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ON ^-SPACES AND ^J-SPACES

DENNIS K. BURKE

In this paper the relationships between p-spaces and wΔ
spaces are investigated. It is shown that strict p-spaces,
^-spaces, and wJ-spaces are all equivalent in the class of
completely regular #-refinable spaces. There is an example of
a completely regular, countably compact space (and thus a
wJ-space) which is not a p-space. An example is given of a
T2 locally compact space (and thus a p-space) which is not a
wJ-space. In the last section we give some conditions for p-
spaces or wJ-spaces to be developable.

1* Relationships between p-spaces and wzf-spaces* Unless
otherwise stated no separation axioms are assumed; however regular
and completely regular spaces are always assumed to be 2\. The set
of positive integers is denoted by N.

A sequence {^}~=1 of open covers of a topological space X is
called a development for X if for any x e X and any open set 0 about
x, there is an integer n e iVsuch that St (x, %Sn) = \J{Ue^n:xe U}aO.
A regular developable space is a Moore space.

A completely regular space X is called a p-space [ 1 ] if in the
Stone-Cech compactification β (X) there is a sequence {7n}~=1 of open
covers of X such that f|?=i St (x, Ύn) c X for each xeX. The sequence
{Ύ«}n=i is called a pluming for X in β (X). A space X is called a
strict p-space if it has a pluming {7W}~=1 with the following addi-
tional property: For any x e X and n e N there is nr e N such that
St(x, Ίnf) aSt(x, T j . In this case we call {τn}~=1 a strict pluming.

Since any T2 locally compact space X is open in its compactification
β(X) it is clear that if we let Ύn = {X}, then {7n}~=1 will be a pluming
for X. Also any metric space or completely regular Moore space is
a strict p-space [2].

A sequence {A^x)}^ of subsets of X, with x e AJx) for each
ne N, is called an x-sequence if xn e AJx) implies that {xn}n=1 has a
cluster point in X. A space X is called a wA-space (compare [4]) if
X has a sequence {^4: w e N) of open covers such that {St (x, 1?/n) :
n e N} is an x-sequence for each xe X.

Clearly any countably compact space and any Moore space is a
wzί-space.

The following theorem was proved in [6]:

THEOREM 1.1. A completely regular space X is a strict p-space
if and only if there is a sequence {%?n}n=i of open covers of X
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satisfying:

(a) Px = Π~=i St (x> &n) is a compact set for each xe X.
(b) The family {St (x, &u) : ne N} is a neighborhood base for the

set Px.

Notice that if {2^}~=1 is a sequence of open covers satisfying (a)
and (b) of Theorem 1.1 and we assume ^ n + 1 refines g^n, it is easily-
verified that {St (a?, ̂ n): ne N} is an ^-sequence for each xe X.
The following corollary follows immediately.

COROLLARY 1.2. A strict p-space is a wΔ-space.

Similar to Theorem 1.1 we have a theorem which characterizes
p-spaces without the use of the compactification β(X). This theorem
helps to illustrate the relationship between p-spaces and wJ-spaces.

THEOREM 1.3. A completely regular space X is a p-space if
and only if there is a sequence {&n}n=1 of open covers of X satisfying:
If xe X and Gn e ^ n such that xeGn, then

(a) Γ\n=ι Gn is compact.
(b) {ΓiίUi Gn: keN} is an x-sequence.

Proof. Before proceeding with the proof of the theorem, notice
that (a) and (b) above are equivalent to (a) and (b') where:

(b') If 0 is any open set containing Π~=i ̂ »> there is k e N such
that Πϊ=i Gn c O.

It will be convenient to prove the theorem using the statements
(a) and (b;).

Suppose {τft}~=1 is a pluming for X in β(X). For each neN,
let 2?n be a cover of X, open in X, such that {(G)jiX): G e 2fJ refines
Ύn. For a given x e X, let Gn be an arbitrary element of grw such
that xeGn. Then Π*=i (Gn)j{X) is compact and

n (Gn)jiX) c n st(x,Ύn) e x .
«=1 n=l

Thus n (Gn)jiX) = ή [x n (Gn)j(X)] = ή G . .
n—1 n—l n—l

Hence Π«=i &n is a compact set. Now let O c l be an open set
containing Π»=i Gn, and let 0' be open in β(X) such that O ' ί l l ^ O .
If Πn=iGn is not contained in 0' for any fceΛΓ, then Γik

n=1(Gn)j{X) - 0'
Φ 0 for each keN. Hence { f | L (Gn)j{X) - 0': fc e N) is a decreasing
sequence of compact sets. It follows that

n (Gn)j(X) -O'ΦQ
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which is impossible since

ή (Gn)j{Z) = f)GnaO = O'nX.
n—L n=l

Thus there exists an integer k such that ΠίUi Gna0' and so ΠίUi GnczO.
Hence (a) and (b') are true.

