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CONGRUENCE FORMULAS OBTAINED BY COUNTING
IRREDUCIBLES

MICHAEL L. FREDMAN

This paper shows how a class of congruence formulas
can be generated by generalizing the process of counting
irreducibles in polynomial rings. Among the specific appli-
cations of the methods in this paper are a solution to the
necklace problem, as well as an enumeration of the solutions
to certain Diophantine equations.

Let F denote the finite field with q elements and let F[x]
denote the polynomial ring over F. Let ψ(n) denote the number
of monic irreducible polynomials of degree n in F[x]. It is known that

(1) Σ Kn/d)qd = nψ(ri) when n ^ 1 ,
d\n

where μ denotes the Mobius function. Since ψ is integer valued it
follows that

(2) Σ μ(n/d)qd = 0 mod n ,
d\n

whenever q is the power of a prime. This paper shows that the
process of counting irreducible in polynomials rings generalizes, and
that this generalization leads to a generalized congruence formula.

Let G be any commutative multiplicative semigroup with cancel-
lation, with an identity element, 1, and with no other unit elements.
Suppose that all elements in G can be factored into irreducibles and
that the factorization is unique. The positive integers and the
monic polynomials in the above discussion provide examples of such
a structure. Now assume that G has a valuation function v with
the following properties:

(a) v is integer valued.
(b) v(l) = 0 and v(s) > 0 if s φ 1.
(c) v(st) = v(s) + v(t).

(d) D(k) = ΣiseG,v(S)=kl is finite. In other words v
assumes a particular value no more than a finite number of times.
The monic polynomials are an example of this kind of structure
where v(Q(x)) = the degree of Q. Throughout this paper we reserve
the use of the letter p to denote irreducibles. Now let

(e) Ψ{n) = Σ P eβ. *(„>=*!..
In the case of the monic polynomials, D(n) — qn and Ψ is given by
equation (1). In this paper we show that Ψ is uniquely determined

613



614 MICHAEL L. FREDMAN

by D without regard to the specific structure G to which the func-
tions pertain as described by (d) and (e). A particular formula for ar-
riving at ψ given D is derived, and it is shown that given any integer
valued function D, the formula leads to an integer valued function ψ
which has the form nψ(ri) = Σdi^ μ{njd)E(d) where E is determined
by D and is integer valued. Therefore, a congruence property
similar to (2) is established. It is shown that the existence of a
structure G which gives rise to D by formula (d) does not affect the
validity of the derived congruence property. For example, if D
assumes negative values it is obvious that the derived congruence
cannot be given a structural interpretation as described by (a)-(e).
Convolution products play a fundamental role throughout the
arguments.

1* Definitions and lemmas. In this section we develop the
definitions and lemmas which are used in this paper. Let G be a
structure with a valuation function as described in the introduction.
A complex valued function over G is called an arithmetical function.
We define the Dirichlet product in the usual way. Given arithmetical
functions / and g, we define h by h(t) = Σ r ^ J W ^ δ ) . We write
h = f*g and call h the Dirichlet product of / and g. Since G
satisfies (α)-(e), it is clear that the sum in the definition is finite.
We note that * is commutative and associative. Now let J be the
function such that /(I) = 0 and J(s) = 1 when sΦl. We define the
function L as follows:

( 3) L(s) = (J - J2/2 + J3/3 - J4/4 + •)(«)

where Jn denotes the n-tolά Dirichlet convolution of J. For fixed
8, we note that (a)-(d) and the definition of J imply that the series
on the right side of equation (3) reduces to a finite sum. The
following lemma expresses L explicitly.

LEMMA A. L(pn) = 1/n when p is irreducible and n ^ 1.
L(s) = 0 if s is not a positive power of an irreducible.

We do not prove Lemma A but remark that it can be proven
by noting that equation (3) can be regarded as a formal logarithmic
series, and by expressing J by using a device analogous to an Euler
product. For a particular case of the lemma, see [4].

