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ON THE SEMIGROUP OF BINARY RELATIONS

R. J. PLEMMONS AND M. T. WEST

The concepts of row and column bases for an element of
έ$x, the semigroup of binary relations on a set X, are in-
troduced by interpreting a binary relation as a boolean matrix;
these ideas are then used to characterize the Green's equiva-
lences on &x. It is shown that the class of idempotent rela-
tions whose rows and columns form independent sets coincides
with the class of partial order relations on subsets of X. Re-
gularity in &'x is investigated using these results.

The Green's relations and ideals in the semigroup of binary re-
lations &x on a set X have been studied primarily in terms of lattice
considerations [11], [12]. In this paper we take a more computational
approach. By interpreting a relation as a boolean matrix, we introduce
the concept of row and column bases and use these ideas to obtain
useful characterizations of the Green's relations ^ ^ , §ίf and 2$
on &x. These results are then used to investigate the ideal structure
of &x, in comparison to that of ^ x , the semigroup of transforma-
tions of X into X. Some simple tests for regularity of a binary re-
lation are obtained, and by characterizing reduced idempotent relations
we show that a regular relation must have the same row rank and
column rank.

These results have made possible the determination of the maximal
subgroups of ^ x [6]. Moreover, the characterization of the Green's
relations in terms of binary matrices will hopefully lead to an ex-
tension of the combinatorial results given in [4] and [9], in which
the numbers of idempotents in the ^ and ^'-classes of J7~x are
investigated. Other applications may be found in Grapy Theory.

A binary relation on a set X is a subset of X x X, and the set
of all binary relations on X is denoted by έ@x. The product aβ of
two relations a and β on X is defined to be the relation

aβ — {(a, h) I (α, c) e a and (c, b) e β for some c e X) .

The operation is associative and hence έ%?x is a semigroup. The
semigroup 0>x of partial transformations on X is a subsemigroup of
&x and it in turn contains ^ x , the semigroup of transformations
on X as a subsemigroup. It was the ideal structure of ^ x that
motivated many of the ideas in this paper. (See [5] and [1] Vol. I,
pp. 51-55.)
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The elements in &x will usually be denoted by Greek letters.
In general, the notation follows [1]. Let xeX, H Q X and ae&x.
We use the notation:

a-1 = {(α, δ)|(6, α)eα},
xa = {yeX\(x, y)ea},
Ha — {61(h, b)ea for some he H}, aH = Ha~\ and
eH = {(h,h)\heH}.

Also, the universal relation X x X is denoted by ω, the identity
transformation on X by c, and the empty relation by Π

Let έ%x denote the set of all X x X matrices A over the boolean
algebra {0,1}, where ax>y denotes the value of A at the point (x, y)
of X x X. Then &n is a semigroup under matrix multiplication.
Moreover from [2, Chapter 13], it follows that the map

φ : a • A, where ax>y =
(1 if (x,y)ea ,

(0 otherwise ,

is an isomorphism of ggx onto ^ . For x e X we call the set
#α[α£] a row [column] of a. For example, if X = {χ19 x2, xs} and
a = {(a?!, £2)> fe> ̂ s)> (»8> $i)> fe> ̂ s)} then the relation matrix for α is

and the row x3a is the set {xl9 x3}. These ideas can be extended in
the natural way to the case where X is countably infinite. For
generality, we shall employ the terms row and column of a relation
even when X is not finite.

l The green's relations on &x. In this section we obtain
characterizations of the Green's relations that will be useful in later
work.

Two elements α, 6 of a semigroup S are said to be £f\&, J7~\
equivalent if and only if they generate the same principal left [right,
two-sided] ideal in S. We denote the relation ^ Π ^ ? by £ίf and
the join £f\J & oί £f and & by 22f, that is, Sf is the intersection
of all the equivalence relations on S that contain ,Sf and ^?. The
equivalence relations ^ ^ , £ίf and ^ play an important role in
the study of semigroups.

The proof of the following technical lemma is obvious.

LEMMA 1.1. Let a, βe &x and H S X. Then
(1) H(aβ) - {Ha)β and (aβ)H = a(βH),
(2) (aβ)-1 = β-'or1,
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( 3) a&β if and only if a~
(4) aSίfar1 if and only if a&cr1 or aJέfar1, and
( 5 ) a£?rβ if and only if cr

Let α e ^ z and V(a) = {Aa\A £ X}. Then V(a) is the collection
of all unions of rows of a and it forms a lattice under set theoretic
inclusion. The following lemma is a combination of results proved
by Zaretskii in [12].

