characterization of
formally symmetric L in terms of the coefficients p; is given in the
next section. We now proceed to the consideration of the adjoint
operators T and T*. In what follows we shall make use of the
result that if L is formally symmetric of order #», then the coefficients
p; are polynomials of degree at most n+ 4, +=0,1, .-+, n. A
proof of this is given in Theorem 2.2.

THEOREM 1.2. If T, is symmetric, T =T and T* = T. The
closure of T,, S, is self adjoint if and only if S = T.

Proof. By Theorem 2.2 the coefficients p, are polynomials of
degree at most # + 4. This implies that 7T, maps &, into itself.
In particular,

n+m
Le, =Y ae, 0=m=mn,
1=0

(1‘3) 2nt7
Le”+j:§a,,;ei, j=1,2,~--

Using this we show that T3 S 7. Let g = Y 7a;e; and g* = > 7.bse;
be in the graph of T,* and consider the sequence {g,} in &, defined
as g, = >7-2;¢;. Since g, — g we have (T, g,) — (Tier, 9) = (e, 9%).
Hence (e, T,g,) — (e1, 9*). Now Lg is in . and T,g, converges to
Lg uniformly on compact subsets. Since the ¢; are just the normalized
powers of z, the power series expansion of Lg can be written
as >57.c;e;(2). Since Lg,(2) = > ,a;Le;(z) converges uniformly to
Sirec;e;(2), it follows from (1.3) that Lg, has the same coefficient
of ¢, as does Lg for p>n+ m + 1. Hence (e, T, = ¢, for
p>n+ m+ 1 and since (e,, Tv9,) — (€., ¢*) we have ¢,, = b,,. There-
fore g* = Lg, so that ge & and ¢g* = TYg.

To show that T = T, it will suffice to show that (Te.,9) =
(en, Tg) for all ¢ in & and m =0,1,.... Let g = 35..a;e; be in
< and g, as before. Since 7T, is symmetric and g,— ¢ we have
(ens To9,) = (T, 9,) — (Teen, 9)- By precisely the same argument
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as before (e,, T.9,) = (€., Tg) for p>n + m + 1, from which it follows
that (e,, T9) = (Tyen, 9) and T = T. Since T, & T, T*=S T+ = T.

The closure S of the symmetric operator T, is given by Ty * =
T*< T. Sinee T is closed T** = T, from which it follows that
S* = T. Hence S= T implies S = S*. Conversely if S is self-
adjoint we have S = T* = S* = T.

A sufficient condition for T to be self-adjoint is given by the
following theorem.

THEOREM 1.3. For f=3>7-0,¢; set frn=">70;€;. Lf sup,| Tf,||<oo
for each f in <, then S 1s self-adjoint.

Proof. Since T* < T, T symmetric implies T'= T* and hence
S = S*. We show that (Tf, ¢) — (f, Tg) vanishes for all f, g in =
If L is of order » we have (Tf,., g,) = (Tf, g9, for m >n+ p + 1.
Using this fact and the symmetry of T, we obtain

(Tfs 9kn) = (Tfinsns1s 9in) = (Fentntr TOkn)
= (ﬁm—-n—l’ Tgkn) + (ﬁm+n+1 - ﬁm—n—-v Tgkn)

= (fkn—n-—ly Tg) + (fkn+n+1 - f;m——n—-v Tgkn)
k=1,2,..-.
Therefore,

(T.f’ g) - (.f! Tg) = lki_g (jlm+n+1 - .f;cn—'n—l’ Tglm) .
Since the Tg,, are bounded in norm this implies (7'f, g)—(f, Tg) = 0.

COROLLARY. If L 1s a formally symmetric Euler operator,
then S is self-adjoint.

Proof. For f= >7be;, in &2, Tf and Tf, are given by
Sir-o2(7)bse; and >7_op(5)b;e? respectively, where p(x) is the charac-
teristic polynomial for L. Hence

| Tfu Il = %p(j)zlbj (= I
and the result follows.

2. Formal considerations. The formal operator L = 3\~ p,D’
is formally symmetric if

(Le,, e,) = (., Le,), n,m = 0,1, -« .

To obtain a characterization of the formally symmetric operators
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in terms of their coefficients we first determine the action of L on
€.

LEMMA 2.1. Let L = 3\ ;D where p,(z) = Sii.ai(i) 2. Then
Le; = > 5..¢;;6; where
¢y = A, 3) 3 B, K)ayou®) , 45 =0, 1--+,
A, g) = [0 + /G + DI,
Bi, k) =3G—k)! i=Fk
=0 1<k.