Next, we define a function over the positive integers as follows:

E{n) = n Σ L(s) .
seG

v[8) = n
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Now letting ψ be defined as in (e), and using (a)-(d) and Lemma A
we have that

(4) E(n) = n Σ L(s) = Σ dψ(d) .
seG d\n

v{s) = n

Hence, E(n) is integer valued and

( 5 ) nψ(n) = Σ μ(n/d)E(d) .
d\n

Now we introduce the Cauchy product. Given two complex
valued functions over the nonnegative integers, / and g, we define
the Cauchy product, h = f°g in the usual way: h(n) = Σ +i^/CO^C?)-
Now let D be any function over the nonnegative integers such that
JD(O) = 1. Let D(n) = D(n) when n^l and 5(0) = 0. We define a
new function log D as follows:

( 6 ) log D(n) = (D - D2/2 + 53/3 - . ) M

where Dj denotes the i-fold Cauchy product of D. Since 5(0) = 0,
for fixed n it is clear that the right side of equation (6) reduces to
a finite sum.

Let I be the function defined by 1(0) = 1 and I(n) = 0 when
n > 0. With respect to the Cauchy product, / acts as an identity
element, /©/ = Jo/ = /. Now given a function C such that C(0) = 0,
we define a new function exp C as follows:

(7) exp C(n) - (J + C/ll + C2/2! + ...)(%) .

Again we note that for fixed n this definition reduces to a finite
sum. The properties of the exp and log operators are summarized
in the following lemmas.

LEMMA B. Let Dι and D2 be two functions with D1(Q) = D2(0) = l,
and Cι and C2 be functions with Cx(0) = C2(0) = 0. Then

(a) log (A° A) = log A + log D2.
(b) exp (Cx + C2) - (exp Qo(exp Q .
(c) exp (log A) - A , log (exp Q - C,.

LEMMA C. Let d be a positive integer and N be an integer
(positive or negative), and assume fN is defined as follows:

(Nd/n if d\n
fAn) = ]

( 0 ^/ d\n .

Then exp/y is integer valued.
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We leave that proof of Lemma B as an exercise. Lemma C can
be proven as follows. Define j(n) and j~ι{n) as below:

( 1 if n = 0

j-Uri) = <— 1 if n = d
0 if d\n

[ 0 if n Φ 0 or d .

It is easy to verify that j~ιoj = / and that logi" 1 =/_ 1 . Since
Iog7(^) = 0 for all n, it follows from (a) of Lemma B that \ogj=f.
From (b) of Lemma B it follows that

Ί if N - 0

ί̂  if ΛΓ > 0

Xi"1)-^ if N < 0 .

Since I, i and i" 1 are integer valued, it follows that exp/^ is integer
valued, completing the proof.

The following lemma provides another expression for the log
operator.

LEMMA D. Let f be a function such that /(0) = 1 and let f~γ

denote the unique function such that f~ι°f= /. Then

n\ogf(n)= Σ if(i)fΛJ)

Proof. Let f = f - I. It is easy to verify that f~ι{n) =
(/ —/ + / 2 — / 3 + •• )(ri), where for fixed n, the series reduces to
a finite sum. Hence,

Σ if(i)f-ι(J) = nf(n) - nf\n)β + nf\n)β = n log An) .
i + j

2. Theorems* The first theorem expresses E(ri), defined in
equation (4), in terms of the function D defined in the introduction.

THEOREM 1. Let G be a structure of the type described in the
introduction and let D(n) = ΣseG,*(•>=» 1 and E(n) ^nY,seGt Ό{s)=n L(s).
Then

(8) E(n)/n = log D(n) .

Assuming Theorem 1, equation (5) implies that

(9) nψ(n) = Σ μ(n/d)d log D(d) = Σ μ{njd)E{d) .
d\n din
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Proof of Theorem 1. From the definition of L given by equation

(3), Σ.e*,.(.)=. L(8) = Σifci i-iY + 1β T*seG,vis)=n •/*(«). But Σ.< >=» Λ*) =
Σίi—ί<= ,«(.)=n ^ i ) " «JΌQ — (using the definition of J and properties
(b) and (c) of G) Σ*tt1>+-..+i>ui>=»,*<ίΛ»o,i£*£< 1 = (using (d))

ΣΣ Dim,) = D\n) .
mk>0,

Hence by equation (6), E(n)/n = Σ eG,«(*)=n L(s) = logD(^), and this
proves the theorem.

