CHARACTERIZING THE DISTRIBUTIONS OF THREE INDEPENDENT n-DIMENSIONAL RENDOM VARIABLES, X_{1}, X_{2}, X_{3}, HAVING ANALYTIC CHARACTERISTIC FUNCTIONS BY THE JOINT DISTRIBUTION OF $\left(X_{1}+X_{3}, X_{2}+X_{3}\right)$.

Paul G. Miller

Kotlarski characterized the distribution of three independent real random variables X_{1}, X_{2}, X_{3} having nonvanishing characteristic functions by the joint distribution of the 2 -dimensional vector ($X_{1}+X_{3}, X_{2}+X_{3}$). In this paper, we shall give a generalization of Kotlarski's result for X_{1}, X_{2}, X_{3} n-dimensional random variables having analytic characteristic functions which can meet the value zero.

In [3], Kotlarski shows that, for three independent random variables X_{1}, X_{2}, X_{3}, the distribution of ($X_{1}+X_{3}, X_{2}+X_{3}$) determines the distributions of X_{1}, X_{2} and X_{3} up to a change of the location if the characteristic function of the pair $\left(X_{1}+X_{3}, X_{2}+X_{3}\right)$ does not vanish. Kotlarski also remarks that this result can be generalized in two ways. The statement remains true if the requirement that the pair ($X_{1}+X_{3}, X_{2}+X_{3}$) has a nonvanishing characteristic function is replaced by the requirement that the random variables, X_{1}, X_{2}, X_{3}, possess analytic characteristic functions. The statement also remains true if X_{1}, X_{2} and X_{3} are n-dimensional real random vectors such that the pair ($X_{1}+X_{3}, X_{2}+X_{3}$) has a nonvanishing characteristic function. In this paper, Kotlarski's result is generalized to the case where X_{1}, X_{2}, and X_{3} are n-dimensional real random vectors possessing analytic characteristic functions.

1. Some notions and lemmas about analytic functions of several complex variables. Let R_{n} denote n-dimensional real Euclidean space, C_{n} denote n-dimensional complex Euclidean space, and let $f\left(t_{1}, \cdots, t_{n}\right)$ be defined on some domain D in C_{n}. The function f is said to be analytic at the point $\left(t_{1}^{0}, \cdots, t_{n}^{0}\right)$ in D if f can be represented by a convergent power series in some neighborhood of $\left(t_{1}^{0}, \cdots, t_{n}^{0}\right)$. The function f is said to be analytic on the domain D if it is analytic at every point in D. We now list several lemmas concerning analytic functions of several complex variables; for a discussion of these lemmas and further exposition on this theory, see [2].

Lemma A. If $f\left(t_{1}, \cdots, t_{n}\right)$ and $g\left(t_{1}, \cdots, t_{n}\right)$ are analytic at the
point $\left(t_{1}^{0}, \cdots, t_{n}^{0}\right)$, and if $f\left(t_{1}^{0}, \cdots, t_{n}^{0}\right) \neq 0$, then the quotient ${ }_{f}^{g}$ is also analytic at $\left(t_{1}^{0}, \cdots, t_{n}^{0}\right)$.

Lemma B. (Principle of analytic continuation). If f and g are analytic on some domain D in C_{n} and if $f\left(t_{1}, \cdots, t_{n}\right)=g\left(t_{1}, \cdots, t_{n}\right)$ at every point in some subdomain of D, then $f\left(t_{1}, \cdots, t_{n}\right)=g\left(t_{1}, \cdots, t_{n}\right)$ at all points of D.

2. The main theorem and its proof.

Theorem. Let X_{1}, X_{2}, X_{3} be three independent, real, n-dimensional random vectors, and let $Z_{1}=X_{1}+X_{3}, Z_{2}=X_{2}+X_{3}$. If the random vectors X_{k} possess characteristic functions $\dot{\phi}_{k}$ which are analytic on domains D_{k}, with $\bar{O} \in D_{k},(k=1,2,3)$, then the distributions of $\left(Z_{1}, Z_{2}\right)$ determines the distributions of X_{1}, X_{2} and X_{3} up to a change of the location.

