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ON p-SPACES AND w4-SPACES

DeNNIS K. BURKE

In this paper the relationships between p-spaces and wd4-
spaces are investigated. It is shown that strict p-spaces,
p-spaces, and wd-spaces are all equivalent in the class of
completely regular f-refinable spaces. There is an example of
a completely regular, countably compact space (and thus a
wd-space) which is not a p-space, An example is given of a
T, locally compact space (and thus a p-space) which is not a
wd-space, In the last section we give some conditions for p-
spaces or wd-gpaces to be developable,

1. Relationships between p-spaces and wd-spaces. Unless
otherwise stated no separation axioms are assumed; however regular
and completely regular spaces are always assumed to be T,. The set
of positive integers is denoted by N.

A sequence {Z/,}>_, of open covers of a topological space X is
called a development for X if for any e X and any open set O about
x, there is an integer n € N such that St (v, %) = U{Ue Z,: 2 U} CO.
A regular developable space is a Moore space.

A completely regular space X is called a p-space [1] if in the
Stone-Cech compactification B (X) there is a sequence {7,}r., of open
covers of X such that N3, St (x, 7,) © X for each x ¢ X. The sequence
Voo, is called a pluming for X in B(X). A space X is called a
strict p-space if it has a pluming {7,};., with the following addi-
tional property: For any xe X and ne N there is n’e N such that
St (x, 7,,) © St(x,7,). In this case we call {7,};_, a strict pluming.

Since any T, locally compact space X is open in its compactification
B(X) it is clear that if we let v, = {X}, then {7,};_, will be a pluming
for X. Also any metric space or completely regular Moore space is
a strict p-space [2].

A sequence {A4,(x)}>, of subsets of X, with ze A4,(x) for each
ne N, is called an x-sequence if z,e A,(x) implies that {z,}7_, has a
cluster point in X. A space X is called a wd-space (compare [4]) if
X has a sequence {%/,: nc N} of open covers such that {St (x, Z) :
ne N} is an z-sequence for each xe X.

Clearly any countably compact space and any Moore space is a
wd-space.

The following theorem was proved in [6]:

THEOREM 1.1. A completely regular space X is a strict p-space
if and only if there is a sequence {Z,}e-. of open covers of X
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satisfying :

(@ P, =N, St(x, Z,) is a compact set for each xc X.

(b) The family {St(z, &,): ne N} is a neighborhood base for the
sct P,.

Notice that if {&,};_, is a sequence of open covers satisfying (a)
and (b) of Theorem 1.1 and we assume %,,, refines &,, it is easily
verified that {St(x, &,): ne N} is an x-sequence for each xe X.
The following corollary follows immediately.

COROLLARY 1.2. A strict p-space is a wd-space.

Similar to Theorem 1.1 we have a theorem which characterizes
p-spaces without the use of the compactification B(X). This theorem
helps to illustrate the relationship between p-spaces and wd-spaces.

THEOREM 1.3. A completely regular space X is a p-space if
and only if there is a sequence {<,}u-, of open covers of X satisfying:
If xe X and G,c &, such that e G,, then

(@ N, G, is compact.

(©) {Nt-. G.: ke N} is an x-sequence.

Proof. Before proceeding with the proof of the theorem, notice
that (a) and (b) above are equivalent to {a) and (b’) where:

(") If O is any open set containing 7., G,, there is ke N such
that N, G, < O.

It will be convenient to prove the theorem using the statements
(a) and (b').

Suppose {7,}z-, is a pluming for X in B(X). For each e N,
let &, be a cover of X, open in X, such that {(G)s : Ge &} refines
.. For a given ze X, let G, be an arbitrary element of Z°, such
that xe G,. Then M. (G.)5x is compact and

s

(Go)ax C fj St(x,7,) < X.

n

Thus N @)im = N 1X N @G)inl = NG,

I

Hence N, G, is a compact set. Now let O = X be an open set
containing 7., G,, and let O’ be open in B(X) such that O’ N X = O.
If N:_, G, is not contained in O’ for any ke N, then (-, (G5 — O
# @ for each ke N. Hence {N:., (G,)5x, — O : ke N} is a decreasing
sequence of compact sets. It follows that

N G)n—0# 2
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which is impossible since
Dl(Gn);(X) == ,’Dlénco - O, ﬂ X.