Theorem 1 provides a purely arithmetical link between the func-
tions D and ψ. Hence, the relationship between D and ψ is in-
dependent of the particular structure to which they pertain. Now
E(n) is integer valued as shown by equation (4), and equation (9)
implies that

(10) Σ μ(n/d)E(d) = 0 mod n .
d\n

This suggests the following problem. What integer valued func-
tions D have the property that the function E defined by equation
(8) is integer valued and satisfies the congruence formula in (10)?
The following theorem gives the complete answer.

THEOREM 2. Let D be an integer valued function with D(l) = 0
and let E(n) = nlog D(n). Then E{n) is integer valued and
Σdi» μ(n/d)E(d) = 0 mod>.

Before proving Theorem 2 we return to our structural model of
the problem which suggests a method of proof. If seG and
v(s) — n, let us say that s has degree n. Then D(n) is the number
of elements in G of degree n, and ψ(n) is the number of those
which are irreducible. Now it is obvious that all elements of degree
1 are irreducible, and so D(l) = ^(1). When n > 1, ^{n) is the
difference between D(n) and the number of elements of degree n
which are reducible. But the reducible elements can be factored
into irreducibles, each factor having lower degree than n. Now
given ψ, equations (4), (8), and Lemma B imply that if we let
E(m) = Σd\mdf{d) and let E'(m) = E(m)/m, then D{m) = exp£"(m).
Now for n > 1, let ψn(m) = ψ{m) when m < n and Ψn(m) = 0 when
m ^ n. Let En(m) = Σd]mdψn(d), let E'%(m) = En(m)/m, and let
Dn(m) = exp^(m). If we consider the subset of G generated by
the irreducibles of degree < n, it follows that the number of
elements of degree m in this subset in Dn(m). Hence, ψ(n) =
D(n) — Dn(n). We prove Theorem 2 by letting ψ(n) be defined by
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equation (9), showing that f(n) = D(n) — Dn(n) when n > 1, and
then showing that Dn(n) is integer valued.

Proof of Theorem 2. Let ψ be given by equation (9). We
prove by induction on n that ψ(ri) is integer valued. Equation (9)
then implies that E is integer valued.

From equation (6) we see that log D(l) — D(l), and from equa-
tion (9) it follows that ψ(l) = D{1). Now for n > 1, define En(m),
E'n(m) and Dn(m) as in the above discussion. Clearly En{m) — E(m)
when m < n and E(n) — En(n) = nψ{ri). Hence, by equation (7)
D(n) — Dn(n) — ψ(n). We complete the proof by showing that Dn{m)
is integer valued for all m. When n = 2, El(m) = ψ(l)/m. Since
ψ(l) is an integer, Lemma C implies that Dn(m) is integer valued.
Thus ψ(2) is an integer. Now for n > 2 assume that ψ(k) is integer
valued when k — n — 1 and that Dk(m) is integer valued. By Lemma
B and the definition of Dk, Dn = A°exp (JS£ - 2£Λ'). But

(kψ(k)/m when felm
E'n(m) - E&m) = \ .

(0 when /c|m since & — n — 1 .

Hence, by Lemma C, exp (2S» — J&ί) is integer valued and since Dk

is integer valued, it follows that Dn is integer valued. Therefore,
ψ(n) is an integer. The theorem now follows by the principle of
induction.

By repeated application of Lemmas B and C in much the same
manner used to prove that Dn is integer valued, we can prove the
following corollary.

COROLLARY. Assume E(n) is integer valued and satisfies (10).
Let E'(n) = E(n)/n. Then exp Er is integer valued.

It is appropriate at this point to show that if ψ(n) is nonnega-
tive for all n then a structural interpretation of the type defined
in the introduction can be constructed. The nonnegative condition
on ψ is obviously necessary for the existence of such a structure.