Now suppose {SfΛ}~=i is a sequence of open covers of X such that
(a) and (b') are true. For n e N define Ύn to be the collection of all
sets G'czβ(X) such that G' is open in β(X) and G ' n I e ^ M . We
show {7»}n=i is a pluming for X. Let xe X and y e β{X) — X- If
V e Π«=i S φ , 7W) there is a set G'n e Ύn such that x,yeGf

n for each
w e JV. Then a? e Gn = G'n Π Xe S?n and p|~=i G» is a compact set which
does not contain y. Let 0 be an open set in β{X) such that

Γ\Gn^Ocz(O)j{X)czβ(X)-{y}.
n = l

Then there is k e N, such that f|!U G» c 0. Thus Π«=i G - ~ (0)JUΊ = 0
since it is an open set contained in β(X) — X. Thus y g ΠΓ=i G1^
which is a contradiction. So y g Π?=i Si (a?, 7n) and 7/ was an arbitrary-
element of β(X) — X. Hence f|ϊ=i St(xy 7W) c X and the theorem is
proved.

THEOREM 1.4. A completely regular wΔ-space X is a p-space if
every closed countably compact subset of X is compact.

Proof. Let {^n}ζ=ί be a sequence of open covers of X such that
{St(x, %Sn): ne N} is an sc-sequence for each x e X. For each n e N
let SfΛ be an open cover of X such that {G: Ge %7n} refines ^ n . Let
xeX and Gne&n such that xeGn. Then {f|n=i GΛ: A:GiV} is an x-
sequence since Π»=iGn c Si (a;, ^ w ) . Also, Π«=i Gn is countably com-
pact since {xk}ΐ=1 c Π»=i Gή implies xk e ΓIS=i Gn, and so {^J^i must
have a cluster point. By hypothesis, Π?=i ^ must then be a com-
pact set. Thus (a) and (b) of Theorem 1.3 are satisfied.

A space X is said to be θ-refinable [17] if, for every open cover-
ing <fS of X, there is a sequence { n̂}n=i of open refinements of ^
such that, if xe X, there is m(x) e N such that x is in at most a
finite number of elements of ^/m{x).

In Theorem 1.7 we show that p-spaces and wΔ~&paces are equiva-
lent in the class of completely regular #-refinable spaces. Before
proving this theorem we want to point out the relationship between
the #-refinable property and two other covering properties.

A topological space X is called metacompact if every open cover
of X has a point-finite open refinement. It is clear that all metacom-
pact spaces are #-refinable.
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A space X is called subparacompact [5] if it satisfies any one of
conditions (a) through (d) stated in the following theorem:

THEOREM 1.5. For a topological space X the following conditions
are equivalent:

(a) For any open covering ^ of X there is a sequence {̂ n}~=1

of open coverings of X such that, if xe X, there is m(x) e N and some
set Ue^S with St(x, %Sm{x)) c U.

(b) Every open cover of X has a σ-discrete closed refinement.
(c) Every open cover of X has a σ-locally-finite closed refinement.
(d) Every open cover of X has a σ-closure-preserving closed refine-

ment.

Theorem 1.5 was proved in [5] and we use this theorem to prove
Theorem 1.6, from which it follows that all subparacompact spaces
are #-refinable.

THEOREM 1.6. For a space X to be subparacompact it is neces-
sary and sufficient that every open cover of X has a sequence {1?fn}n=i
of open refinements with the property that, if xe X, there is m(x) e N
such that x is in exactly one element of ^m(z)

Proof. By Theorem 1.5 it is enough to prove that the condition
is necessary for X to be subparacompact. So suppose X is subpara-
compact and ^ is an open cover of X. Let & — USU &n be a
closed refinement of ^ where ^ n is discrete for each ne N. For
each Peg* let U(P) be a fixed element of %S such that Pa U(P).
For each xeX let U(x) be a fixed element of <%S such that xe U(x).

Fix n e N. If x e X and x e X - \J {P: Pe &>n}, define

Un(x)= U{x)-\J{P: Pe^n}.