@.1)

Proof. Consider the elementary operators L,, = 2°D% p,q =
0,1, .-.. A simple calculation yields

L., = B(m, @)A(m, m + D — @)epip_q -

Now consider Le, (as an element of &),

Le,(2) (1) Liien(2)

0

[

Il
M=
iMs

i

I
M=
Ms

Qe—m+:(1) B(m, 1) A(m, k)ey(2)

-
I
o>
o
Il
=3

8

Il

Ocmkek(z) [z| < 1.

&
Il

But e¢,(2) is just a multiple of z*, therefore it follows from the
uniqueness of power series representation of elements of .97 that
S Carer converges to Te, in SZ4

It follows that L is formally symmetric if and only if the
coefficients a,(s), 4 k= 0,1, -.., satisfy the linear system

2.2) cij:c_jiy 1,5 =0,1, «--.
The following provides a simplification of the system (2.2).

THEOREM 2.2. If L = >2r,p, D" is formally symmetric the p;
are polynomials of degree at most n + 1.

Proof. Consider ¢,,,, for p = 1. Since j—n—p <0 for p=>1
and =0, .-+, 1, a;_,,(j) = 0. Consequently ¢,,,, = €,,., reduces
to A0, n+ p)a,.,(0) =0, p=1, and p, is of degree at most n. We
now proceed inductively. Consider

(2°3) Cotpk+r = Ek+1,n+p y D = E+2.
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Since k+1+j7—n—p2p<0 for p=k-+2 and 7=0,.--,m, (2.3)
reduces to

k—1
A+ 1,0+ D) 3 Bk + 1, 1)y s () =0, pZk+2.

Since n+p+7—k—1=n+7+1, it follows from the inductive
hypothesis that a,,,.;+.(j) =0 for j =0, .-+, k, and hence

Ak +1L,n+ )k + D! a,(k+1)=0, p=k+2.

Therefore degree p,., < n + k + 1.

This result allows a considerable simplification of the system
(2.2). For each nonnegative integer p consider the subsystem S,

of (2.2)
Ciitp = 6i+p,i ’ 1= 07 11 e

Since the equation ¢;;=¢;; appears only in S;;_; we have a partition
of (2.2). Since the p; are polynomial of degree at most »n + 1,

Gy (2)=0 p>n, £=0,--+,n,

from which it follows that S, is trivial for »p > n. From (2.1) we
see that a,(7) appears only in S ,_;,. Hence (2.2) is equivalent to
the » + 1 systems,

Sp: Cisitp = Cirpis =0, 1 ...,

where the a;.,(j) appear only in S,. TUsing (2.1) this becomes

@24) SN a, 0BG, k) = 3@, (0BG + p, DA + p, ) .

THEOREM 2.3. The system S, is satisfied if and only if
(2'5) -7' a’j+p(j) = Rg j = Oy 1: e, My

where R = i, @_,(k)B(i + p, k)A*(i + p, ©), and the R} are obtained
recursively by

(2.6) R; = Rz} — Ri™.

Proof. For fixed p denote the left and right hand sides of the
ith member of S, by L! and R} respectively. We now employ a reduc-
tion scheme. Form the sequence of systems {L!= R}, {Li=R}, ---,

where
Lg“ = Lgﬂ - Lf
Ri** = Ri., — R} ,7=0,1, ..
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By induction on j it can be shown that
Li= %akﬂ(k)B(i, k — 5)P;(k)

where P;(k) = k(k — 1) --- (k — j + 1). Consequently, L{ = j!a;,(J)
and the necessity follows.

For the sufficiency we use the fact that for a given system of
linear equations, L’ = R, 5 =0 ..., n, there exists a unique set of
linear systems {L!= RY, ---,{L? = R*} which have the properties
P1 thru P3.

P1 Li = Lizt — Li~

Bt = Rist = R TR
le’;g:Lj,}?g:Rj 7=0,--2,m
P3 Ly =L" R = R" i=0,1,--.

This set is constructed in the following manner.

The system {L? = R?} is defined by P3. To satisfy P1 and P2
we define the system {I:;‘-1=I§$—‘} inductively by Lz—= L*, Ry~ =
R, Lr7 =Ly + L", and R = Ry + R*. Similarly we define
the system {ﬁ?*zzl??"z} through {ﬁﬁzﬁi} by means of the equations

- PN
Lr= = L, Ri—* = R

~ N A A ~ A~
Lr =L+ L, Bt = Rt 4 Ry
Ly =L RR=R’

L2+1 = Lg + L'ln Rg+1 = R + R;.