LEMMA 1.2. Let a, βe &Σ. Then
(1) a£fβ if and only if V(a) = V(β) and
(2) a£2fβ if and only if V(a) and V(β) are lattice isomorphic.

For our purposes it is more convenient to obtain a characteriza-
tion of the relation £f, and dually ^ , in terms of rows and columns.
Using Zaretskii's result we have the following lemma.

LEMMA 1.3. Let a,βe&τ. Then a^fβ[a^β] if and only if
for each xe X there exist subsets H and K of X such that xa — Hβ
and xβ = Ka[ax = βH and βx = aK]. Moreover a^fβ[a^β] im-
plies Xa = Xβ[aX = βX].

Proof. If a^fβ then there exist relations 7, δ in &x such that
ja = β and dβ = a. Let xe X, then xa = (xδ)β and xβ = (xΊ)a so
that xa = Hβ and xβ = Ka for ίί" = xδ and i ί = a T. The converse
is immediate from Lemma 1.2 (1).

Finally, if a£?β and α? e -Xα, then there exist yeX and H £Ξ x
such that aj e 2/α = JEζS £ X/9. Hence Xα S Xβ. Similarly Xβ s Xα.

For any transformation α, the number \Xa\ is called the rank
of a ([1, Ch. 2]). We now introduce the concepts of row and column
ranks for relations. These ideas will play an important role in the
remainder of the paper. We consider each set mentioned in the
following paragraph to be nonempty.

Let S be a set and J%f be a collection of nonempty subsets of
S. Then a subcollection ^ of Jϊf is said to be independent if no
member of ^ is a union of other members of ^ . The collection ^
is said to generate sf if each member of J ^ is a union of members
of ^ . If ^ £ s^ is independent and generates Szf then ^ will
be called a ίxms of s/.

Now let • Φ a e ^ and J ^ = {xα|x e X, xa Φ •}. If J ^ has
a basis ^ then <g* is necessarily unique and is called a ?̂ ô  δαsίs
of a; 1^1 is called the row rank of α. Column bases and ranks
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are defined in a dual manner. Of course, if Xis finite, then each re-
lation on X has row and column bases. However, for infinite X it
is possible to construct relations having no row basis. In particular,
if X is the positive integers and Szf is the nonempty subsets of X
whose complements are finite, then s%f has no basis. Thus if we
take a to be a relation having as rows the members of j ^ then a
has no row basis.

We say that a relation a is row [column] reduced if the non-
empty rows [columns] of a form an independent set. If the relation
is both row and column reduced we say it is reduced.

Notice that by Lemma 1.3, a relation ae &x has a row basis
if and only if La has row reduced members. In particular if the
nonempty rows of a! e &?x form a basis for the rows of a then a! e La.
A similar result holds for columns.

The following lemma gives a sufficient condition for the rows of
a relation to have a basis. Its proof follows from an application of
Zorn's Lemma.

LEMMA 1.4. If ae &x has the property that \xa\ < °° for each
x e X, then a has a row basis and thus La contains row reduced
members.

The dual of this lemma for column bases also holds. In particular
each ^-class of &x, when X is finite, contains reduced members.

Notice that our definition of column rank of a relation a was
called the rank of a in [1], [5], where a is a transformation. Thus
we have a natural extension of the concept of rank to binary relations.
Also, there exist relations in &x, \X\ >̂ 4, for which the row and
column ranks are different. For example, the relation a whose
matrix is

1 0 1 0

0 1 0 1

1 1 0 0

1 1 1 0

has row rank 3 and column 4. Also, a is column reduced but not
row reduced.

Now let F*(α') = {xa\xe aX). The next two theorems charac-
terize the Green's relations on reduced elements of έ%?x. All the
relations in the remainder of this section are taken to be nonempty.

THEOREM 1.5. Let a and β be row reduced relations in &x.
Then the following statements are equivalent.
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(A) a£έ>β,

(B) V*(a) = V*(β), and
(C) a = pβ, where p is a one-to-one map of aX onto βX.

Proof. Now the implication (A) implies (B) is immediate from
Lemma 1.2, since V*(oc) is the basis for V(ά).

Assuming V*(a) — V*(β), let p be the map from aX to βX
given by xp — y if and only if xa = yβ. Then clearly p is one-to-
one from aX onto βX and a = pβ. Thus (B) implies (C).