Proof. Let $t=\left(t_{1}, t_{2}, \cdots, t_{n}\right), s=\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ denote arbitrary points in C_{n} and $\overline{0}=(0,0, \cdots, 0)$ denote the origin in C_{n}; let

$$
\|t\|=\sqrt{\left|t_{1}\right|^{2}+\left|t_{2}\right|^{2}+\cdots+\left|t_{n}\right|^{2}} \text { and let } t \cdot s=t_{1} s_{1}+t_{2} s_{2}+\cdots+t_{n} s_{n}
$$

Let $\dot{\phi}_{k}=E e^{i t \cdot x_{k}}$, the characteristic function of X_{k}, be defined on the domain $D_{k} \in C_{n},(k=1,2,3)$. Then, letting $\phi(t, s)$ denote the characteristic function of the distribution of the pair (Z_{1}, Z_{2}), we have

$$
\begin{aligned}
\phi(t, s) & =E e^{i\left(t \cdot Z_{1}+s \cdot Z_{2}\right)} \\
& =E e^{i\left(t \cdot X_{1}+s \cdot X_{2}+(t+s) \cdot x_{3}\right)} \\
& =E e^{i t \cdot x_{1}} E e^{i s \cdot X_{2}} E e^{i(t+s) \cdot X_{3}} \\
& =\phi_{1}(t) \phi_{2}(s) \phi_{3}(t+s)
\end{aligned}
$$

where this function is defined on the domain

$$
D=\left\{(t, s): t \in D_{1}, s \in D_{2},(t+s) \in D_{3}\right\} \in C_{2 n} .
$$

Let U_{1}, U_{2}, U_{3} be three other independent, real, n-dimensional random vectors possessing characteristic functions $\psi_{1}, \psi_{2}, \psi_{3}$ which are analytic on domains $D_{1}^{*}, D_{2}^{*}, D_{3}^{*}$. Let $V_{1}=U_{1}+U_{3}, V_{2}=U_{2}+U_{3}$ and let $\dot{\psi}(t, s)=E e^{i\left(t \cdot V_{1}+s \cdot V_{2}\right)}$. Calculations analogous to those above yield

$$
\psi(t, s)=\psi_{1}(t) \quad \psi_{2}(s) \quad \psi_{3}(t+s)
$$

on

$$
D^{*}=\left\{(t, s): t \in D_{1}^{*}, s \in D_{2}^{*},(t+s) \in D_{3}^{*}\right\} \in C_{2 n} .
$$

Suppose that the pairs $\left(Z_{1}, Z_{2}\right)$ and $\left(V_{1}, V_{2}\right)$ have the same distribution; we shall show that the distributions of X_{k} and U_{k}, $(k=1,2,3)$ are equal up to a shift. If the pairs $\left(Z_{1}, Z_{2}\right)$ and $\left(V_{1}, V_{2}\right)$ have the same distribution, their characteristic functions are equal so that $D=D^{*}$ and

$$
\begin{equation*}
\dot{\psi}_{1}(t) \psi_{2}(s) \psi_{3}(t+s)=\phi_{1}(t) \dot{\phi}_{2}(s) \phi_{3}(t+s) \tag{1}
\end{equation*}
$$

Since each of the functions in equation (1) is analytic and equal to 1 at $\overline{0}$, there exists a domain $D^{* *} \in C_{2 n}$ of the form

$$
\left\{(t, s): \sqrt{\|t\|^{2}+\|s\|^{2}}<\alpha, \alpha>0\right\}
$$

such that, on $D^{* *},\left|\phi_{1}(t)\right|>1 / 2,\left|\dot{\varphi}_{2}(s)\right|>1 / 2,\left|\dot{\phi}_{3}(t+s)\right|>1 / 2$ and similar conditions hold for $\psi_{1}, \psi_{2}, \psi_{3}$. Then on $D^{* *}$ equation (1) can be rewritten

$$
\begin{equation*}
\frac{\dot{\psi}_{1}(t)}{\dot{\phi}_{1}(t)} \frac{\dot{\psi}_{2}(s)}{\phi_{2}(s)}=\frac{\dot{\phi}_{3}(t+s)}{\psi_{3}(t+s)} . \tag{2}
\end{equation*}
$$