If xe\J{P: Pe^n), say xePe^n, define
Un(x) = U(P)-\J{P'e^n: x$P'} .

Then ^ = {Un(x): x e X} is an open refinement of ^ for each n e N.
It is clear that xePe^n implies that Un(x) is the only element in
^ 4 which contains x. Since every x e X is in some element of ^ ,
it follows that {^l^i is a sequence of open refinements of ^ satis-
fying the required properties.

THEOREM 1.7. For a completely regular θ-refinable space X, the
following conditions are equivalent:

(a) X is a pspace.
(b) X is a strict p-space.
(c) X is a wΔspace.
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Proof. That (b) =» (c) follows from Corollary 1.2.
In a #-refinable space closed countably compact subsets are com-

pact [17]. Hence (c) => (a) follows from Theorem 1.4.
To prove that (a) => (b) let {7Λ}*=i be a pluming for X in β{X).

We will construct a strict pluming for X. Since X is 0-refinable, we
can find a sequence {7X, n}~=1 of covers of X, open in β(X), such
that the following is true:

(1) For each neN, the collection {(G)j{x): GeJ1>n} refines 7X.
(2) For each xe X, there is me N such that a; is in at most a

finite number of elements of 71>w.
Continue by induction and assume {Ύk,n}n=ί is defined for keN.

Then we can find a sequence {7fc+lfft}»=1 of covers of X, open in β(X),
such that the following is t rue:

(3) For each neN, the collection{(G)j{X):GeΎk+Un} refinesΎk+1 and
refines 7 r, s where r, s e N, r + s — k + 1.

(4) For each xe X, there is me N such that # is in at most a
finite number of elements of Ύk+Um.

It is clear that the sequence {Ύn)1}ζ=1 is a pluming for X since
St(xfΎn9l)ciSt(x9Ύn) for any a e l . To show that {7Λ>1}J=1 is a strict
pluming, let neN and # e X. Let me N such that # is in at most
a finite number of element of 7Λ+1>m. Then by (3)

St(x,Ύn+ltm) = (\J{GeΎn+1,m: xeG})~

= \J{G: xeGeΎn+1,m}c:St(x,7nfl).

Also 7 f t + m + 1 > 1 refines 7 Λ + l f W . Thus

St(x, yn+m+l9l) c Sί(a?, 7»+1, J c St(x, Ύntl)

and {7Λfl};=1 is a strict pluming.

Since subparacompact spaces and metacompact spaces are #-refinable
the next corollary is obvious.

COROLLARY 1.8. For a completely regular subparacompact
(metacompact) space X, the following conditions are equivalent:

(a) X is a p-space.
(b) X is a strict p-space.
(c) X is a wΔ-space.

REMARK 1.9. If a regular wJ-space X is #-refinable it is possible
to construct a sequence {SfΛKΓ=1 of open covers of X satisfying (a) and
(b) of Theorem 1.1 even if X is not completely regular. We will
use this fact in the next section.
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We finish this section by giving two examples. The first is a
completely regular countably compact space (and thus a m4-space)
which is not a p-space. The last example is a p-space which is not
a wJ-space.

Recall that a space X is a k-space if any set AaX is closed if
and only if A Π C is closed in C for every compact set CaX. In
Example 1.10 we need to know that a p-space is a &-space [1].

EXAMPLE 1.10. A completely regular countably compact space
which is not a p-space.

Let β(N) be the Stone-Cech compactification of N. J. Novak [12]
constructed two countably compact subsets Xxdβ (N) and X2 c β(N)
such that X1Γ)X2 = N, X, U X2 = β(N), and D = {(x, x): xeN} is an
infinite, discrete, closed subset of X1 x X2. We show that Xx is not
a p-space by showing that it is not a &-space. Let C be any compact
subset of Xx and consider the set C Π N. It C f) N is finite, it is
certainly closed in C; assume C Γϊ N=A is infinite. Now (A)j1x(A)χ2

is a countably compact subset of Xx x X2 since (A)j1 c C is compact
and (A)χ2 is at least countably compact (see Theorem 5 in [12]).
However, {(x,x): xeA}aD, and hence {(x,x): xeA} is an infinite,
discrete, closed subset of (A)jtx (A)χ2, which is impossible. Thus
C Π N is always finite for every compact C c ί ; hence C Π N is
closed in C for every compact C. But N is not closed in Xlf so JXΊ
is not a &-space.