From the method of construction the systems {L!=R} thru {L:= R}
are the unique systems satisfying P1 thru P3.

Since P;(k) vanishes for 0 <k <j — 1 it follows that L{ =
for 7 > n and all 7. Moreover, for j = = we have L} = n!a, (%),
a constant independent of <. From (2.4) we see that R} =
ol (k)C(3), where the C,(i) are polynomials in ¢ of degree k.
Hence R: = R},, — R} can be written in the form >\7_,a@,_,(k)Ci(2),
where the Ci(i) are of degree k& — 1. Continuing in this manner
we obtain

Rz: j>'n/ 'i:Oyly"’y
R? = R} 1 =0,1, -+,

Hence the systems {L{ = Ri{} j =0, --., n satisfy P1 thru P3
where Li = Rj corresponds to the L7 = R’ and the system {L!= R%}
corresponds to the system S,. This yields the sufficiency.

This theorem provides an algorithm for determining all formally
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symmetric operators of a given order. As an application we give
the general formally symmetric first order operator. Use of 2.5 for
p =0 and 1 yields

L = (e2* + az + ¢)d/dz + (2¢z + b) ,

where a and b are real.

3. Self-adjoint extensions. The operator S has another charac-
terization which will be of use in the study of self-adjoint exten-
sions. For f and g in & consider the bilinear form

3.1 {fg> = (Lf, 9) — (f, Lg) ,

and let & be the set of those f in % for which {fg> =0 for all
g in &. Since S = T* and 2(T*) = £, S has domain .

Let &+ and=~ denote the set of all solutions of the equations
Lu = 1w and Lu = —u respectively, which are in &2 It is known
from the general theory of Hilbert space [3, p. 1227-1230] that

(3.2) D=+ D+ T,
and every fe < has the unique representation
f=F+f+f, (Fea, freat frez).

Let the dimensions of &+ and &~ be m* and m~ respectively.
Clearly, m* and m~ cannot exceed the order of L. These integers
are referred to as the deficiency indices of S, and S has self-adjoint
extensions if and only if m* = m~. Moreover S is itself self-adjoint
if and only if m* = m~ = 0.

We assume that m* = m— = m and seek to characterize all self-
adjoint extensions of S. Von Neumann has shown that the self-
adjoint extensions of S are in a one-to-one correspondence with the
unitary operators U of &+ onto <~. Corresponding to any such
U there exists a self-adjoint extension A of S whose domain is the
set of all fe & which are of the form

f=F+UI-Uf, (fe, frea),

where I is the identity operator on &»*. Conversly every such A
has a domain of this type.

We now introduce the notion of abstract boundary conditions
and indicate how the domain of any self-adjoint extension of S can
be obtained. A boundary condition is a condition on fe <r of the
form

{fhy =0,
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where % is a fixed function in &. The conditions

{fhip =0, j=1 . n,

are said to be linearly independent if the only set of complex
numbers «,, -+, a, for which

é a{fh;p> =0

identically in fe < is a,= ++-- =a, = 0. A set of n» linearly in-
dependent boundary conditions {fh,> =0, j=1, ..., m, is said to
be self-adjoint if <h;h> =0, 7,k =1, «--, m.

The following theorem follows directly from the proof of Theorem
3 in the paper of Coddington [1].

THEOREM 3.1. If A is a self-adjoint extension of S with domain
,, then there exists a set of m self-adjoint boundary conditions,

(3.3) {fhy =10 j=1c,m,

such that <, is the set of all fe = satisfying these conditions.
Conversly, if (3.83) is a set of m self-adjoint boundary conditions,
there exists a self-adjoint extension A of S whose domain is the set
of all fe & satisfying (3.3)

Let ¢, +--, ¢, and +,, +--, v, be orthonormal sets for &+ and
<~ respectively and (u;) a unitary matrix representing U, then
the h; are given by

3.4) hj=¢j—gu,.k«/f,,, j=1, e, m.

Let A be a self-adjoint operator associated with L and E{\) the
corresponding resolution of the identity. We shall show the pro-
jection K, corrresponding to 4 = (a,b] can be expressed as an
integral operator with a kernel given in terms of a basis of solutions
for Lv — »u =0 and a certain spectral matrix. Our work was
ingpired by the treatment of E. A. Coddington [2] of the case when
A arises from a formal differential operator in the space L,(I), [
an open interval. We begin by showing that the resolvent operator
of A,

RAH)=A—-7s", Im(@) =0,

is an integral operator with a nice kernel.
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THEOREM 3.2. R(2) is an integral operator with kernel K,

(3.5) R(Nf() = SS Kz, w, O)fw)dudy , fe 57 .

lw|<1

K is jointly analytic in z, 0, and < on the region |z| <1, |w]| <1,
Im () # 0.
Moreover, K(z, w, 7) = K(w, 2, 7) and

(3.6) (L — 2)K(w, 2, 7) = K,(w), for fized z and <.