Now (C) implies (A), since if a = pβ where p is one-to-one from
aX onto βX, then p~γa = β. Then a and β generate the same
principal left ideal and are thus ^-equivalent.

Notice that the since a&β if and only if a~ιSf β~ι, Theorem 1.5
has a dual formed by replacing "row" by "column", " ^ " by " ^ P "
and "pβ" by "βp" where p is from Xβ onto Xa. With this in mind
we have the following results.

COROLLARY 1.6. Let a and β be reduced relations in ^ x . Then
the following statements are equivalent.

(A) a^fβ,
(B) V*(a) = V*(β) and V*{a~ι) = V^β-1), and
(C) a = βp •= σβ where p is a one-to-one map of Xβ onto Xa

and σ is a one-to-one map of aX onto βX.

LEMMA 1.7. // a^^x is row [column] reduced, then every
member of Ra[La] is also row [column] reduced. In particular, if
a, β e έ@χ are reduced and a&β, then every member of La Π Eβ is
reduced.

Proof. Let a be row reduced and β e Ra. We show β is row
reduced by showing V*(β) = {xβ\xeβX} is independent. hetkeβX
and • Φ T Q βX such that kβ = Tβ. Now by Lemma 1.3, keβX =
aX and T S βX = &X. If βeRa then a = βΎ for some Ύeβx. Thus
ka = kβΎ = TβΎ = Ta. Since a is row reduced V*(a) = {xa\x e aX}
is independent and so ke T. Therefore V*(β) is independent, and
thus β is row reduced.

THEOREM 1.8. Let a, β be reduced elements of &x. Then
if and only if a — σβp, where σ is a one-to-one map of aX onto βX
and p is a one-to-one map of Xβ onto Xa.

Proof. If a2$β then there exists 7 e &x such that a£?Ί and
Ί&β. By Lemma 1.7, 7 is reduced. By Lemma 1.3, Xa = XΊ and
ΊX — βX. Now by Theorem 1.5 and its dual, a = σΎ, where σ is a
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one-to-one map of aX onto ΎX, and 7 = βp, where p is a one-to-one
map of Xβ onto XΎ. Then a = σΊ = σβp.

Conversely, if a = σ#o, σ, ̂  as specified We can let y = βp and
note by Theorem 1.5 and its dual, aSfΊ and Ί&β so

If X is finite the partial one-to-one mappings of Theorems 1.5
and 1.8 can be taken to be restrictions of permutations of X to the
requisite domains. Hence we can restate these results in the follow-
ing theorem, where Sx denotes the symmetric group on X.

THEOREM 1.9. Let a and β be reduced relations in &x, X finite.
Then

(1) aSfβ if and only if a = pβ, p e Sx,
(2) a&β if and only if a — βσ, σ e Sx,
(3) a^fβ if and only if a = pβ = βσ, p, σe Sx and
(4) a&β if and only if a — pβσf p, σe Sx.

We show next that a fixed row rank and column rank are as-
sociated with each ^-class containing reduced relations.

LEMMA 1.10. Let a be a row reduced relation in &x and sup-
pose a has row rank r. Then each member of La has row rank r.

Proof. The proof follows since r = \V*(a)\ and F*(α) is a row
basis for each member of La.

THEOREM 1.11. Let D be a £&-class of £&x containing reduced
relations. Then the members of D have the same row rank r and
column rank c.

Proof. Let a be a reduced relation in D where a has row rank
r and column rank c. Then r — | V*(a) | and c = | V*{orι) \ and by
Lemma 1.10 and its dual each member of La has row rank r and
each member of Ra has column rank c. Now let βe D. Then there
exists Ύ e D such that β^fΎ and 7&a. By Lemma 1.7, each member
of Ra is row reduced so 7 has a row basis and has row rank r since
ΊX — aX. Thus β has row rank r since βSfΊ. Also there exists
δeD such that β&δ and δJίfa. Then δ is column reduced with
column rank c and so β has column rank c, by Lemmas 1.7 and 1.10.

Notice that elements having the same row rank and some column
rank need not be ^-equivalent. For example, ω\c — {(x, y) e X x X\
x φ y) and c have the same rank \X\ but are not in the same i^-class.

We conclude this section with some remarks concerning ideals
in . ^ , X finite.
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Let \X\ — n>2 and let ^"z denote the full transformation
semigroup on X. Notice that each a e ^~x is column reduced. The
column rank of a is \Xa\ as defined in [1, vol. I, p. 52]. Now a is
row reduced if and only if it is a permutation.