EXAMPLE 1.11. A T2 locally compact space (and thus a p-space)
which is not a wJ-space.

Let ω, ω^ α)2 be the first ordinals of cardinalities y$0, y$x, ŷ 2 ϊ*es-
pectively. Let Γ = [0, ω2) Before constructing the example we prove
the following lemma:

LEMMA 1.12. For each aeΓ, suppose Γa is a countable subset
of Γ. There is a sequence {α:n}«=i aΓ,a1<a2< , such that a{ $ Γa.
if at Φ aά.

Proof. We will define the ah inductively. For each a e Γ let

Suppose that card Όa ^ y^ for all aeΓ. Let a0eΓ such that aQ

Then

[a0, ω2) - U Da Φ 0
a<aQ
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since card [a0, ω2) = ^ 2 and card (\Ja<aQ Da) ^ Wi L e t A e laQ, ώ2)

-U«<«o D«- τ h e n «e[0, O implies βQ^Da; so α e Γ v Thus

card Γ P o ^ card [0, α0) = Ki ,

which is a contradiction. Hence {aeΓ: card Da > ^x} =£ 0 . Let a1

be the smallest element in the set. Now suppose that alf α2, , an^
are defined such that the following is true :

(1) a, < a2 < < an^
(2) (XiίΓa., for i ^ i , i , i = 1, 2, •••, w - 1
(3) Card φ β l n 2>«2 Π Γ) Da%J > «,.

Let 70 = sup {β : /S e Γα., 1 ̂  i ^ ^-1} + 1 and let

r{n) = ΰ f f i n ΰ α 2 n n D ^ . , - [o,τ 0 ) .

Then cardΓ(%) > fc^. For aeΓw let D(

a

n) = Da Π Γw. Suppose that
c a r d D ^ ^ #lf for all aeΓw, and let < e Γ such that card {Γ{n) Π
[̂ o, <l) = « i . Then

[v0, ω2) n Γ(w) - U {D{:]: a e Γ{n) n [τ0, <]} ̂  0

so let β'o be an element of this set. If aeΓ{n) Π [v0, αό], we have
aeΓβ,Q. This implies

cardΓ,6 ^ card (Γw Π [70> αί]) - * t ,

which is a contradiction. Therefore

{a e Γin): card Dι

a

n) > Hi} ̂  0 »

and we let #„ be the first element of this set.
Notice that an > sup {β : βeΓa., l ^ ί ^ n — 1}, so an^Γa., for

1 ^ i ^ n - 1 . Also, α:β e Γ ( w ) c Dai n D«2 Π Π !)«,_,, so ^ έ Γ β n ,
for 1 ̂  i ^ ^ — 1. Thus (1) and (2) are satisfied for a19 a2, , an.
Now

D% - r^ n i>βn c Dai n i?β2 n • n Dan_x n Dan,

so

card (D^ n ΰ . n Π A J ^ card D ^ > « x .

Thus (3) is satisfied and the lemma is proved.
For each aeΓ, let Xa = {0,1} with the discrete topology. Let

Y — Π« Xa have the product topology, and define X—Y — {g}, where
g is the element in Y such that g(a) ~ 0 for all aeΓ. Since X is
open in the compact space Y, it follows that X is a T2 locally com-
pact space. Let { ^ j w be any sequence of open covers of X. To
show that X is not a wzί-space, we will find an element xeX such
that {St(x, %Sn): neN} is not an α -sequence. For a given aeΓ, let
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fa be the element of X such that fa(a)= 1 and fa(β)=0 for all
Let Un(ά)e^n such that fae UJa). Since UJa) is also open in Y,
there exists a finite set Γn>a c Γ such that aeΓn>a and

where Z;(w) = {1} ,

Z"β(n) = {0} Cβ 6 Γ . , β -{«} ) ,

and Z«β(n) = X, (βeΓ-Γu,a).

Let Γα = U»=i A.α Then Γα is a countable subset of Γ for each
ae Γ. By the lemma, there is a sequence {ak}~=ι, of distinct elements
of Γ, such that αf ί Γaj for i ^ j . Define

Zak = {1} (keN),

zβ ={0} ( ^ 6 ^ - 1 4 ^ ^ ,

and Zf =Xf (βeO Γaι).
k=i

Let goeT[βZβ. It follows that goeUn(ak) for each n,keN. Thus
fan^St{gQi^7) for each neN; however, the sequence {/«J~=i does
not have a cluster point in X. Hence X is not a wzf-space.