Thus there exists an integer & such that ), G, <0’ and so N:-, G,CO.
Hence (a) and (b’) are true.

Now suppose {Z, )}z, is a sequence of open covers of X such that
(a) and (b') are true. For nec N define 7, to be the collection of all
sets G’  B(X) such that G’ is open in B(X) and G'N Xe Z,. We
show {7,}7_, is a pluming for X. Let ¢ X and yeB(X) — X. If
ye Nz St(x,7,) there is a set G, e7, such that z,ye G, for each
neN. ThenzeG, =G, N Xe %, and N, G, is a compact set which
does not contain y. Let 0 be an open set in B(X) such that

NG.cOcOnchX — ).

Then there is k € N, such that N, G, 0. Thus N:.. G, — (05, =D
since it is an open set contained in B(X)— X. Thus y¢ N G
which is a contradiction. So y¢ M-, St(x,7,) and ¥ was an arbitrary
element of B(X) — X. Hence N~ St(x,7,) © X and the theorem is
proved.

THEOREM 1.4. A completely regular wd-space X is a p-space if
every closed countably compact subset of X 1is compact.

Proof. Let {Z/,};-. be a sequence of open covers of X such that
{St(z, Zz/,): ne N} is an z-sequence for each x¢ X. For each ne N
let , be an open cover of X such that {G: Ge &} refines %,. Let
xeX and G,e &, such that xeG,. Then {N:., G,: ke N} is an a-
sequence since N:_, G, < St(x, %,). Also, Nz, G, is countably com-
pact since {x,}r, = N, G, implies z,e N, G,, and so {x,):., must
have a cluster point. By hypothesis, ., G, must then be a com-
pact set. Thus (a) and (b) of Theorem 1.3 are satisfied.

A space X is said to be G-refinable [17] if, for every open cover-
ing Z of X, there is a sequence {%};_, of open refinements of Z
such that, if xe X, there is m(x)e N such that x is in at most a
finite number of elements of %/, ,.

In Theorem 1.7 we show that p-spaces and wd-spaces are equiva-
lent in the class of completely regular #-refinable spaces. Before
proving this theorem we want to point out the relationship between
the f-refinable property and two other covering properties.

A topological space X is called metacompact if every open cover
of X has a point-finite open refinement. It is clear that all metacom-
pact spaces are f-refinable.
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A space X is called subparacompact [5] if it satisfies any one of
conditions (a) through (d) stated in the following theorem:

THEOREM 1.5. For a topological space X the following conditions
are equivalent :

(@) For any open covering 7% of X there is a sequence {Z/,}3-,
of open coverings of X such that, if xe X, there is m(x) € N and some
set Ue 7/ with St®y Xnw) < U.

(b) Ewvery open cover of X has a o-discrete closed refinement.

(¢) Ewery open cover of X has a o-locally-finite closed refinement.

(d) Ewvery open cover of X has a o-closure-preserving closed refine-
ment.

Theorem 1.5 was proved in [5] and we use this theorem to prove
Theorem 1.6, from which it follows that all subparacompact spaces
are f-refinable,

THEOREM 1.6. For a space X to be subparacompact it is meces-
sary and sufficient that every open cover of X has a sequence {Z7,} -,
of open refinements with the property that, if xe X, there is m(z)e N
such that x s in exactly one element of Zwix)-

Proof. By Theorem 1.5 it is enough to prove that the condition
is necessary for X to be subparacompact. So suppose X is subpara-
compact and % is an open cover of X. Let & = U, &, be a
closed refinement of 2 where &2, is discrete for each ne N. For
each Pe ” let U(P) be a fixed element of % such that Pc U(P).
For each xe X let U(x) be a fixed element of % such that xze U(x).

Fix neN. If reX and 2e X — J{P: Pec &7}, define

UJx)=U() — U{P: Pe#}.
If teU{P: Pe .~} say xze Pe .7, define
Ux) =UP)—U{PeA:xeP}.

