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THE PRIMARY DECOMPOSITION THEORY
FOR MODULES

JOE W. FISHER

Necessary and sufficient conditions are given for the
classical Lasker-Noether primary decomposition theory to
exist on a module over an arbitrary commutative ring. Also
investigation is conducted into the connection between the
existence of the primay decomposition theory and the Artin-
Rees property of a module.

In [1] we introduced a new technique for constructing decom-
position theories for modules and we used it to give necessary and
sufficient conditions for the Lesieur-Croisot tertiary decomposition
theory to exist on a module over an arbitrary ring. By again
making use of this technique we have obtained necessary and
sufficient conditions for the classical Lasker-Noether primary decom-
position theory to exist on a module over an arbitrary commutative
ring. In the noncommutative case we have necessary and sufficient
conditions for the primary theory to exist on an ϋJ-module M which
has the property that nil ideals are nilpotent in each factor ring of
B/(0: M).

In [1], [4], and [7] investigation was conducted into the con-
nection between the existence of the primary decomposition theory
and the Artin-Rees property of a module. In § 2 we have obtained
the following new results in this connection. For R commutative
we show that if an iϋ-module M is an Artin-Rees module and if
each factor module of M is finite dimensional, then M has the primary
decomposition theory. For R noncommutative the additional hy-
pothesis is added that nil ideals are nilpotent in each factor ring of
jβ/(0: M). In addition we show that if an iϋ-module M has the
primary decomposition theory and if nil ideals are nilpotent in each
factor ring of R/(0: M), then M is an Artin-Rees module.

In § 3 we give some examples. In Example 1 we use our
existence Theorem 1.7 to give an example of a module which has
the primary decomposition theory but which is not Noetherian.

It should be brought to the attention of the reader that all the
results in this paper which, for reasons of convenience, are stated
for an J?-module M where R is left Noetherian are also valid with
the weaker assumption that nil ideals are nilpotent in each factor
ring of R/(0: M).

1* The primary theory* Throughout this paper, R will denote
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an arbitrary associative ring which does not necessarily have an
identity. All iϋ-modules will be assumed to be left iϋ-modules and
•Λ£ will denote the category of all j?-modules and iϋ-homomorphisms.

The primary radical of an iϋ-module M, denoted p(M), is the
intersection of all the prime ideals in R which contain the annihilator,
(0: M), of M. A submodule N of M is called primary [7,8] if
NΦ M and each r in R, which annihilates a nonzero submodule of
M/N, lies in p(M/N). A finite set {Nϊ.ίel} of submodules of M is
a primary decomposition of N in M if the following conditions are
satisfied:

(1) ΠieiNi = N and for no i e I is Πs^Ns S N,;
(2) the Ni, iel are primary submodules of M; and
(3) p(M/Ni) Φ p{M/Nό) for iΦj.

If each submodule of M has a primary decomposition in M, then M
is said to have the primary decomposition theory.

An i?-module S is said to be p-stahle if S Φ (0) and for each
nonzero submodule N of S, then p(N) = p(S). An ideal & in R
is called an associated ideal of Λf if there exists a ^-stable submodule
S of M such that ^ = j>(S). Denote the set of associated ideals of
M by P(M).

PROPOSITION 1.1. Let M be an R-module where R is either com-
mutative or left Noetherian. If^e P(M) then & is prime.

Proof. If R is commutative the result is Proposition 9.1 in [1],
If R is left Noetherian and & e P(M) then there exists a p-stable
submodule S of M such that & = p(S). Suppose that I, J are
ideals of R such that IJ g &. Since p(S) is a nil ideal modulo
(0: S) [3, p. 196], there exists a positive integer n such that
(IJ^-'S Φ (0) and (IJ)nS = (0) by Levitzki's theorem [3, p. 199]. If
J g & - p{(Ijγ-γS) then J{Ijγ~ιS Φ (0). Hence J g ^ since
(ZJTS - (0) and & - p(J(IJ)n^S).

A submodule AT of M is said to be a P-submodule \ί N Φ M and
Λί/iV is P-stahle, i.e., there exists an ideal ^ in i2 such that for
each nonzero submodule M" of M/N, P{M") = {^}. A finite set
{N{: iel} of submodules of M is a P-decomposition of N in M if the
following conditions are satisfied:

(1) ΠieiNi = iV and for no i e / is f\WV, g A ;̂
(2) the Nif iel are P-submodules of M; and
(3) P(M/Ni) Φ P(M/NS) for i Φ j.