Now given ψ(ri) ^ 0, we define a function v on a subset of the
rational primes as follows. Let v(p) — 1 when p is any one of the
first ψ(l) primes. Let v(p) = 2 when p is any one of the next ^(2)
primes. We continue in this manner defining v on a subset of the
primes (possibly the entire set of primes). We denote this subset
by Q. Next, we define v over the subset of positive integers
multiplicatively generated by Q. v(l) = 0 and

v(pp pa

rή = aMPi) + + arv(pr)
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if each Pi£Q. It is clear that this subset of the positive integers
along with the function v is the desired structure.

By making somewhat more general the structural axioms stated
in the introduction, we can create a structural model for the cases
where ψ assumes negative values. We state without proof the
following theorem.

THEOREM 3. Let G be a commutative multiplicative semi-group
ivith cancellation, with an identity element 1, with no other unit
elements, and which has unique factorization. Let v he a valuation
function over G such that

(a) v is integer valued.
(b) v(l) = 0 and v(s) > 0 when s Φ 1.
(c) v(st) = v(s) + v{t).

(d) Σβeβ,*(«):=» 1 is finite for all n.
Assume there exists a function X over G such that

(e) λ(l) - 1.
(f) If p is irreducible, X(p) = 1 or X(p) = — 1.
(&) If P is irreducible and X(p) = 1, then X(pn) = 1 for all

n > 1. If X(p) = - 1 , then X(pn) = 0 for all n > 1.
(h) If Pi, , pr are^all distinct irreducibles, then X(pp pa/) —

X{ffl) ---X(pa

rή. Let D(ri) = ̂ seG,v(s)=nMs) and Ψ{n) = ΣpζiG,v[p)=nX{p).
Then nf(n) - Σdi» μ(nfd)d log Z?(d).

Now given ^ we define as before a function v o n a subset Q of
the rational primes, but instead of defining v(p) — n for ψ(n)
primes, we define v(p) — n for | ψ (w) | primes. Then using (b) and
(c) we induce v on the subset G of positive integers multiplicatively
generated by the primes in Q. Next, if ψ(n) < 0 and v(p) — n,
define X(p) — — 1, and if ψ(m) > 0 and v(p) — m, define X(p) == 1.
Then using (e), (f), (g) and (h), we induce X on the remaining
numbers in G. It is easy to verify that G, v and λ satisfy the
structural properties of Theorem 3 with ψ(n) = Σ«(3))=w^(^)

It is convenient to recast Theorem 2 and its corollary in the
language of power series. First, we observe that the ring of com-
plex valued functions over the nonnegative integers with the opera-
tions of addition and the Cauchy product is isomorphic to the ring
of power series with complex coefficients under the mapping

Next we observe that the operator, δf(n) — nf(n) corresponds to
x(d/dx)F(x) under the above isomorphism, ((d/dx) is the formal
derivative).
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THEOREM 4. Let @f(x) = 1 + Σn*i D(n)xn where D(n) is integer
valued. Let &(x) = x(d/dx)^r(x)/^r(x) = Σm*iE(ri)xn. Then E(n) is
integer valued and Σd\n μ(njd)E{d) = 0 mod n. Conversely, assume
E is integer valued and satisfies the above congruence property.
Let &(x) — Σ**i E(n)xn. Then there exists a series

= 1 + Σ,, i D(n)xn ,

where D(n) is integer valued, such that g%τ) =

Proof. Lemma D implies that n log D(n) «-> x(d/dx)£&(x)/*%r(x).
The theorem now follows from Theorem 2 and its corollary.

Next, we consider some consequences of the above theorems.

THEOREM 5. Assume E(n) is an integer valued function and
satisfies (10). For any integer k, let Ek(n) = knE(n). Then Ek

satisfies (10).

Proof. Using the notation in Theorem 4, let £%r(x) be the power
series such that x(d/dx)&r(x)/&r(x) = &(x). Let 3fk{x) = &r(kx). The
theorem follows when we observe that x{dldx)&k{x)l&k(x) = &(kx).