Then 7, = {U,(x): < X} is an open refinement of % for each n e N.
It is clear that xe Pe &?, implies that U, (x) is the only element in
7/, which contains x. Since every x¢ X is in some element of &,
it follows that {%/}7.. is a sequence of open refinements of %/ satis-

fying the required properties.

THEOREM 1.7. For a completely regular 6-refinable space X, the
following conditions are equivalent :

(a) X is a p-space.

(b) X is a strict p-space.

() X is a wd-space.
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Proof. That (b) = (c) follows from Corollary 1.2.

In a f-refinable space closed countably compact subsets are com-
pact [17]. Hence (¢) = (a) follows from Theorem 1.4.

To prove that (a) = (b) let {7,}7-, be a pluming for X in g(X).
We will construct a strict pluming for X. Since X is 6-refinable, we
can find a sequence {7, ,}3-., of covers of X, open in B(X), such
that the following is true:

(1) For each ne N, the collection {(G)sx): Ge7,,,} refines 7,.

(2) For each ze X, there is me N such that « is in at most a
finite number of elements of 7v,, .

Continue by induction and assume {7, ,}5-, is defined for ke N.
Then we can find a sequence {7,:,.}5=. of covers of X, open in B(X),
such that the following is true:

(8) For each n e N, the collection {(G)5ix): G € Vi11,.} Tefines 7, ., and
refines 7,,, where r,se N,r +s =4k + 1.

(4) For each x¢ X, there is me N such that x is in at most a
finite number of elements of 7.y, n-

It is clear that the sequence {7,,.);. is a pluming for X since
St(x, 7,,,) < St(x, 7,) for any xe X. To show that {v,,,}7-, is a strict
pluming, let ne N and e X. Let me N such that z is in at most
a finite number of element of 7,:;, .. Then by (3)

St (@, Vprr,m) = (U{G € Vasr,mt €GP
=U{G: 2 GeVpry .} Stx,7,,) -

Also 7,1, refines 7,., .. Thus

St(x, 7n+m+1, l) - St(x? ’7'n+1, m) c St(x’ /Yn, 1)

and {7, .}z, is a strict pluming.

Since subparacompact spaces and metacompact spaces are d-refinable
the next corollary is obvious.

COROLLARY 1.8. For a completely regular subparacompact
(metacompact) space X, the following conditions are equivalent:

(a) X s a p-space.

(b) X 4s a strict p-space.

(c¢) X s a wd-space.

REMARK 1.9. If a regular w4-space X is f-refinable it is possible
to construct a sequence {Z,}7-, of open covers of X satisfying (a) and
(b) of Theorem 1.1 even if X is not completely regular. We will
use this fact in the next section.
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We finish this section by giving two examples. The first is a
completely regular countably compact space (and thus a wd-space)
which is not a p-space. The last example is a p-space which is not
a wd4-space.

Recall that a space X is a k-space if any set A X is closed if
and only if AN C is closed in C for every compact set Cc X. In
Example 1.10 we need to know that a p-space is a k-space [1].

ExAMpPLE 1.10. A completely regular countably compact space
which is not a p-space.

Let B(N) be the Stone-Cech compactification of N. J. Novak [12]
constructed two countably compact subsets X, c B(N) and X, B(N)
such that X, N X, =N, X, UX, = B8(N),and D = {(x,z): xe N} is an
infinite, discrete, closed subset of X, x X,. We show that X, is not
a p-space by showing that it is not a k-space. Let C be any compact
subset of X, and consider the set CNN. If CN N is finite, it is
certainly closed in C; assume C N N=A4 is infinite. Now (4)z, X (4)z,
is a countably compact subset of X,xX, since (4)z,cC is compact
and (4)z, is at least countably compact (see Theorem 5 in [12]).
However, {(x,x): xe A} D, and hence {(z, z): ¢ A} is an infinite,
discrete, closed subset of (A4)z, X (A)z,, which is impossible. Thus
C N N is always finite for every compact C — X,; hence C N N is
closed in C for every compact C. But N is not closed in X, so X
is not a k-space.

ExampLE 1.11. A T, locally compact space (and thus a p-space)
which is not a wd4-space.