If each submodule of M has a P-decomposition in M then Af is said
to have the P-decomposition theory. An _β-module M is called
p-worthy if each factor module M" of ikf satisfies the following
conditions:
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(a) each nonzero submodule of M" contains a p-stable submodule,
and

(b) P{M") is finite.
In the terminology of [1] p is a radical function on ^/έ and P

is the associated ideal function on ^/f that is obtained from p.
Therefore Theorem 4.10 in [1] shows that a necessary and sufficient
condition for M to have the P-decomposition theory is that M be
p-worthy. The condition that M be p-worthy is not a sufficient
condition for M to have the primary decomposition theory. See
Example 4 in [1]. We proceed with the task of finding necessary
and sufficient conditions for the existence of the primary theory.

LEMMA 1.2. Let N be a submodule of an R-module M. Then
N is primary if M/N is p-stable.

Proof. Suppose that r e R annihilates a nonzero submodule M"
of M/N. Then rep(M") = p(M/N). Hence N is primary.

THEOREM 1.3. Let R be an arbitrary ring and let M be an
R-module. Sufficient conditions for M to have the primary de-
composition theory are the following:

(1) M is p-worthy, and
(2) S a P-submodule of M implies that M/S is p-stable.

Proof. It follows from Theorem 4.10 in [1] that each submodule
N of M has a P-decomposition {Nil iel] in M. Since each JVi is a
P-submodule of M, each M/Ni is p-stable. Hence each Nt is primary by
Lemma 1.2. Moreover p(M/Nt) Φ p(M/Nd) for iφj because P(M/Ni) Φ
P(M/Nj). Therefore {Nf. i e /} is a primary decomposition of N in M.

Let (r) denote the principal ideal in R which is generated by
r in R.

LEMMA 1.4. Let M be a nonzero R-module where R is either
commutative or left Noetherian. If re p(M) then there exists a
nonzero submodule N of M such that (r)N — (0).

Proof The p(M) is a nil ideal modulo (0: M). If R is com-
mutative then indeed (r) is nilpotent modulo φ: M). If R is left
Noetherian then (r) is nilpotent modulo (0: M) by Levitzki's theorem.
In either case there exists a positive integer n such that (r)n~ιMΦ
(0) and (r)nM= (0). Therefore (r) annihilates the nonzero submodule
(r)n~LM of M.

PROPOSITION 1.5. Let M be an R-module where R is either
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commutative or left Noetherian and let N be a submodule of M.
Then N is primary if and only if M/N is p-stable.

Proof. The "if" follows from 1.2.
Suppose that N is primary. If ikf" is a nonzero submodule of

M/N then p(M/N) S p(M"). If re p{M") then Lemma 1.4 shows
that (r) annihilates a nonzero submodule of M/N. Wherefore
r e p(M/N) since N is primary. Therefore M/N is p-stable.

PROPOSITION 1.6. Let M be an R-module where R is either
commutative or left Noetherian and let N be a submodule of M.
If {Nil ie 1} is a primary decomposition of N in M then {Nt: ie 1}
is a P-decomposition of N.

Proof. Proposition 1.5 yields that each M/Nt is p-stable. Hence
each Ni is a P-submodule of M because P{M/Ni) = {p(M/Ni)}. More-
o v e r P(M/Ni) Φ P(M/Nά) f o r iφj s i n c e p(M/Ni) Φ p(M/N2). There-
fore {Nil ie 1} is a P-decomposition of N in M.

THEOREM 1.7. Let M be an R-module where R is either com-
mutative or left Noetherian. Necessary and sufficient conditions
for M to have the primary decomposition theory are the following:

(1) M is p-worthy, and
(2) P-submodules of M are primary.

Proof. The sufficiency follows from Theorem 1.3.
In order to prove the necessity assume that M has the primary

decomposition theory. Then M has the P-decomposition theory by
Proposition 1.6. Therefore M is p-worthy by Theorem 4.10 in [1].

Suppose that N is a P-submodule of M. Then there exists a
primary decomposition {N^. i — 1, 2, , k} of N in M. Moreover
{jVii i = l, 2, , k} is a P-decomposition of N in M. Since N is a
P-submodule and P(M/N) = JJ*=i P(M/Ni) [1, Proposition 4.5], we
have that k = 1. Consequently N = Nt and so N is primary.

As a corollary we get the following well-known theorem.

COROLLARY 1.8. Let R be a commutative ring and let M be a
Noetherian R-module. Then M has the primary decomposition
theory.

Proof. The fact that M is p-worthy follows from Proposition
5.6 and Lemma 9.2 in [1]. That P-submodules of M are primary
follows from Proposition 9.3 in [1],
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2* Artin-Rees modules* An iu-module M is said to be an
Artin-Rees module [4, 7] if it has the Artin-Rees property, i.e.,
for each submodule N of M, ideal I in R, and positive integer n,
there exists a positive integer h such that PM Π iV £ J îV. It
should be noted that submodules and factor modules of Artin-Rees
modules are Artin-Rees modules. An jβ-module M is said to be
finite dimensional [2] over R if each direct sum of nonzero sub-
modules of M has only a finite number of terms. An jβ-module U
is uniform if U Φ (0) and each pair of nonzero submodules of U has
nonzero intersection. A submodule E of M is called essential if E
has nonzero intersection with each nonzero submodule of M.