THEOREM 6. Assume k(n) and E(n) are integer valued functions
and that E(n) satisfies (10). Let F{n) = Σ ϋ k(j)nhΈ(n/j)j. Then
F satisfies (10).

Proof. Using the notation in Theorems 4 and 5, let ^(x) —
We complete the proof by observing that

OX

Now we show an example of the use of these theorems. Let
k(j) = j j and E(j) = 1 for all j . E satisfies (10), and therefore, by
Theorem 6, F(n) = σn+1(n) = Σdi dn+1 satisfies (10). Finally, by
Theorem 5, Fk(n) = knσn+1(n) satisfies (10).

3* Extensions* The power series interpretation of Theorem 2
suggests the possibility of similar theorems for power series in
several indeterminates. The structural interpretation in Theorem 3
would be modified to allow for vector valued valuation functions and
the Cauchy product would be modified to apply to functions of
several variables. For example, let G be the set of normalized
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polynomials with two indeterminates over a finite field and let
Q(x9 y) e G. Then define v(Q(x, y)) = (m, n) where m = the degree
of Q in x and n = the degree oί Q in y. We state without proof
the following generalization of Theorem 4.

THEOREM 7. Let

, > xN) = 1 + Σ D(n19 , nN)xp xn

N

N

+ + >0

where D is integer valued. Let

?i-r— + + xN-—WOi, , xN)/^(x19 , xN)
ox1 oxN/

= Σ E(n19 •• , ^ ) « Γ 1 ••• x ^ .

J57 is integer valued and

X μ(d)E(nJd, , n^/d) = 0 mod ̂  + + nN .
d\gcd(nι, ,njy)

Conversely, assume E is integer valued and satisfies the above con-
gruence property. Let*

&(x19 , xN) = Σ E(nlf , nN)xp x$# .

Then there exists a series

&(Xi, , xN) = 1 + Σ D(n19 , nN)xp x£N ,

where D is integer valued, such that

&(X19 , XN) = (a?i-τ- + + Xirz

As an example of this theorem, when D is a finite polynomial
or the reciprocal of a finite polynomial, E is an N dimensional array
which satisfies linear recurrence properties. Specifically, if we let

&!, x2) = 1 — Xi — %2i we obtain the congruence formula

/m + n\

Σ,μ(d)
d\m
d\n

d

= 0 mod m + n
m

\ T
where (V\ denotes the binomial coefficient.

4* Some applications* We conclude this paper with some
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applications of these theorems to particular semigroups. As a
consequence of the first application, we obtain some formulas regard-
ing the number of solutions to certain Diophantine equations.

Let V and W be vector spaces over the rationals with bases
Vi, - , vm1 and wιy , wn respectively. Let M be a linear map from
V into W with the following properties: M: vt —> Σ?=i UijWj l^i^m
where all ai3 are nonnegative integers and M(v^ Φ 0 for all i.

Let G = {Σ^iMi |δi are nonnegative integers}. With the opera-
tion of addition, G becomes a semigroup. Using multiplicative
terminology, G has unique factorization, and the irreducibles in G are
vί9 •••> vm. The map M serves as a vector valued valuation function
over G. We can now apply our theorems (generalized where appro-
priate) to G.

Given ω e W, we define D{ω)=^gQG>M{g)=ω 1 and Ψ(ω) = ΣipeG,x(p)=ω 1.

Since we know the irreducibles in G, we can easily determine φ.
Now let g - ΣΓ=i<W Then M(g) = Σ"=i (ΣΓ-i c.a^Wj. Hence, if
<y = Σ?=i<Mί7

i then D(α>) = the number of solutions (c19

 β ,cm) to
the system

where the c< are nonnegative integers. Using our theorems, we
can express D in terms of ψ. Let E\ω) = Σdiwi,—,*„> Ψ(°)/d)/d and
let g"(s l f , 2») = Σ^+ . +i^o ̂ ' ( d ^ i + + d . ^ ) ^ * z*: Then

, Zn) = 1 + Σ -D(diWi + + d wjsί1 «ί

As a consequence of the next application, we obtain an enume-
ration of irreducible polynomials over the field F of order 2 that
equal their own reversals.