Let w, w,, w, be the first ordinals of cardinalities ¥,, W, . res-
pectively. Let I' = [0, w,). Before constructing the example we prove
the following lemma :

LEMMA 1.12. For each acl’, suppose I', is a countable subset
of I'. There is a sequence {a,}i_, CI'y o, < &y < -+, such that a; & I',;
’I:f o; + a;.

Proof. We will define the «, inductively. For each aecl let
D,={pgel: Bza,ael,}.

Suppose that card D, < W, for all a«e". Let a,e I" such that «, = w,.
Then

[am 0)2) - U Da * O

a<ao
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since card [, ®,) = W, and card (Uu<s, Do) = Wi-  Let Boe[ay, @)
—Uu<a, Doe Then ae |0, a,) implies B,¢ D,; so e, Thus

card I"y, = card [0, @) = W, ,

which is a contradiction. Hence {a¢el": card D, > W,} # @. Let a,
be the smallest element in the set. Now suppose that a,, ay -+, &,
are defined such that the following is true:

1) << <ay,

@) a;el,, for i+#7,%,75=1,2,+++,n—1

(3) Card (D, N Dey N +++ N D, ) > W
Let 7, =sup{B:B8el,, l=1=n—1}+1 and let

I' =D, N Dy e+ ND — [0, 7,) .

Then card '™ > W,. For aec '™ let D = D, N I'™. Suppose that
card D < W, for all e I"™, and let a}e " such that card ("™ N
[7es @5]) = W.. Then

[Voy @) N ™ — U{DP: ael™ N [7, il # D

Ap—1

so let B/ be an element of this set. If ael’™ N[, a;], we have
ael's. This implies

card I"s; = card (I"™ N [7, &i]) = W,
which is a contradiction. Therefore
{ael: card D > W} #= @,

and we let «, be the first element of this set.

Notice that «, > sup {8: Bel,, 1=1= n—1}, so «, ¢l ., for
1=t=n-1. Also, a,el"™ CDy N Dy e++ N Dy, SO @&,
for 1<¢<n—1. Thus (1) and (2) are satisfied for a,, a,, ---, «,.
Now

Dg;’:]"‘”)ﬂD%CDalﬂDazﬂ-"ﬂD mDan’

Qp—1
)
card (D, N D,, N +++ N D,) = card DI > 3, .

Thus (3) is satisfied and the lemma is proved.

For each ae I, let X, = {0, 1} with the discrete topology. Let
Y = T]. X, have the product topology, and define X =Y —{g}, where
g is the element in Y such that g(a@) = 0 for all «eI’. Since X is
open in the compact space Y, it follows that X is a T, locally com-
pact space. Let {Z,}7., be any sequence of open covers of X. To
show that X is not a wd-space, we will find an element ze X such
that {St(x, /,): ne N} is not an z-sequence. For a given ac I, let
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f. be the element of X such that f,(a)=1 and f,(8)=0 for all B+ a.
Let U,(a) € %/, such that f,e U,(a). Since U,(a) is also open in Y,
there exists a finite set I",,, c I" such that a«e ", , and

I1 Z5(n) < U, (@) ,

where Zz(n) = {1},
Z5(n) = {0} Bely—{a),
and Zs(m) = X, Bel’ -1, .

Let I'n=U; I'.,.. Then I', is a countable subset of I” for each
ae’. By the lemma, there is a sequence {a,};-,, of distinct elements
of I', such that a;¢ I',; for 7+ j. Define

Z.={}  (keN),
Z, ={0}  (Bel, —{a},keN),
and Z, =X, B¢ kf:j r.).

Let g,eIl:Z;. It follows that g¢,e U,(«,) for each n,ke N. Thus
Sa, € St(9,, Z,) for each me N; however, the sequence {f, }r-. does
not have a cluster point in X. Hence X is not a wd4-space.

2. Developable p-spaces and wd-spaces. In this section we give
some conditions for p-spaces and wd-spaces to be developable. As is
suggested by Theorem 1.7 it turns out that p-spaces and wd-spaces
can be used interchangeably in many theorems. We state Theorems 2.1
and 2.2 as an illustration of this.