LEMMA 2.1. Let M be an R-module where R is either com-
mutative or left Noetherian. If M is an Artin-Rees module then
P-submodules of M are primary.

Proof. It is sufficient to show that if (0) is a P-submodule of
M then (0) is primary. Suppose that reR annihilates a nonzero
submodule N of M. Since (0) is a P-submodule of M, there exists
an ideal & in R such that P(N) = P(M) = {^}. Hence there exists
a p-stable submodule S of N such that & = p(S). Whence re^.

We claim that (0: (r)) = {meM: (r)m = 0} is an essential sub-
module of M. If W is a nonzero submodule of M then P(W) = {έ^}.
Hence there exists a nonzero submodule W of W such that & =
p(W). Since r e ^ there is a nonzero submodule W" of W such
that (r)W" = (0) by 1.4. Therefore (0: (r)) nW^W" Φ (0) and so
(0: (r)) is essential.

Now we apply the Artin-Rees property to (0: (r)), (r), and w = l
to obtain an h such that (r)felf Π (0: (r)) £ (r)(0: (r)) = (0). Thus
{r)hM — (0) and so rep(ilί). Therefore (0) is primary.

THEOREM 2.2. Let M be an R-module where R is either com-
mutative or left Noetherian. Sufficient conditions for M to have
the primary decomposition theory are the following:

(1) M is p-worthy, and
(2) M is an Artin-Rees module.

Proof. The result follows from Theorem 1.7 since M Artin-
Rees guarantees that P-submodules of M are primary.

We will now proceed to show that a module M over either a
commutative or left Noetherian ring has the primary decomposition
theory provided that M is an Artin-Rees module and each factor
module of M is finite dimensional.
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LEMMA 2.3. Let M be an R-module where R is either com-
mutative or left Noetherian. If M is an Artin-Rees module then
uniform submodules are p-stahle.

Proof. Let U be a uniform submodule of M and let V be a
nonzero submodule of U. Indeed p(U) S p(V). Let rep(V). By-
Lemma 1.4 there exists a nonzero submodule N of V such that
(r)N = (0). The Artin-Rees property of U applied to N, (r), and
n = 1, produces an h such that (r) Λ ϊ7n N S (r)N = (0). Since Z7 is
uniform, we have that (r)hU — (0). Hence rep(U). Therefore

and so t/ is ^-stable.

LEMMA 2.4. Lβί M 6β an R-module where R is either com-
mutative or left Noetherian. If M is a finite dimensional Artin-
Rees module then P(M) is finite.

Proof. From [2, Th. 3.3] we have that there exists an essential
submodule E of M of the form E= U, © U2 0 0 Un, where each
Ut is uniform. Moreover P(M) = P(JE) [1, Proposition 2.5] and
P(E) = \Ji=ιP(Ui) [1, Proposition 2.4]. Since uniform submodules
are p-stable P(Ui) consists of a single ideal. Therefore P(M) is
finite.

PROPOSITION 2.5. Let M be an R-module where R is either
commutative or left Noetherian. If each factor module of M is
finite dimensional and if M is an Artin-Rees module then M is
p-worthy.

Proof. Let M" be a factor module of M. Since M" its a finite
dimensional Artin-Rees module, each nonzero submodule of M"
contains a uniform [2, Lemma 3.1]; hence, p-stable submodule.
Furthermore P(M") is finite. Therefore M is p~worthyβ

THEOREM 2.6. Let M be an R-module where R is either com-
mutative or left Noetherian. Sufficient conditions for M to have
the primary decomposition theory are the following:

(1) each factor module of M is finite dimensional, and
(2) ikf is an Artin-Rees module.

Proof. The result follows immediately from Theorem 2.2 and
Proposition 2.5.

Neither the hypothesis that each factor module of M be finite
dimensional nor the hypothesis that M be an Artin-Rees module can
be deleted. See Example 2 and [1, Example 4].
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THEOREM 2.7. Let R be a left Noetherian ring. If an R-module
M has the primary decomposition theory then M is an Artin-Rees
module.

Proof. Let N be a submodule of M, I an ideal in R, and n a
positive integer. Consider InN. Since In Q (InN: N)9 we have that
In g & for each & in P(N/InN).

Proposition 1.6 shows that M has the P-decomposition theory.
Then Proposition 11.1 in [1] produces a submodule X of M such
that i n N = InN and P(M/X) = P(N/InN).

