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ON THE CHOQUET BOUNDARY FOR A NONCLOSED
SUBSPACE OF C(S)

TAE-GUEN CHO

In this paper, it is proved that if a separating (not
necessarily closed) subspace X of C(S) which contains all the
constant functions is generated by a weakly compact convex
subset, then the peak points for X are dense in the Choquet
boundary for X, In order to prove the theorem the extremal
structure of convex subsets of the conjugate space of a
normed linear space is studied.

Let S be a compact Hausdorff space, C(S) the Banach space of
all continuous complex functions on S with the sup norm and let X
denote a separating subspace of C(S) which contains all the constant
functions. X need not be closed under the sup norm. If X is a
closed sub-algebra of C(S) and S is metrizable, then the Choquet
boundary for X is exactly the set of peak points for X, [cf. 2]. If
X is not an algebra, this conclusion may fail to hold. However, if
X is closed and separable, then the peak points for X are dense in
the Choquet boundary for X (cf. [5]). In this paper the latter will
be generalized for certain nonclosed subspaces of C(S). In §2, it
will be shown that if a subspace X is generated by a weakly com-
pact convex subset than the set M = {z*e X*; z*(1) =1 = ||a*|]} is
the weak* closed convex hull of its weak* absolute exposed points
(see Definition 2.3 in § 2 for absolute exposed points). In §3 it will
be proved that a functional 2* in M is a weak* absolute exposed
point of M if and only if there is a peak point se S for X such that
x* = ¢(s) where ¢ is the natural embedding of S into X*. The
main theorem is a simple consequence of the above two theorems.

2. Normed linear spaces generated,by weakly compact convex
subsets. Let K be a weakly compact subset of a normed linear space
Y. If the linear span of K is norm dense in Y, then Y is said to
be generated by a weakly compact subset K. The set K is called a
fundamental subset of Y. In a Banach space, the closed convex hull
of a weakly compact subset is weakly compact, and hence a Banach
space is generated by a weakly compact convex subset if it is gen-
erated by a weakly compact subset. But there is an incomplete
normed linear space generated by a weakly compact subset which
does not contain a weakly compact convex fundamental subset (see
Example 3 in §3). It is clear that every separable normed linear
space is generated by a weakly compact subset. Therefore, every

575



576 TAE-GUEN CHO

norm bounded linear image of a separable Banach space is generated
by a weakly compact convex subset.

Let F be a subspace of the conjugate space Y* of a normed
linear space Y.

DEFINITION 2.1. A point x of a convex subset C of Y is an F-
exposed point of C if there exists a functional f in F such that
Re f(x) > Re f(y) for all yeC, y # x.

If F coincides with the conjugate space Y*, then an F-exposed
point is called an exposed point. If Y is a conjugate space of a
normed linear space and F' is the set of all weak* continuous func-
tionals on Y, then an F-exposed point is called a weak* exposed
point.  General information about exposed points can be found in
either [3] or [4].

Our first theorem is an easy consequence of methods used by
Amir and Lindenstrauss in proving a related result, Theorem 4 of [1].

THEOREM 2.2. Let Y be a normed linear space gemerated by a
weakly compact convex subset. Then every weak* compact convex
subset C of the conjugate space Y* 1is the weak* closed convexr hull
of its weak* exposed points.

Proof. It is clear from the proof of Proposition 2 of [1] that the
latter is valid for an incomplete space if it is generated by a weakly
compact convexr set. The reasoning of Theorem 4 of [1] applies to
yield the desired conclusion.

DEFINITION 2.3. A point x of a convex subset C of a normed
linear space Y is an (weak*) absolute exposed point of C if there is
a (weak*) continuous linear functional f such that

f(x) =sup{|f(y)|:yeC} and f(x) #+ Re f(y) for all yeC, y+*=x.

If x is an absolute exposed point of a convex set C and if fis a
functional which realizes its maximum modulus over C at x then the
affine functional f + 1 peaks at . An absolute exposed point is an
exposed point but the converse does not hold, (see Example 1 in § 3).
However, it is clear from the definition that every exposed point of a
circled convex set is an absolute exposed point of the set.

LEMMA 2.4. Suppose that z = 3., t;a;, where |a;| =1 and
t; >0 for each j and 37, t; =1. If Rez>1V'1— 6 for a given
0<o<l, then 37, t; | Ima; | < 0.
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Proof. Let z, =37, t;(Re a; + i|Ima;|). Then Re z = Re z,
and |z, | < 1. Now

(z tjllmaj|>2 — (Imz)t = |2 — Rez)t<1—(L—0o) =0,

THEOREM 2.5. Let X be a separating subspace of C(S) with
le X. If X is generated by a weakly compact convex subset, then
M={x*e X*; ©*(1) =1 =|z*|} is the weak* closed convex hull of
its wealk* absolute exposed points.

Proof. Let M, be the weak* closed convex hull of
M, = {az*; a« = a + b with |a| <1 and z*e M} .

Since M, is a circled weak* compact convex set, it is the weak*
closed convex hull of its weak* absolute exposed points by Theorem
2.2. Let C be the weak* closed convex hull of all the weak* abso-
lute exposed points of M, which are in M. It suffices to show that
C = M. Suppose that C = M and let z* be a functional in M — C.
By the separation theorem, we may choose a function z in X with
2]l =1 and a number §, 0 < é < 1, such that

Re 2*(z) > 20 + sup {Re z*(z); x*e C} .