Letting $\quad \chi_{1}(t)=\psi_{1}(t) / \phi_{1}(t), \quad \chi_{2}(t)=\psi_{2}(t) / \phi_{2}(t), \quad \chi_{3}(t)=\phi_{3}(t) / \psi_{3}(t)$, Lemma A asserts that each $\chi_{k},(k=1,2,3)$, is analytic for $\|t\|<\alpha$. Then on $D^{* *}$ equation (2) becomes

$$
\begin{equation*}
\chi_{1}(t) \chi_{2}(s)=\chi_{3}(t+s) \tag{3}
\end{equation*}
$$

For $s=\overline{0}$, this equation reduces to $\chi_{1}(t)=\chi_{3}(t)$; similarly, setting $t=\overline{0}$ yields $\chi_{2}(s)=\chi_{3}(s)$ so that, on $D^{* *}$,

$$
\begin{equation*}
\chi_{3}(t) \quad \chi_{3}(s)=\chi_{3}(t+s) \tag{4}
\end{equation*}
$$

In [1], it is shown that the only nonzero analytic solutions of (4) are the exponential functions, $e^{c \cdot t}$ where $c \in C_{n}$.

Therefore, for $\|t\|<\alpha, \psi_{3}(t)=e^{-c \cdot t} \phi_{3}(t)$; since ψ_{3} and ϕ_{3} are analytic on D_{3}, Lemma B asserts that $\psi_{3}(t)=e^{-c \cdot t} \phi_{3}(t)$ for all $t \in D_{3}$. Since $\chi_{3}(t)=\chi_{1}(t)$ for $\|t\|<\alpha, \chi_{1}(t)=e^{c \cdot t}$ so that $\psi_{1}(t)=e^{c \cdot t} \phi_{1}(t)$ for $\|t\|<\alpha$. Again, Lemma B asserts that $\dot{\psi}_{1}(t)=e^{c \cdot t} \dot{\phi}_{1}(t)$ for all $t \in D_{1}$. A similar argument yields $\psi_{2}(t)=e^{c \cdot t} \phi_{2}(t)$ for all $t \in D_{2}$.

Since $\phi(-t)=\overline{\phi(t)}$, the conjugate of $\phi(t)$, for any characteristic function $\dot{\phi}$ and any $t \in R_{n}$, it follows that $c=i b$ where $b \in R_{n}$. Therefore, $\dot{\psi}_{1}(t)=e^{i b \cdot t} \dot{\phi}_{1}(\dot{\tau}), \psi_{2}(t)=e^{i b \cdot t} \dot{\phi}_{2}(t), \psi_{3}(t)=e^{-i b \cdot t} \dot{\phi}_{3}(t)$. From this it follows that the distributions of X_{k} are equal to those of U_{k}, ($k=1,2,3$), up to a change of the location, and the proof is complete.
3. Applications of the theorem. The following two examples show how the theorem can be applied to random vectors X_{1}, X_{2}, X_{3},
of the same dimension, which possess analytic characteristic functions and for which the characteristic function of ($X_{1}+X_{3}, X_{2}+X_{3}$) assumes the value zero.

Let $X=\left(X_{1}, \cdots, X_{n}\right)$ denote a random vector ; then X has multinomial distribution, $M u\left(r ; P_{1}, \cdots, P_{n}\right)$, of order r with parameters $P_{1}, \cdots P_{n}, 0 \leqq P_{j}, P_{1}+P_{2}+\cdots+P_{n} \leqq 1$, if, for every set of integers

$$
\begin{gathered}
\left\{k_{j}: j=1,2, \cdots, n, k_{j} \geqq 0, \sum_{1}^{n} k_{i} \leqq r\right\}, \\
P\left(X_{1}=k_{1}, \cdots, X_{n}=k_{n}\right)=\frac{r!P_{1}^{k_{1}} \cdots P_{n}^{k_{n}} P_{0}^{r-k_{1}} \cdots-k_{n}}{k_{1}!k_{2}!\cdots \mathrm{k}_{n}!\left(r-k_{1} \cdots-k_{n}\right)!}
\end{gathered}
$$