The ideal structure of ^"z is quite simple. Each ideal is principle
and the ideals form a principal series [1, vol. I, pp. 74-75]. Also
^~z is semisimple since I 2 = I for each ideal I. In fact, basically
the same ideal structure holds for &*z, the semigroup of partial
transformations on X. However, the ideal structure of &z is not
quite so simple. For example, consider the principal ideals J(ω\c) =
&x((θ\ή^x and J(a) = &xa^x where a = c U {(x, y)} and xφy. Then
the only elements in J(ω\c) having rank n are those in the ϋ^-class
containing ω\*, {ω\p | p e Sx}. Thus a g J(ω\c) and similarly ω\c ί J(a).
Thus the ideal I = J(ω\ή U J(ά) is not principal. Since J(ω\ή g J(a)
and J(a) ξ£ J(ω\ή, the principal ideals of &z do not form a chain.
In fact, they do not even form a lattice. Moreover, since [J((θ\ήf Φ
J((ϋ\ή, &x is not semisimple when \X\ > 2.

Finally, another major difference in the structures of &x and
J7~x is that each maximal subgroup of ^~x [and of &z\ is a symmetric
group, whereas the class of maximal subgroups of semigroups &z

of binary relations includes all finite groups [6].

2* Regularity in &x. An element a in a semigroup T is said
to be a regular element if and only if aeaTa; otherwise, a is called
irregular. It has been shown that in any i^-class D of Γ, either
every element is regular or else every element in D is irregular. If
the elements of D are regular then D is called a regular ^-class.
Moreover D is regular if and only if every S^ and <% class of T
in D contains an idempotent element [1, vol. I, p. 58].

Regularity in &x was first investigated by K. Zaretskii in [11]
and [12]. He showed that a relation a e ^ j is regular if and only
if the collection of sets V(a) = {Aa\A Q X} forms a completely dis-
tributive lattice under inclusion. J. Yang has a shorter proof of
this result in [10] However, these characterizations can be rather
difficult to use. In this section we relate regularity to row and
column rank and show that if a is regular then its row rank and its
column rank must be the same. However, this condition is not
necessary as we shall show. We also consider idempotent relations
and derive a useful test for regularity.

We first relate the ranks of products of relations to the ranks
of the factors.

LEMMA 2.1. Let a, βe &x and suppose a and β have row and
column bases respectively. Let r be the row rank of a and c be the
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column rank of β. Then if aβ has row and column bases, the row
rank of aβ ^ r, and the column rank of aβ <̂  c.

Proof. Now aj^fa! and β&β' where a! is row reduced and βf

is column reduced. Then since £f is a right congruence and <%} is
a left congruence on &x, aβQίa' βf so that aβ and a!βf have the
same row and column ranks by Theorem 1.11. Moreover r = \a'X\
and c = \Xβ'\. Then row rank aβ = row rank α'/S' ̂  |α'/3'X| ^
\a'X\ = r and column rank α/9 = column rank a!βf ^ |Xα'/3'| ^

= c.

It is possible, however, for the row [column] rank of the product
to be greater than the row [column] rank of the last [first] factor.

Now if Y S X then the map φ from έ%?γ into &x given by aφ =
{(α, 6) € X x X\ (α, b) e a} is an isomorphism. Thus we have the fol-
lowing lemma.

LEMMA 2.2. Let X and Y be sets where \ Y\ <, \X\. Then there
is an isomorphism of &γ into &x.

An element a e &x is regular if and only if the £^-class D con-
taining a is regular. But D is regular if and only if it contains an
idempotent. Thus it is important to investigate idempotent relations.

LEMMA 2.3. Let D be a regular S^-class of &x and assume D
contains reduced elements. Then D contains a reduced idempotent.

Proof. Using Theorem 1.8, we see that D must contain a re-
duced relation a where either Xa gΞ aX or aX £ Xa. Suppose
Xa £ aX and let aX = Y. A dual argument holds when aX £ Xa.
Then since \Y\ ̂  |X|, there is an isomorphism φ of &γ into &x.
Let a! be the pre-image of a under φ. Then a' is row and column
reduced and has no empty rows. Then each element in the i^-class
U of &γ containing ar is row and column reduced. But since a is
regular so is a', and thus U contains an idempotent ε'. Then ε =
εrφ is a reduced idempotent in D.