The submodule X of M has a primary decomposition (Mu M2, ,
Mk} in Λf which is also a P-decomposition of X in ikf. If P{M/Mi) =
{^} for i = 1, 2, , fc, then P(Jlf/X) - {̂ *, ^ 2 , . . . , &>k} by Pro-
position 4.5 in [1]. Because P(M/X) = P(N/InN) we have that
/w S ^ for each i.

Since Jlίi is a primary submoduίe of M, we have that Λί/Λίi is
^-stable (1.5) and hence ^ = p(M/Mi) for each i. Whence ^ is a
nil ideal modulo (Mf. M). By Levitzki's theorem we have that for
each i, there exists an h{ such that ^ Λ < S (il^: M). Accordingly
there is an h such that ^hM C ilίi for each i. Thus /wΛM g
Mγ Π Λf2 ΓΊ ••• Π Mk = X. So InhMf) NQ Xn N= InN. Therefore
M is an Artin-Rees module.

As this theorem shows, a module M over a left Noetherian ring
which has the primary decomposition theory has the Artin-Rees
property. Example 1 shows that we cannot also deduce that each
factor module of M is finite dimensional.

We have the following well-known theorem as a corollary.

COROLLARY 2.8. Let R be a commutative ring and let M be an
R-module such that RM = M. If M is Noetherian then M is an
Artin-Rees module.

Proof By using a technique similar to the one used in the
proof of Theorem 2 in [6, p. 180], we can show that R/(0: M) is
Noetherian. Also M has the primary decomposition theory by
Corollary 1.8. Consequently M is Artin-Rees.

The following theorem is an extension of the classical Krull
"Intersection Theorem".

THEOREM 2.9. Let R be a left Noetherian ring and let M be
an R-module such that

(1) M is p-worthy, and
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(2) P-submodules of M are primary. For an ideal I of R, set
N = Γin PM. Then IN = N.

Proof. Theorem 1.7 shows that M has the primary decomposi-
tion theory. Hence M is an Artin-Rees module by Theorem 2.7.
Accordingly, there exists an h such that PM Π N £Ξ IN. Thus N =
PM f] N S IN S N and so JSΓ= IΛΓ.

As a corollary we get the following well-known theorem.

COROLLARY 2.10. Let R be a commutative ring and let M be a
Noetherian R-module such that RM = M. For an ideal I of R, set
N — Πn PM. Then IN = N. Furthermore, if I is contained in
the Jacobson radical of R then N = (0).

Proof. Again R/(0: M) is Noetherian and M has the primary
decomposition theory. Therefore the result follows from 2.9

3* Examples* The following provides an example of a module
M over a commutative ring which has the primary decomposition
theory and is an Artin-Rees module. However there exist factor
modules of M which are not finite dimensional. Hence M is not
Noetherian.

EXAMPLE 1. Let Z be the ring of rational integers and let
^ , i = 1, 2, , n be nonzero proper prime ideals in Z. Consider
the ^-module M = Σ~=1 θ Nd where each Ns = Z/^ for some i.
From well-known properties of semisimple modules it follows that
each section, i.e., submodule of a factor module, of M is isomorphic
to a direct sum of a subset of {N3 :j = 1,2, •••}. By making use
of this fact we will show that M is ^-worthy and that P-submodules
of M are primary. Then it will follow from Theorem 1.7 that M
has the primary decomposition theory.

Let M" be a factor module of M. Then P(M") S P(M). Since
it follows from [1, Proposition 2.4] that P(M) =

,&„---,&>»}. Hence P(M") is finite. That each
nonzero submodule of M" contains a p-stable submodule follows from
the fact that each nonzero section of M is isomorphic to a direct
sum of a nonempty subset of {Ns:j = 1, 2, •}. Therefore Jlί is
p-worthy.

Suppose that N is a P-submodule of M with say P(M/N) = {&*i}.
If zeZ annihilates a nonzero submodule of M/N then ze^{. Since
P(M/N) — {^} and Λf/JV is isomorphic to a direct sum of a subset
of {Njij = 1,2, •••}, we have that M/iV is isomorphic to a direct
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sum of copies of Z\&i. Hence zep(M/N). Thence N is primary.
Consequently M has the primary decomposition theory. That

M is an Artin-Rees module now follows from Theorem 2.7.

The following is an example of an Artin-Rees module which
does not have the primary decomposition theory.

EXAMPLE 2. Let Z be the ring of rational integers and let (p)
be the ideal in Z which is generated by the prime number p.
Consider the Z-module M = ΣifZ/(p). The submodule (0) does not
have a primary decomposition in M since P(M) = \J{(p): p prime} is
not finite.

We claim that M is an Artin-Rees module. It is immediate
that each submodule N of M has the form N= ΣpesZ/(p) where
S C {p: p prime}. By using this fact we can show that for each
submodule N of M, ideal I in Z, and positive integer n, InMf]NS
InN. Therefore M is Artin-Rees.
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