Since z*(1) = 1 for all z* in M we may assume that Re 2*(z) = 0
for all #* in M. On the other hand, since the functional z* is in
M,, the weak* closed convex hull of weak* absolute exposed points
of itself, for the number 6 we may choose a functional

y* = > Lyl
4=1

where > t, =1, 0<it; <1 and yf is a weak* absolute exposed
point of M,, ¢+ =1,2, --+, n, such that

(1) [2*(2) — y*(@2)| <o
and
(2) [2*1) —y*()| <1 —-V1—8.

Note that yf = a; 2z}, where «; is a complex number with |a;| <1
and 2z} is a function in M which is a weak* absolute exposed point
of M,, since every exposed point of M, belongs to M, by Milman’s
theorem. Therefore,

n

y*r =2 (t ap) =

=1
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Since z*, zfe M, 2*(1) = 1 and z¥(1) = 1, hence, taking the real part
of z*(1) — y*(1) of (2) we see that Re y*(1) > 1”1 — 6°. Therefore,
.t | Ima;| <0 by the lemma.

Now,
|#°() — ¥*(9)| = |Re 2*(2) — Re y*(2)|
= |3, t:[Re2*(2) — (Re @) (Re 2/(2))]

+ >t (Ima) (Imzf ()
=25 — >t Ima |
> 0.

This contradicts (1). Therefore M = C.

3. Function spaces generated by weakly compact convex sub-
sets., Throughout this section, S will denote a compact Hausdorff
space and X a (not necessarily closed) subspace of C(S) with the sup
norm. The mapping ¢: S— X*, defined by #(s)x = x(s) for all xe X
and for each se S, is a homeomorphism between S and 4(S) with
respect to the weak* topology of X*. The convex set

M= {z*e X* a*1) =1=|[a*]|]}

is the weak* closed convex hull of #(S) and if z* is an extreme point
of M, there is a point se S such that ¢(s) = x*. The set of extreme
points of M is called the Choguet boundary for X (cf. [2] and [5]).
By a peak point for X we mean a point s of S such that there
exists a function x in X with the property that |x(s)| > |«(¢)| for all
te S, t=*s.

THEOREM 3.1. Let X be a separating subspace of C(S) with
le X and let M = {x*e X*; x*1) =1 = ||x*|]}. Then a linear func-
tional x*e M 1is a weak* absolute exposed point of M if and only
if there exists a peak point s€ S for X such that x* = ¢(s).

Proof. (=) If xe X exposes x* = ¢(s) absolutely, it follows
easily that x + 1 peaks at s.

(=) Suppose that se S is a peak point for X and let 2 be a
function in X which peaks at s. Then ¢(s) is the only functional in
#(S) such that ¢(s)r = 1. Let

My = {xz*e M; z*(x) =1} .
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Since every extreme point of the weak* compact convex set My is
an extreme point of M, hence in ¢(S), we see that My = {¢(s)} and
therefore ¢(s) is a weak* absolute exposed point of M.

The following example shows a weak* exposed point which is
not a weak* absolute exposed point.

ExAMPLE 1. Let S={{=¢&+; &+ 7' <1} and let XCC(S)
be the linear span of x and 1, where x({) = { for each {eS. Then
the boundary of S is the Choquet boundary for X since M is affinely
homeomorphic to S. The points +1, +¢ are not weak* absolute
exposed points of M (i.e., they are not peak points for X), although
they are weak* exposed points of M.

Our main theorem is an immediate consequence of Theorem 2.5
and Theorem 3.1.

THEOREM 3.2. Let X be a separating subspace (not necessarily
closed) of C(S) such that le X. If X is generated by a weakly
compact convex subset, then the peak points for X are dense in the
Choquest boundary for X.

Proof. The set M = {x*e X*; 2*(1) =1 = ||x*||} is the weak*
closed convex hull of its weak* absolute exposed points. Since weak*
absolute exposed points of M are peak points for X the theorem
holds by Mil’'man’s theorem.

REMARK. The real case of Theorem 3.2 can be proved without
the need of Theorem 2.5.

COROLLARY 3.3. Let X be a separating subspace of C(S) such
that 1e X. If there 1s a Banach space Y generated by a weakly
compact subset and a bounded linear operator from Y onto X, then
the peak points for X are demnse im the Choquet boundary for X.

Proof. Let K be a weakly compact fundamental subset of Y.
Then the continuous linear image of the closed convex hull of K is
a weakly compact convex fundamental subset of X.

ExAMPLE 2. Let X be a separable, commutative, semi-simple
Banach algebra with identity. X is isomorphic to a subspace of C(_#)
where . is the maximal ideal space of X. By the Corollary 3.3
peak points for X are dense in the Choquet boundary for X.



580 TAE-GUEN CHO

ExaMpPLE 3. Let S be the Cantor set in [0,1]. Let
X={feC(S); f is a simple function} .

X is clearly a separating subalgebra of C(S) with 1 X but X con-
tains no peaking function and hence there is no peak point for X in
S. Since X is separable, it contains a weakly compact fundamental
subset, however it contains no weakly compact convex fundamental
subset by Theorem 3.2.
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