Proof. Since R(/)f(z) = (R(2)f, K,) and R*(v) = R(7), it follows
that (3.1) holds with K(z, w, 7) = R(©)K,(w). Hence K is analytic in
w for fixed z and ~ That K(z, w, /) = K(w, 2, Z) can be seen from
the following computations,

Kz, w, 7) = (R()K,, K,) = (K,, R(©)K,) = K(w, z, 7) .

Hence K(z, w, /) is analytic in z for fixed w and ~ It follows from
the analyticity of R(~) for Im (») = 0 that K(z, w, /) = (R(©)K,, K,)
is analytic in ~ for fixed z and w on any region for which Im () # 0.
Since analyticity in each of the variables separately implies joint
analyticity it only remains to verify (8.6). This follows from the
fact that K(w, 2, ») = K(z, w, /) = R()K, (w).

We now split the kernel K(z, w, ~) into two parts one of which
satisfies the homogeneous equation (L—)u=0. Since the coefficients
of L are polynomials, p, has at most a finite number of zeros in
the unit disk. Introducing radial branchcuts at these zeros, we
obtain the region D, simply connected relative to D, in which p,
never vanishes. Let z,e D, it follows from standard theorems that
there exists a basis of solutions for the equation (L — #)¢ = 0 such
that:

(i) ¢i(2), 9=1, .-+, n, are single-valued analytic functions

on D
(1) @9 V(R 4) =04y 1, =1, 2+, m,
(i) ¢iw, ), i =1, -+, n, is entire in ~ for each we D.

THEOREM 3.3. The kernel K{(z, w, /) has the representation
3.7) K@z, w, 2) = >9:;()ei(z, 2)g5(w, 2) + Gz, w, ) ,
1,J=1
where G(z, w, 7) is entire in 2 for fixed z and w.

Proof. For fixed ze D and Im (~) = 0 it follows from (3.6) that



SELF-ADJOINT DIFFERENTIAL OPERATORS 527

(3.8) Kw, 2,7) = 3,5(z, 3w, 2) + 2z, w, 7)

where 0Q(z, w, 7) is the particular solution furnished by the variation
of parameters method and is entire in 7 for fixed z, w. Moreover,
i - .
(3'9) —-‘Q(z’zo’/)::oy 1=1, ., m.
ow*
Now consider the differential equation (L, — 2)K(z, w, /) = K,(?),
where L, denotes the fact that L is applied with respect to z.

Differentiating with respect to @ and making use of the symmetry
of K we obtain

gi-t
owi

§i-t
oW

(L, — ) K(w, 2, 7) = K,2), j=1+,m.

Using (3.8), (3.9) and the relationships
¢5j—1)(zo7 /) = 3:‘,7‘

we obtain

(L, — N5 ) = 2 K.(2) -
oW’

Variation of parameters yields

(3'10) w:’(z’ /) = g"}ij(/)‘ﬁi(za /) + ‘Qj(z’ /) ’ .7 = 1’ re,

where the 2,(z, ») are entire in ~ for fixed z and satisfy

(3.11) 2 pem ) =0, ii=1 .
ozt

It follows from (3.8) and (3.10) that (8.7) holds where
G w, 9) = 2, w, 2) + 3, 2,2, g (W, 7)

is entire in ~ for each z, we D.
Concerning the matrix ¥ = (¥,;) we have the following.

THEOREM 3.4. The matrix ¥ is analytic for Im(s) # 0, ¥*(v) =
V(7), and Imy(2)/Im(s) = 0, where Im ¥ = (¥ — ¥*)/21.

Proof. It follows from (3.9) and (3.10) that
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oiti—2 o
S kG )y hi =1,

(3.12) Vi) =

and hence ¥ is analytic for Im () == 0. Using (3.12) and the symmetry
of K we obtain v¥;,;(«) = v:(2).

In order to demonstrate the positivity of Im ¥ (2)/Im () = 0 we
consider the functionals « defined by

/lc(f):f(k—l)(zo)y fe;’/,kzl,---,n.