where $P_{0}=1-P_{1}-P_{2}-\cdots-P_{n}$. The characteristic function of X, $\phi\left(t_{1}, \cdots, t_{n}\right)=\left(P_{0}+P_{1} e^{i t_{1}}+\cdots+P_{n} e^{i t_{n}}\right)^{r}$, is clearly an analytic function on C_{n}. Notice that, for the choice of parameters $P_{1}=P_{2}=$ $\cdots=P_{n}=1 / 2 n, \quad P_{0}=1 / 2, \phi$ has zeros at the points $\left(\left(2 m_{1}+1\right) \pi\right.$, $\left.(2 m,+1) \pi, \cdots,\left(2 m_{n}+1\right) \pi\right)$, where $m_{1}, m_{2}, \cdots, m_{n}$ are integers. Let $M u^{*}\left(r_{1}, r_{2}, r_{3} ; P_{1}, P_{2}, \cdots, P_{n}\right)$ denote the joint distribution of the pair $\left(Z_{1}, Z_{2}\right)$ where $Z_{1}=X_{1}+X_{3}, Z_{2}=X_{2}+X_{3}$ and each X_{k}, ($k=1,2,3$) has distribution $M u\left(r_{k} ; P_{1}, \cdots, P_{n}\right)$. With these definitions, the above theorem asserts the following result.

Corollary 1. Let X_{1}, X_{2}, X_{3} be three independent, n-dimensional, random vectors and let $Z_{1}=X_{1}+X_{3}, Z_{2}=X_{2}+X_{3}$. If the pair $\left(Z_{1}, Z_{2}\right)$ has distribution $M u^{*}\left(r_{1}, r_{2}, r_{3} ; P_{1}, \cdots, P_{n}\right)$, then, except for perhaps a change of location, the distribution of X_{k} is $M u$ $\left(r_{k} ; P_{1}, \cdots, P_{n}\right),(k=1,2,3)$.

As another application of the above theorem, let X be a 2 dimensional real random vector and let us say that X has distribution $U(a), a>0$, if its distribution has density function

$$
f(x, y)=\left\{\begin{array}{c}
\frac{1}{2 a^{2}} \text { for }|x|+|y| \leqq a \\
0 \text { for }|x|+|y|>a
\end{array}\right.
$$

If X has distribution $U(\alpha)$, its characteristic function

$$
\phi_{X}\left(t_{1}, t_{2}\right)=\frac{\sin \left[\left(t_{1}+t_{2}\right) \frac{a}{2}\right] \sin \left[\left(t_{1}-t_{2}\right) \frac{a}{2}\right]}{a^{2}\left(\frac{t_{1}+t_{2}}{2}\right)\left(\frac{t_{1}-t_{2}}{2}\right)}
$$

is an analytic function defined on C_{2} with zeros at the points $\left(t_{1}, t_{2}\right)$ where $\left(t_{1} \pm t_{2}\right)=2 \pi / a m, m= \pm 1, \pm 2, \cdots$. Let $U^{*}\left(a_{1}, a_{2}, a_{3}\right)$ denote the joint distribution of the pair $\left(Z_{1}, Z_{2}\right)$ where $Z_{1}=X_{1}+X_{3}$ and
$Z_{2}=X_{2}=X_{3}$ and each X_{k} has distribution $U\left(a_{k}\right),(k=1,2,3)$. With these definitions, the above theorem asserts the following result.

Corollary 2. Let X_{1}, X_{2}, X_{3} be three independent 2-dimensional random vectors and let $Z_{1}=X_{1}+X_{3}, Z_{2}=X_{2}+X_{3}$. If the pair $\left(Z_{1}, Z_{2}\right)$ has distribution $U^{*}\left(a_{1}, a_{2}, a_{3}\right)$, then, except for perhaps a change of location, the distribution of X_{k} is $U\left(a_{k}\right),(k=1,2,3)$.

The author is indebted to Professor Ignacy Kotlarski for suggesting the problem discussed in this paper and for several helpful comments pertaining to its solution.

Bibliography

1. J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.
2. H. Cartan, Elementary Theory of Analytic Functions of One or Several Complex Variables, Addison-Wesley, Reading, Mass., 1963.
3. Ignacy, Kotlarski, On characterizing the Gamma and the normal distribution, Pacific J. Math. 20 (1967), 69-76.

Received February 18, 1970.
Oklahoma State University