A collection & of subsets of a space X is called a network for
X if for any open set O ¢ X and x e O there is a set Pe.Z” such that
xe Pc O. A space with a o-locally-finite network is called a o-space
[13]. It is proved in [16] that existence of a o-closure preserving
closed network in X implies the existence of a o-discrete closed net-
work ; hence a regular space has a o-discrete network if and only if
it has a o-closure-preserving network.

Let X be a topological space and d a nonnegative real valued
symmetric function defined on X x X such that d(x,y) = 0 if and
only if # = y. The function d is called a symmetric [2] for the
topology on X provided: A ¢ X is closed if and only if inf {d (, ) :
2c A} > 0 for any xe X — A. The function d is called a semi-metric
for X provided: For A X, wc A if and only if inf{d(x, 2): z€ A} =0.
It is easily shown that a symmetric space X is a semi-metric space
if and only if X is first countable.
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THEOREM 2.1. For a completely regular space X the following
conditions are equivalent:

(@) X s developable.

(b) X is a p-space with a o-discrete network.

(¢) X 1is a semi-metrizable p-space.

(d) X is a symmetrizable p-space.

THEOREM 2.2. For a regular space X the following conditions
are equivalent :

(a) X 1s developable.

(b) X is a wd-space with a o-discrete network.

(¢) X is a semi-metrizable wd-space.

(d) X is a symmetrizable wd-space.

Theorem 2.1 was proved in [6]. Siwiec has shown in [15] that
parts (@) and (¢) of Theorem 2.2 are equivalent. To complete
Theorem 2.2 it is only necessary to show that the spaces described
in (b) and (d) are first countable and therefore semi-metrizable.
This is a relatively easy exercise.

A collection <# of closed subsets of X is called a ct-net [16] for
X if, when z,ye X such that x ==y, there is an element Be &%
such that xe¢ B and y¢ B. It is obvious that a closed network in a
T, space is a ct-net and it can be shown that a semi-metric space has a
o-discrete ct-net.

We need the following theorem from [9]:

THEOREM 2.3 (Heath). A T, space X 1is semi-metrizable if and
only if each point xe X has a decreasing open mneighborhood base
{U,(@)}5=, such that if z,¢ X, with xe U,(x,) for each me N, then
x, — .

THEOREM 2.4. A regular wd-space (or strict p-space) X 1is develop-
Table if and only if it has a o-closure-preserving ct-net.

Proof. Since a strict p-space is a wd-space we show only for the
case when X is a regular wd4-space.

If we assume X has a o-closure-preserving ct-net then to show
that X is developable it is sufficient to show that X is semi-metri-
zable and apply Theorem 2.2. Let &= U;., &, be a ct-net for X
where each .7, is a closure-preserving collection of closed sets.
Suppose {Z,}i-; is a sequence of open covers of X such that
{St(xz, &,): me N} is an z-sequence for each xe X and assume Z,;,
refines &,. For xe X, ne N, define
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Vo) =X —U{Pe F,: x¢P, 1<k <n}.

Note that ze V,(x) implies that z¢ Pe.Z? whenever z¢ Pe .7, for
1<k=<n. Hence V,(2) < V,(x).
Now let U,(X) be an open neighborhood of z such that

U.(x) c V,(x) n St(x, &,) .

We may assume U,,,(x) c U,(x) for each ne N. Since & is a ct-net
for X, it follows that M.V, (x) = {x}. Hence N7.U,®) = {z}.
Let O be any open set containing #. If U,(x) is not contained in O
for any n, there is an element y, e U, (®)—O. Since U, (x)C St(z, Z,)
the sequence {y,}7_, has a cluster point ¥ not in O. But y, e U,(x)—0
implies y e Ny, U,(x)— 0, which is a contradiction since Nz, U,(x) =
{x}. So there is n e N such that U, (x) O and {U, (x)};-, is a decreas-
ing open neighborhood base at 2. To show that X is semi-metrizable,
we show that {U,(x)}7_, satisfies the conditions in Theorem 2.3.
Suppose x, € X such that ze U, (x,) for each ne N. Then ze St(x,, &,)
which implies 2,¢ St(x, Z,). Thus {x,}3-, has a cluster point ye X.
Suppose y #= x. Then there is an integer m e N such that there is
Pe &7, withze Pandy¢ P. Sox¢ V,(y). Since y is a cluster point
of {»,},-, there is m,e N, m,=m such that «, e V,(y). Hence
Vau(@,) < V,(y). It follows that

which is a contradiction. Thus y = ¢ and « is the only cluster point
of {»,}7-.. If {x,}%.. is any subsequence of {x,}7_,, then

x,, € St(z, &,,) C St(x, &) .