Since convergence in 5 implies uniform convergence on compact
subsets, the 4 are bounded linear functional on 5% Consequently
there exist functions K, ---, K, in 57 for which

f(k-l)(zo) = (fr K, ,

all fin 5~ Let &, ---,&, be any set of n complex numbers and
consider the function f = >\7_, §K,. The inner product (R()f, f) =

2o b&R(K, K)). Now R()Ki(z2) = (K, K.,), where K, (w) =
Kz, w, /) = K(w, 2, 7). Consequently,

ai—l

R(HK;(z) = —K(zy, 2, 7)
ow
and
(R(HK;, K;) = %K(zo, Ry £) = V5:(2) -
0 w0zt

Using the resolvent equation it is not hard to see that
Im (R(A)f, £)Im («) = [| RSP = 0

and hence

$ Imy(). =
i%‘l Im (2) R

This completes the proof.

It is shown in [2] that Theorem 3.4 implies the existence of a
spectral matrix o for the resolvent R.

THEOREM 3.5. The matrixz o defined by
2
o) = lim L S Im (v + ig)dy
e=+0 7T Jo

exists, 18 nondecreasing, and s of bounded variation on any finite
interval.
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We now consider the projections E, corresponding to the interval
4 = (a, b]. It follows from the proof of Theorem 8.2, that E, is an
integral operator with kernel ez, w) = E,K,(w). The following
theorem shows how e,(z, w) can be described in terms of the basis
&1, +++, ¢, and the spectral matrix given by Theorem 3.5.

THEOREM 3.6. If a and b are continuwity points of E then

(3.13) eu(z, w) = Sd 3% 6i(a, Vi, Ddos)
where 0 = (0;;) s the spectal matrixz given by Theorem 3.5.

Proof. The idea is to use the inversion formula

(B.f,9) = lim | (B + i9)f, 9) — (RO — i0)f, )av

for all f and g in 24 a and b continuity points of E,. Since E, is
self-adjoint e,(z, w) = (E,K,, K,) and hence

ez, w) = 11m2__ g (R + i9)K,, K,) — (R(v — i€)K,, K.)}dv .

— lim L
= 1im
e—t0 27T

S K(z, w, v + i€) — Kz, w, v — i€)dv .
4
For 2z, we D, this becomes

l 1
m
=10 27T

— alr”(v — 18)¢;{7, v — 16)¢;(w, v + 18)dy

g 2 a/fw(v + 18)¢:(z, v + t&)g;(w, v — 18)

+ hm
eo+0 2777

EAG(z, w, Y+ i€) — Gz, wy v — ie)dy .

Since G(z, w, 7) is entire in ~ the later integral tends to zero as
e— + 0.
We now rewrite the first integrand as

n

2 [Vi;(v + 18) — Vi (v — 18)]8:(, V)$;(w, V) +

%,

-

311

2 “l’\u(” + %8)[¢1(z’ v+ %8){153(?/0, Y — 7/8) - ¢ (z) ”)¢a(w, XJ)]

i,i=

n

3 ¥ — ©)[gi(z, Vig;(w, V) — 6i(2, v — ie)g;(w, v + i9)] ,

i,5=1

and denote the three sums by I,(v, €), L(v, ¢), and L(v, ¢) respectively.
Consider I,(v, ¢),
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lim 1 §A L(v, e)dy = lim 1 S Eﬂ“ Im ;v + 2€)¢:(2, V) ;(w, v)dv .

e=t0 2707 e+0 T J4i,5=1

Now

o(\) = lim L SA Im ¥ (v + ie)dy

e—+4+0 7T
and it follows from a theorem of Helly that

3.14)  lim _2.}; Sd I, )dy = SA % 6:(2, Vg (@, D)dps(v) -

e—>4+0

As is shown in [2] we have the following estimate

(3.15) % Sd | (v = i€) | dy = o(log %) (€— + 0) .

Since the ¢,(z, #) are entire in ~ for fixed z there exists a constant
M > 0 such that for e sufficiently small

(3.16) |9:(2, v + i€)g,(w, v — 1) — 4i(z, V)g;(w, ) | < Me

for all ve 4.
Combining (3.15) and (8.16) we see that

1

T

S Ly, e)dy = O(s log l) (e— +0),
4 &
which tends to zero as ¢ — +0. A similar result holds for
ls L, 9)dv .
T J4
Consequently we have

(3.13) es(z, w) = SA z=; 6:(2, V)50, D)dps(v) -

The author wishes to express his gratitude to Professor Earl
Coddington for his encouragement and guidance in this work.
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