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CHARACTERIZING THE DISTRIBUTIONS OF THREE
INDEPENDENT *z-DIMENSIONAL RENDOM VARIABLES,

Xi, X2, Xs, HAVING ANALYTIC CHARACTERISTIC
FUNCTIONS BY THE JOINT DISTRIBUTION OF

(Xi + Xs, X2 + Xs).

PAUL G. MILLER

Kotlarski characterized the distribution of three inde-
pendent real random variables Xl9 X2, X3 having nonvanish-
ing' characteristic functions by the joint distribution of the
2-dimensional vector (XL + X3, X2 + X3). In this paper, we
shall give a generalization of Kotlarski's result for Xl9X2,Xz
^-dimensional random variables having analytic characteristic
functions which can meet the value zero.

In [3], Kotlarski shows that, for three independent random
variables X19 X2, XB, the distribution of (Xt + X3, X2 + X3) determines
the distributions of X19 X2 and Xs up to a change of the location if
the characteristic function of the pair {X1 + X3, X2 + X3) does not
vanish. Kotlarski also remarks that this result can be generalized
in two ways. The statement remains true if the requirement that
the pair (Xt + X3, X2 + X3) has a nonvanishing characteristic function
is replaced by the requirement that the random variables, X19 X2, X3,
possess analytic characteristic functions. The statement also remains
true if XLt X2 and X3 are ^-dimensional real random vectors such
that the pair (X± + X3, X2 + X3) has a nonvanishing characteristic
function. In this paper, Kotlarski's result is generalized to the case
where X19 X29 and Xz are ^-dimensional real random vectors possessing
analytic characteristic functions.

1. Some notions and lemmas about analytic functions of several
complex variables* Let Rn denote ^-dimensional real Euclidean space,
Cn denote π-dimensional complex Euclidean space, and let f(tiy ,tn)
be defined on some domain D in Cn. The function / is said to be
analytic at the point (t°19 , t°n) in D if / can be represented by a
convergent power series in some neighborhood of (£$, •• , O The
function / is said to be analytic on the domain D if it is analytic
at every point in D. We now list several lemmas concerning analytic
functions of several complex variables for a discussion of these
lemmas and further exposition on this theory, see [2].

L E M M A A . If f(t19 •••,£*) and g(t19 •••,£«) a>re analytic a t the

487



488 PAUL G. MILLER

point(ίj, •••,*!), αraZ if f(t°19 •• , C ) ^ 0 , ίλew £fte quotient ί is also

analytic at (ίjί j ,

LEMMA B. (Principle of analytic continuation). Iff and g are
analytic on some domain D in Cn and if f(t19 •••,£») = g(tlf •••,<»)
α£ every point in some subdomain of D, then f(t19 •••,£») = g(t19 , tn)
at all points of D.

2* The main theorem and its proof*

THEOREM. Let X19 X2, Xz be three independent, real, n-dimen-
sional random vectors, and let Zt = Xγ + XZ9 Z2 = X2 + X* If the
random vectors Xk possess characteristic functions ψk which are
analytic on domains Dk1 with OeDk, (k = 1,2,3), then the dis-
tributions of (Z19 Z2) determines the distributions of Xίf X2 and X3

up to a change of the location.

Proof. Let t = (tlf t2, , tn), s = (s19 s2, , sn) denote arbitrary-

points in Cn and 6 = (0, 0, ••, 0) denote the origin in Cn; let

|| ί II = VI tλ I
2 + 1121

2+ . . . + I tn I2 and let t s = ί ^ + t2s2 + + tnsn .

Let φk = EeitmZk, the characteristic function of Xk, be defined on
the domain Dke Cn, (k = 1, 2, 3). Then, letting φ(t, s) denote the
characteristic function of the distribution of the pair (Z19 Z2), we
have

φ (ΐ, s) = Eei{t'^+S'z^

= EeitmZί Eeis'x* Eei{t+8)'z*

= Φi(t) Λ(S) φ*(t + S)

where this function is defined on the domain

D = {(t, s): teD19se D2, (t + s)e A } e C2n .

Let U19 U2, U3 be three other independent, real, ^-dimensional
random vectors possessing characteristic functions ψ19 ψ29 ψ3 which
are analytic on domains D*, D*, Df. Let V, = U1 + UZ9 V2 = U2 + C/3

and let ^(ί, s) = Eei{t'Vί+s'v^. Calculations analogous to those above
yield

Ψ(t, s) = Ψ,(t) Ψ2(s) ψB(t + 8)

on

D* = {(ί, s): t e A*, s G D}, (ί + s) e A*} e C2w .
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Suppose that the pairs {Zu Z2) and (V19 V2) have the same
distribution we shall show that the distributions of Xk and Uk,
(k = 1,2,3) are equal up to a shift. If the pairs (Zlf Z2) and (V19 V2)
have the same distribution, their characteristic functions are equal
so that D = D* and

( 1 ) Ψ,(t) Ψ2(s) Ψ3(t + s) = Φ&) φ,(8) Φ3(t + s) .