2* Developable p-spaces and wz/-spaces* In this section we give
some conditions for p-spaces and ̂ //-spaces to be developable. As is
suggested by Theorem 1.7 it turns out that p-spaces and wJ-spaces
can be used interchangeably in many theorems. We state Theorems 2.1
and 2.2 as an illustration of this.

A collection & of subsets of a space X is called a network for
X if for any open set 0 a X and xeO there is a set Pe & such that
x e P c 0. A space with a σ-locally-finite network is called a cr-space
[13]. It is proved in [16] that existence of a σ-closure preserving
closed network in X implies the existence of a σ-discrete closed net-
work hence a regular space has a cr-discrete network if and only if
it has a σ-closure-preserving network.

Let X be a topological space and d a nonnegative real valued
symmetric function defined on X x X such that d (x, y) = 0 if and
only if x = y. The function d is called a symmetric [2] for the
topology on X provided: i d is closed if and only if inf {d (x, z) :
zeA}>0 for any xeX— A. The function d is called a semi-metric
for X provided: For Ad X, x e A if and only if m£{d(x, z): z e A} = 0.
It is easily shown that a symmetric space X is a semi-metric space
if and only if X is first countable.
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THEOREM 2.1. For a completely regular space X the following
conditions are equivalent:

(a) X is developable.
(b) X is a p-space with a σ-discrete network.
(c) X is a semi-metrizable p-space.
(d) X is a symmetrizable p-space.

THEOREM 2.2. For a regular space X the following conditions
are equivalent:

(a) X is developable.
(b) X is a wA-space with a σ-discrete network.
(c) X is a semi-metrizable wΔ-space.
(d) X is a symmetrizable wΔ-space.

Theorem 2.1 was proved in [6]. Siwiec has shown in [15] that
parts (a) and (c) of Theorem 2.2 are equivalent. To complete
Theorem 2.2 it is only necessary to show that the spaces described
in (b) and (d) are first countable and therefore semi-metrizable.
This is a relatively easy exercise.

A collection & of closed subsets of X is called a ct-net [16] for
X if, when x, yeX such that xφy, there is an element Beέ%
such that x e B and y£B. It is obvious that a closed network in a
Tλ space is a ct-net and it can be shown that a semi-metric space has a
^-discrete ct-net.

We need the following theorem from [9]:

THEOREM 2.3 (Heath). A T1 space X is semi-metrizable if and
only if each point xe X has a decreasing open neighborhood base
{Un(x)}n=i such that if xneX, with xe Un(xn) for each neN, then
xn > x.

THEOREM 2.4. A regular wA-space (or strict p-space) X is develop-
fable if and only if it has a σ-closure-preserving ct-net.

Proof. Since a strict p-space is a wA-space we show only for the
case when X is a regular wA'-space.

If we assume X has a σ-closure-preserving cί-net then to show
that X is developable it is sufficient to show that X is semi-metri-
zable and apply Theorem 2.2. Let ^ = (J"=i &n be a ct-net for X
where each £?n is a closure-preserving collection of closed sets.
Suppose {^n}n=i is a sequence of open covers of X such that
{St(x, 5^J: ne N} is an cc-sequence for each xe X and assume ^n+1

refines 2^. For xeXf neN, define
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Note that ze Vn(x) implies that zίPe&*k whenever x&Pe&*k9 for
1 ^ k ^ n. Hence Vn(z) c Vn(x).

Now let Un(X) be an open neighborhood of x such that

Un(x)cz Vn(x) n St(x, S?n) .

We may assume Un+1 (x) c Un (x) for each n e N. Since & is a cί-net

for X, it follows that Π?=iK(«) = M Hence n?«i#«(«) = W
Let 0 be any open set containing x. If Un(x) is not contained in O
for any π, there is an element yne Un(x) — O. Since Un(x)<zSt(x,&n)
the sequence {yn}»=1 has a cluster point y not in 0. But yne Un(x) — 0
implies ye fϊ~=i Un(x) — 0, which is a contradiction since Π ? = i ^ ) =
{x}. So there is n e N such that Un(x) c 0 and {E7«(ίB)KΓ=iis a decreas-
ing open neighborhood base at x. To show that X is semi-metrίzable,
we show that {Un (»)}~=1 satisfies the conditions in Theorem 2.3.
Suppose xn e X such that x e Un(xn) for each ne N. Then a; e Sί(a;n, ^n)
which implies a?Λe Sί(a?, ̂ n ) . Thus {αjn}*=1 has a cluster point ί / e l
Suppose ?/ ̂  x. Then there is an integer meN such that there is
P G ^ m with xePand 7/g P. So α ί Fw(i/). Since 7/ is a cluster point
of {xn}n=1 there is m.eN, m^m such that XWIG Fm(τ/). Hence
K i ί ^ c Vm(y). It follows that