We now characterize the class of reduced idempotents. By a
partial order relation in &x we mean a relation a such that for
some subset Y of X, a £ Y" x F and α: is a partial order relation on
Y. That is, αΠαr 1 = h and α: is transitive.

THEOREM 2.4. 77^ cίαss o/ reduced idempotents in &?x coincides
with the class of partial order relations on subsets of X.
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Proof. If a is a reduced idempotent then (xa)a = xa implies
x e Xa for all x e aX. Then aX g Xa, and similarly a(ax) = ax im-
plies Xa S #-X". Let F = Xα: = aX. Then a; e xa for all $ e Y implies
cγ Q a so a is reflexive on Y. Now if (x, y) e a where x Φ y, then
since xa Φ ya there exists ze Xsuch that either (x, z)e a and (y, z)$a
or (x, z)£a and (y, z) e a. But this would be impossible if (y, x)ea
since an idempotent relation is always transitive. Thus a is anti-
symmetric and is therefore a partial order relation on Y.

Conversely, suppose a is a partial order relation on a subset Y
of X. Then a2 — a since it is reflexive and transitive on Y. Now
if xa = ϋ α for some xe Y and ίZ"§ F, then $ e to for some he H.
But A G α α implies that (x, h) and (A, a?) e a. Thus a; = h and so α' is
row reduced. Similarly, a is column reduced.

We show next that if a regular relation has row and column
bases, then its row and column rank must be equal.

THEOREM 2.5. Let D be a regular jSf-class containing reduced
relations and suppose the elements in D have row rank r and column
rank c. Then r — c.

Proof. By Lemma 2.3 and Theorem 2.4, D contains a reduced

idempotent a where Xa = aX = Y.
and I Xa | = c. Thus r = c.

Now since a is reduced, | α:X| = r

COROLLARY 2.6. Lei a be a relation in &x having row rank r
and column rank c. Then a is regular only if r = c.

We point out that the converse of Corollary 2.6 does not hold.
In particular, ω\c is irregular for | X\ > 2 and it has row rank =
I-XΊ = column rank. The fact that ω\c is irregular for \X\ > 2 will
follow from Corollary 2.10.

THEOREM 2.7. Each regular 3ί-class of &x, Xfinite, containing
reduced relations contains an idempotent a whose relation matrix
A is in lower triangular form, that is, where A has the form

\11
*

•

•

0
1

•

•
•

0
0
1
•

•

* . .

0

. o
• 0
• 0

•

•
•

• l r
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where r is the row and column rank of a.

Proof. By Theorem 2.4, D contains a partial order relation β
on a subset Y of X. Then r = \Y\ is the rank of the members of
D, and since β is a partial order on Y, there is a permutation p of
Y such that the relation matrix for the idempotent a = pβp~ι is in
lower triangular form. The fact that ae D follows from Theorem 1.8.

We now obtain a simple criterion for a reduced relation to be
regular. It becomes quite useful in case X is finite.

THEOREM 2.8. Let a be a reduced relation in έ@x. Then a is
regular if and only if there exists a one-to-one partial transformation
p of X, such that a = apa.

Proof. If a is regular then the ϋ^-class containing contains a
reduced idempotent ε by Lemma 2.3. Then by Theorem 1.8, there
exist one-to-one partial transformations δ and σ of X such that ε =
δaσ. Then daσ = δaσδaσ so that a — a(σδ)a. Letting σδ = p we have
our result.

Since each regular i^-class of &x, X finite, contains reduced re-
lations, the following corollary gives a useful criterion for determining
if a £^-class is regular.

COROLLARY 2.9. Let X be finite. Then a reduced relation a e &x

is regular if and only if a = apa for some pe Sx.

Finally, the following corollary identifies another class of irregular
relations.

COROLLARY 2.10. If a Φ • is a reduced relation with the pro-
perty that xa £ ya implies x — y for all x, ye aX, then a is either
a one-to-one partial transformation of X or is irregular.

Proof. Suppose a is regular. Then by the theorem a — apa
where p is a one-to-one map from Xa onto aX. Now ya = y(apa)
for all y e aX, so that if x e y(ap) then xa S ya, whence x = y. Thus
y(ap) = [y] and therefore ap = caX. This implies a = p~\ so the
corollary is proved.

As an illustration of this corollary we see that the relation with
matrix
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/I 0 1 0\

0 1 0 1

1 0 0 1

\0 1 1 0/,

is necessarily irregular.
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the subject by Russian authors.
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