Since each of the functions in equation (1) is analytic and equal

to 1 at 0, there exists a domain Z)**e C2n of the form

such that , on D**, \ φ,{t) | > 1/2, | φ2(s) | > 1/2, | φd(t + s)\> 1/2 and
similar conditions hold for ψ19 ψ2, ψ3. Then on D** equation (1) can
be r e w r i t t e n

Φz(t + s)
Φi(t) φ*(8) Ψ5(t + S)

Letting Z l(ί) = ti(ί)/&(ί), χ2(ί) = Ψ2(t)/φ2(t), χ&) =
Lemma A asserts that each χfc, (& = 1, 2, 3), is analytic for |) 11| < a.
Then on Z)** equation (2) becomes

( 3 ) χ^ί) χt(s) = χs(ί + s) .

For s = 0, this equation reduces to χx(ί) = χ3(ί); similarly, setting ί = 0
yields χ2(s) = χ3(s) so that, on D**,

( 4 ) χs(ί) χ8(s) - χ8(ί + s) .

In [1], it is shown that the only nonzero analytic solutions of ( 4 )
are the exponential functions, ec-i where ceCn.

Therefore, for \\t\\ <a,ψB(t) = e"6'* φ3(t); since ψ3 and φ3 are
analytic on D3, Lemma B asserts that Ψ3(t) = e~c'1 φ3(t) for all t e D3.
Since χ8(ί) = χx(t) for | | t | | < α, Z l(ί) = e^ so that ti(ί) = e°'* φtf) for
|| ί || <a. Again, Lemma B asserts that ψ^t) = ec'1 φλ(t) for all t e A
A similar argument yields Ψ2{t) = ec'1 φ2(t) for all te D2.

Since φ( — t) = φ(t), the conjugate of φ(t), for any characteristic
function φ and any teRn, it follows that c = ib where beRn.
Therefore, ψtf) = eh'1 φXi), Ψ2(t) = eih'* φ2(t), ψ&) - e'^ φ3(t). From
this it follows that the distributions of Xk are equal to those of Uk,
(fc = 1, 2, 3), up to a change of the location, and the proof is com-
plete.

3* Applications of the theorem* The following two examples
show how the theorem can be applied to random vectors Xu X21 X3>
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of the same dimension, which possess analytic characteristic functions
and for which the characteristic function of {Xx + X3, X2 + X3) as-
sumes the value zero.

Let X = (X19 , Xn) denote a random vector then X has mul-
tinomial distribution, Mu(r; P19 « ,Pw),of order r with parameters
Pi, P», 0 ^ Pj9 Px + P2 + + PΛ ^ 1, if, for every set of integers

{kj: j = 1,2, •• , ) t , i ; i ^ 0 , Σ ϋ ^ r } ,
1

k X - h\- r ! P*i---P*»P?-Ai>>>-*»
#!, , Λn — fϋn) — r—--JcJ fe2!...kn!(r- &! fcn)!

where Po = 1 — P1 — P2 Pn. The characteristic function of X,
Φ(tu •• ) ϋ = (Po + Pxe

ih + + Pne
itn)r, is clearly an analytic func-

tion on Cn. Notice that, for the choice of parameters Px = P2 =
• = Pn = l/2n, Po — 1/2, φ has zeros at the points ((2mL + 1) π,
(2m? + 1) 7Γ, , (2mΛ + 1) π), where mi9 m2, , mn are integers.
Let Mu*(rγ< r2, rB; Plt P2, •••, Pn) denote the joint distribution of the
pair (Z19 Z2) where Zι = X, + Xz, Z2 = X2 + X3 and each Xk,
(k - 1, 2, 3) has distribution Mu(rk; P19 ••., Pn). With these defini-
tions, the above theorem asserts the following result.

COROLLARY 1. Let X19 X29 X5 be three independent, n-dimensional,
random vectors and let Zι = Xλ + X3, Z2 = X2 + Xz. If the pair
(Zl9 Z2) has distribution Mu*(rlf r2, r 3; P1 ? * ,PW), ίfee^, except for
perhaps a change of location, the distribution of Xk is Mu

As another application of the above theorem, let X be a 2 di-
mensional real random vector and let us say that X has distribution
U(a)9 a > 0, if its distribution has density function

f - L f o r \χ\ + \ y \ ^ a
f(x, y) = 2α«

{ 0 for I x I + I y \ > a

If X has distribution U(a)9 its characteristic function

+
φx(t, t2) = L

, + tt\ ft, ~ t

is an analytic function defined on C2 with zeros at the points (t1912)
where (ίi±ί2) = 2π/a m, m — ± 1 , ± 2 , •••. Let U*(a19 α2, α3) denote
the joint distribution of the pair (Z19 Z2) where Zx = X1 + X3 and
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Z2 = X2 = Xz and each Xk has distribution U(ak), (k = 1, 2, 3). With
these definitions, the above theorem asserts the following result.

COROLLARY 2. Let Xlf X2, X3 be three independent 2-dimensional
random vectors and let Zt = Xλ + X3, Z2 = X2 + Xz. If the pair
(Zlf Z2) has distribution U*(aL, a2, α3), then, except for perhaps a change
of location, the distribution of Xk is U(ak), (k = 1, 2, 3).

The author is indebted to Professor Ignacy Kotlarski for sug-
gesting the problem discussed in this paper and for several helpful
comments pertaining to its solution.
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