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ON MEARLY COMMUTATIVE DEGREE
ONE ALGEBRAS

JOHN D. ARRISON AND MICHAEL RICH

The main result in this ] paper J establishes that there do
not exist nodal algebras A satisfying the conditions:
(I) χ(xy) + (yx)% = 2(xy)x
(II) (xy)x — x(yx) is in N, the set of nilpotent elements of A
over any field F whose characteristic is not two.

Recall that a finite dimensional, power-associative algebra A with
identity 1 over a field F is called a nodal algebra if every a; in A is
of the form x = al + n with a in F and n nilpotent, and if the set
N of nilpotent elements of A does not form a subalgebra of A. Fol-
lowing the convention laid down in [5] we call any ring satisfying
(I) a nearly commutative ring.

In a recent paper [4] one of the authors has established the
results given here if the field F has characteristic zero. In that
paper the theorem of Albert [1] that there do not exist commutative,
power-associative nodal algebras over fields of characteristic zero was
used extensively. Recently, Oehmke [3] proved the same result if
the field has characteristic P Φ 2. This result of Oehmke's will be
used throughout this paper.

The known class of nodal algebras over fields of characteristic P
are the truncated polynomial algebras of Kokoris [2] which are flexi-
ble. Our results show that if nearly commutative nodal algebras
exist over fields of characteristic P they will not fall into the class
of Kokoris algebras. In [5] one of the authors has shown that there
do not exist nearly commutative nodal algebras over fields of charac-
teristic zero.

Let A be a nearly commutative nodal algebra over a field F
whose characteristic is P Φ 2. Then A+ is a commutative, power-
associative algebra over F. Therefore by [3] N+ is a subalgebra of
A+. In particular, N is a subspace of A. The nilindex of A is de-
fined to be the least positive integer k such that nk = 0 for every n
in N.

LEMMA 1. There do not exist any nearly commutative nodal al-
gebras whose nilindex is two over any field of characteristic P Φ 2.

Proof. Let A be such an algebra. Then since z2 = 0 for every
z in N and N is a subspace of A we may linearize to get xy — ~yx
for all x, y in N. Let xy = al + n, yx = —al — n. It suffices to
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show that a = 0. Using (I) we get ax + xn — ax — nx = 2ax + 2nx.
Since xn = — wa; we have 4#w = 2α& and since P Φ 2 xn = (a/2)x and
nx = (—a/2)x. Using (I) again we have w(wα ) + (xn)n = 2(nx)n or
(α2/2)α; = (-a2/2)x. Thus α = 0 and A cannot be nodal.

LEMMA 2. Lβ£ A be a nodal algebra satisfying (II) over a field
F whose characteristic is not two. Then if JV*2 = {x y\x, y in JV},
then N'2N £ N and JVJV'2 £ JV. (Here x y denotes the multiplication
in A+)

Proof. Let x and y be elements of N such that xy = al + n
with a in F and ti in N. Then j/a; = 2x y — al — n and (sc, i/, x) =
2α:x + ^α; + ίm — 2a?(a? j/). But nx + xn = 2x>n is in iV, 2ax is in
JV, and by (II) (x,y,x)ia in ΛΓ. Therefore x(x y) is in iV. Linearizing
this we have:

( 1 ) x ( z - y ) + z(x>y) i s i n N i f α?, y , z i n N .

Let z = y in (1). Then #?/2 + y(x>y) is in ΛΓ. But by the previous
remark y{y-x) is in iV. Thus we conclude that for all x,y in N, xy2

is in JV. Linearizing this we have that x(z y) is in N. Since N is an
ideal of A+ [3], x (z y) and hence (« 2/)a? is also in JV. Thus iV*2JV
and iViV*2 are contained in N.

LEMMA 3. Let A be a nodal algebra satisfying (I) and (II) over
a field F whose characteristic is not two. Then S = N'2 + N'2N is
an ideal of A which is contained in N.

Proof. Linearizing (I) we have

(Γ) x(zy) + z(xy) + (yx)z + (yz)x = 2{xy)z + 2(zy)x .

Let z = u-v with u, v in N. Then we have

x((u-v)y) + (y(u v))x - 2((u-v)y)x

= 2(a?2/)(w ι;) - (w v)(a?2/) - (2/α?)(w v) .

Clearly the right hand side is in S. Therefore

(3) x((u v)y) + (y(u v))x — 2((u v)y)x is in S if as, y, u, v, are in JV .

Adding and subtracting 2((% ι;)3/)α; to (3) we have: 2x ({u v)y) +
2(v(u v))x - 4(((U'))y)x) is in S. But ((w ι;).y)α? e JV 3α; £ N'2x £ S.
Also by Lemma 2

(wy)i/ e JV, x ((u v)y) e JV 2 £ S.

Thus, ((w v)2/)<&eS and combining this with 2x'((u v)y) e S we have
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x((u-v)y) e S. This shows that (N'2N)N £ S and N(N'2N) S S which
proves that S is an ideal of A. The fact that S Q N follows directly
from Lemma 2.

THEOREM 1. There do not exist any simple nodal algebras sat-
isfying (I) and (II) over any field F whose characteristic is not two.

Proof. We show that if A is a simple nodal algebra satisfying
(I) and (II) then the nilindex of A is two contradicting Lemma 1.
By Lemma 3, S is an ideal of A contained in N. Then by the sim-
plicity of A, S — 0. Let y be any element of N. Clearly y2 e S.
Therefore y2 = 0 and the nilindex of A is two.

THEOREM 2. There do not exist any nodal algebras satisfying
(I) and (II) over any field whose characteristic is not two.

Proof. For if B is such an algebra it would have a homomorphic
image which is a simple nodal algebra contradicting Theorem 1.

COROLLARY 1. There are no nearly commutative nodal algebras
satisfying (x, x, z) = (z, x, x) over any field F whose characteristic is
not two.

Proof. Let A be such an algebra with x, z in N. From (x, x, z) =
(z, x, x) we obtain: (zx)x + x(xz) = zx2 + x2z. The right hand side is
in N by [3] and the left hand side is just 2(xz)x by (I). Therefore
(xz)x is in N. Using (I) it is an easy matter to show that x(zx) is
also in N. Thus (x, z, x) is in N if x and z are in N. Therefore A
satisfies condition (II) and by Theorem 2, A cannot be nodal.

An algebra satisfying the identity (x,x,z) = {z,x,x) is called an
anti-flexible algebra [6].

COROLLARY 2. If A is a nearly commutative algebra over a
field F of characteristic not two and if A has an anti-automorphism
then A cannot be nodal.

Proof. Let φ be the anti-automorphism and let xφ = xf for every
x in A. Applying φ to the identity (I) we get:

(4 ) x'ix'y') + {y'x')xf = 2x'{y'xf) .

But by (I) x'(x'y') + (y'x')x' = 2{x'y')x'. Therefore we have (x'y')x' =
x'(yfxr) for all x', y' in A. But φ is onto. Therefore (xy)x = x(yx)
for all x, y in A and A is flexible. By Theorem 2, A cannot be
nodal.
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