» e Fmi(xmi) c ym(a?Wl) c Fm(τ/)

which is a contradiction. Thus y — x and x is the only cluster point
of K}Γ=i. If KJΓ=i is any subsequence of {αn}~=1, then

Thus {.τ%J~=1 must have x as a cluster point. Since every subsequence
of {xn}n=i has x as a cluster point, it follows that xn—>x and X is
semi-metrizable.

The converse is trivial so the theorem is proved.
It was stated in [2] that if a strict p-space X can be mapped

onto a Moore space by a one-to-one continuous map then X is a
Moore space. The following corollary is a generalization of this.

COROLLARY 2. 5. Suppose X is a strict p-spacβ (regular wΔ-space)
and X is mapped onto a T2 space Y by a one-to-one continuous map.
Then X is developable if any one of the following conditions hold:

(a) Y is developable.
(b) Y has a σ-discrete network.
(c) Y is semi-metrizable.
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(d) Y has a σ-closure-preservίng ct-net.

Proof. The corollary follows immediately from Theorem 2.4 when
you show that any one of conditions (a) through (d) implies that X
has a σ-closure-preserving cί-net.

QUESTION 2.6. Is Theorem 2.4 or Corollary 2.5 true if X is
required to be a p-space instead of a strict p-space ?

A point-countable collection of subsets of a space X which is an
open base for the topology on X is called a point-countable base.
Filippov [8] has proved the following result:

THEOREM 2.7. A paracompact p-space with a point-countable
base is metrizable.

We generalize Theorem 2.7 in Theorems 2.8 and 2.10 by show-
ing that a p-space X with a point-countable base is a Moore space
if it is either metacompact or subparacompact. Theorem 2.8 was
proved in [6] for the case when X is a p-space. The proof when X
is a regular wz/-space is similar if we use Remark 1.9 and assume X
has a sequence of open covers satisfying (a) and (b) of Theorem 1.1.

THEOREM 2.8. A metacompact p-space (regular wA-space) tvith
a point-countable base έ%? is a Moore space.

Before proceeding with the statement and proof of Theorem 2.10
we need the following lemma which can be found in [8].

LEMMA 2.9. // έ% is a point-countable collection of subsets of a
space X and A c X, then the family of all minimal finite covers of
A with elements from & is countable.

THEOREM 2.10. A subparacompact p-space (regular wΔ-space) X
with a point-countable base έ%? is a Moore space.

Proof. Let {&n}n=i be a sequence of open covers of X satisfying
(a) and (b) of Theorem 1.1. For each neN, let ^ = \JZ=ι^n,m

be a ^-discrete closed refinement of ^n where each 3?n,m is discrete.
By Lemma 2.9, each P e ^ Λ has at most a countable number of
minimal finite covers with elements of ^ , say P ( l , n), P(2, n), •••
(if they exist).

Let Sζ = {Pf] B: Pe^n1 BeP(k,n), keN}. It follows that
&*n is a σ-locally-finite collection, and so S? = Un=i Sf* is also a
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^-locally-finite collection. We show that £f is a network for X. Let
0 be an open subset of X and xeO. Since & is a base there is a
set J3 e & such that a e β c O . Since Px = fi£=i £*(#» ^ ) i s compact,
we can find a finite subcollection {51? J52, •••, B J c ^ such that
Px c: Ui=i δi a n ( i B = Bi is the only element of {S^ i?2> , Bk} which
contains x. Let neN such that St(x, ^n) (z\Jk

i=ι Bi9 Let P e ^ Λ

such that X6 P. Then Pa U?=i -B,-, so there is a minimal finite cover
of P, say P(i, w), such that B1 = BeP(j, n). Hence a e P n - δ c O
and PΠ ΰ e y w . Therefore ^ is a σ-locally-finite network for X.
Hence X has a o -discrete network and is developable by Theorems
2.1 and 2.2.

QUESTION 2.11. Is a p-space (or regular wz/-space) with a point-
countable base a Moore space ?
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