Let F[x] denote the ring of binary polynomials and let p(x) e F[x],
If p(x) is of degree n, we define the reversal p(x) of p(x) with the
equation p{x) = xnp{ljx), and p{x) e F[x], It is easy to verify that
p(x)q(x) = p(x)q(x). If the constant term of p(x) is nonzero, then
deg^(α ) = άeg p{x) and p(x) = p(x). We say that p(x) is self-rever-
sible if p(x) = p(x). If q(x) is a polynomial with a nonzero constant
term, then q(x)q(x) is self-reversible. Finally, if p(x) and q(x) are
self-reversible, then p(x)q(x) is self-reversible; if r(a ) | p{x), then
r(x) I p{%)\ and if g(x) | p(x), then p{x)fq(x) is self-reversible.

Now let (? denote the subset of F[x] consisting of all self-rever-
sible polynomials. From the above we see that G is a semigroup.
Now we show that factorization is unique within G. To distinguish
between irreducibles in F[x] and irreducibles in G (which may not
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be irreducible as polynomials in F[x]), we refer to irreducibles as
jP-irreducibles or G-irreducibles accordingly. Let q(x) be G-irreducible
and suppose in F[x] we have p(x) \ q(x) where p(x) is F-irreducible.
Then p(x)\q(x). If p(x) — p(x) then p(x)eG and p(x)\q(x) in G.
Hence q{x) — p(x) since q(x) is G-irreducible. If p(x) Φ p(x), then
since p(oή is i^-irreducible, p(x)p(x) \ q{x) in F[x]. But p(x)p(x)eG
and therefore p(x)p(x) | q(x) in G. Hence, q(x) — p(x)p(x). Thus,
G-irreducibles are characterized as being either self-reversible F-
irreducible polynomials, or of the form p(x)p(x) where p(x) is an
jP-irreducible and p(x) Φ p(x). From this it is easy to show that
factorization in G is unique, and we can apply our theorems to G.

First, it is easy to see that

D(n) = Σ 1 = f 2 n

σlϊl\e=σn l2(w~1)/2 n odd

and therefore, that &r{z) = 1 + Σ,>o D(n)zn = (1 + «)/(l - 2z2). Using

our previous notation, it follows that E{n) — \ n °
l2(»+2)/2 _ 1

Now

ψ(n) = Σ 1 = (1M) Σ μ(d)E(n/d) .
p(x)eG d\n
deg p = n
p G-irreducible

Let ψ^ri) = ΣP(*> efw, degp=Λ>P irreducible 1. We know t h a t

Σ ^W)2W/" It follows that

ί
l when n = 1, 2

0 when π > 1 and w odd

ir^n/2) when ^ is even and > 2 .

Using this information, we can derive a formula for τ(n) = the
number of irreducible self-reversible polynomials in F[x]. Clearly
τ(n) <£ ̂ (w). Hence, τ(l) = 1 and r(w) = 0 when n is odd and > 1.
Now using our characterization of G-irreducibles, we have that
ψ(2n) = (1/2) (^(w) — τ{n)) + τ(2n) when n > 1. (The argument fails
when w = 1 since α? is irreducible but has a zero constant term).
Now by (11), ψ(2n) = ΨΊ(W), and therefore,

τ(2n) = (1/2)(f^n) + r(w)) when n > 1

τ(27̂  + 1) = 0 when ^ ^ 1

- τ(2) = 1 .

Using these formulas, r can be determined recursively for all n.
The problem of enumerating self-reversible irreducibles is sometimes
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referred to as the necklace problem. In a similar manner we can
solve the problem of enumerating irreducibles p(x) such that p(x) =
p(x + 1). This time we have

τ(n) = 0 n odd

τ(n) = (l/2)(f1(n/2) + τ(n/2)) n even .
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