Thus {x,,}7-, must have x as a cluster point. Since every subsequence
of {x,}7., has x as a cluster point, it follows that x, — 2 and X is
semi-metrizable.

The converse is trivial so the theorem is proved.

It was stated in [2] that if a strict p-space X can be mapped
onto a Moore space by a one-to-one continuous map then X is a
Moore space. The following corollary is a generalization of this.

COROLLARY 2.5. Suppose X 1s a strict p-space (regular wa-space)
and X is mapped onto a T, space Y by a one-to-one continuous map.
Then X is developable if any one of the following conditions hold:

(a) Y s developable.

(b) Y has a o-discrete network.

(e) Y is semi-metrizable.
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(d) Y has a o-closure-preserving ct-net.

Proof. The corollary follows immediately from Theorem 2.4 when
you show that any one of conditions (a) through (d) implies that X
has a o-closure-preserving ct-net.

QUESTION 2.6. Is Theorem 2.4 or Corollary 2.5 true if X is
required to be a p-space instead of a strict p-space ?

A point-countable collection of subsets of a space X which is an
open base for the topology on X is called a point-countable base.
Filippov [8] has proved the following result:

THEOREM 2.7. A paracompact p-space with a poini-countable
base 1s metrizable.

We generalize Theorem 2.7 in Theorems 2.8 and 2.10 by show-
ing that a p-space X with a point-countable base is a Moore space
if it is either metacompact or subparacompact. Theorem 2.8 was
proved in [6] for the case when X is a p-space. The proof when X
is a regular wd-space is similar if we use Remark 1.9 and assume X
has a sequence of open covers satisfying (a) and (b) of Theorem 1.1.

THEOREM 2.8. A metacompact p-space (regular wd-space) with
a point-countable base <Z is a Moore space.

Before proceeding with the statement and proof of Theorem 2.10
we need the following lemma which can be found in [8].

LeMMA 2.9. If <Z is a point-countable collection of subsets of a
space X and A C X, then the family of all minimal finite covers of
A with elements from <7 is countable.

THEOREM 2.10. A subparacompact p-space (regular wd-space) X
with a point-countable base <& is a Moore space.

Proof. Let {Z,)7-, be a sequence of open covers of X satisfying
(@) and (b) of Theorem 1.1. For each ne N, let &2, = Us-, F n
be a o-discrete closed refinement of ¥, where each &7, ,, is discrete.
By Lemma 2.9, each Pe .¢?, has at most a countable number of
minimal finite covers with elements of <7, say P(1, n), P(2, n), ++-
(if they exist).

Let & ={PNB: Pc &, BeP(k,n), ke N}. It follows that
&, is a o-locally-finite collection, and so & = Uy, .~ is also a
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o-locally-finite collection. We show that .&” is a network for X. Let
O be an open subset of X and xc 0. Since <& is a base there is a
set Be <% such that xe B O. Since P, = -, St(x, &,) is compact,
we can find a finite subcollection {B,, B,, --+, B,} C <& such that
P,cUi,B; and B = B, is the only element of {B,, B, ---, B,} which
contains 2. Let ne N such that St(z, &,) < Ui, B;. Let Pe &,
such that e P. Then Pc L, B;, so there is a minimal finite cover
of P, say P(j,m), such that B, = Be P(j,n). Hence xc PN BC O
and PN Be.%”,. Therefore & is a o-locally-finite network for X.
Hence X has a o-discrete network and is developable by Theorems
2.1 and 2.2.

QUESTION 2.11. Is a p-space (or regular w4-space) with a point-
countable base a Moore space ?
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