ON MEARLY COMMUTATIVE DEGREE ONE ALGEBRAS

John D. Arrison and Michael Rich

Abstract

The main result in this paper establishes that there do not exist nodal algebras A satisfying the conditions: (I) $x(x y)+(y x) x=2(x y) x$ (II) $(x y) x-x(y x)$ is in N, the set of nilpotent elements of A over any field F whose characteristic is not two.

Recall that a finite dimensional, power-associative algebra A with identity 1 over a field F is called a nodal algebra if every x in A is of the form $x=\alpha 1+n$ with α in F and n nilpotent, and if the set N of nilpotent elements of A does not form a subalgebra of A. Following the convention laid down in [5] we call any ring satisfying (I) a nearly commutative ring.

In a recent paper [4] one of the authors has established the results given here if the field F has characteristic zero. In that paper the theorem of Albert [1] that there do not exist commutative, power-associative nodal algebras over fields of characteristic zero was used extensively. Recently, Oehmke [3] proved the same result if the field has characteristic $P \neq 2$. This result of Oehmke's will be used throughout this paper.

The known class of nodal algebras over fields of characteristic P are the truncated polynomial algebras of Kokoris [2] which are flexible. Our results show that if nearly commutative nodal algebras exist over fields of characteristic P they will not fall into the class of Kokoris algebras. In [5] one of the authors has shown that there do not exist nearly commutative nodal algebras over fields of characteristic zero.

Let A be a nearly commutative nodal algebra over a field F whose characteristic is $P \neq 2$. Then A^{+}is a commutative, powerassociative algebra over F. Therefore by [3] N^{+}is a subalgebra of A^{+}. In particular, N is a subspace of A. The nilindex of A is defined to be the least positive integer k such that $n^{k}=0$ for every n in N.

Lemma 1. There do not exist any nearly commutative nodal algebras whose nilindex is two over any field of characteristic $P \neq 2$.

Proof. Let A be such an algebra. Then since $z^{2}=0$ for every z in N and N is a subspace of A we may linearize to get $x y=-y x$ for all x, y in N. Let $x y=\alpha 1+n, y x=-\alpha 1-n$. It suffices to
show that $\alpha=0$. Using (I) we get $\alpha x+x n-\alpha x-n x=2 \alpha x+2 n x$. Since $x n=-n x$ we have $4 x n=2 \alpha x$ and since $P \neq 2 x n=(\alpha / 2) x$ and $n x=(-\alpha / 2) x$. Using (I) again we have $n(n x)+(x n) n=2(n x) n$ or $\left(\alpha^{2} / 2\right) x=\left(-\alpha^{2} / 2\right) x$. Thus $\alpha=0$ and A cannot be nodal.

Lemma 2. Let A be a nodal algebra satisfying (II) over a field F whose characteristic is not two. Then if $N^{\cdot 2}=\{x \cdot y \mid x, y$ in $N\}$, then $N^{{ }^{2}} N \subseteq N$ and $N N^{{ }^{2}} \subseteq N$. (Here $x \cdot y$ denotes the multiplication in A^{+})

Proof. Let x and y be elements of N such that $x y=\alpha 1+n$ with α in F and n in N. Then $y x=2 x \cdot y-\alpha 1-n$ and $(x, y, x)=$ $2 \alpha x+n x+x n-2 x(x \cdot y)$. But $n x+x n=2 x \cdot n$ is in $N, 2 \alpha x$ is in N, and by (II) (x, y, x) is in N. Therefore $x(x \cdot y)$ is in N. Linearizing this we have:

$$
\begin{equation*}
x(z \cdot y)+z(x \cdot y) \text { is in } N \text { if } x, y, z \text { in } N \tag{1}
\end{equation*}
$$

Let $z=y$ in (1). Then $x y^{2}+y(x \cdot y)$ is in N. But by the previous remark $y(y \cdot x)$ is in N. Thus we conclude that for all x, y in $N, x y^{2}$ is in N. Linearizing this we have that $x(z \cdot y)$ is in N. Since N is an ideal of A^{+}[3], $x \cdot(z \cdot y)$ and hence $(z \cdot y) x$ is also in N. Thus $N^{{ }^{2}} N$ and $N N^{\bullet 2}$ are contained in N.

Lemma 3. Let A be a nodal algebra satisfying (I) and (II) over a field F whose characteristic is not two. Then $S=N^{{ }^{2}}+N{ }^{\cdot 2} N$ is an ideal of A which is contained in N.

Proof. Linearizing (I) we have

$$
x(z y)+z(x y)+(y x) z+(y z) x=2(x y) z+2(z y) x
$$

Let $z=u \cdot v$ with u, v in N. Then we have

$$
\begin{align*}
& x((u \cdot v) y)+(y(u \cdot v)) x-2((u \cdot v) y) x \\
= & 2(x y)(u \cdot v)-(u \cdot v)(x y)-(y x)(u \cdot v) . \tag{2}
\end{align*}
$$

Clearly the right hand side is in S. Therefore
(3) $x((u \cdot v) y)+(y(u \cdot v)) x-2((u \cdot v) y) x$ is in S if x, y, u, v, are in N.

Adding and subtracting $2((u \cdot v) y) x$ to (3) we have: $2 x \cdot((u \cdot v) y)+$ $2(y \cdot(u \cdot v)) x-4(((u \cdot)) y) x)$ is in S. But $((u \cdot v) \cdot y) x \in N^{\cdot 3} x \subseteq N^{\cdot 2} x \subseteq S$. Also by Lemma 2

$$
(u \cdot v) y \in N, x \cdot((u \cdot v) y) \in N \cdot{ }^{2} \cong S .
$$

Thus, $((u \cdot v) y) x \in S$ and combining this with $2 x \cdot((u \cdot v) y) \in S$ we have
$x((u \cdot v) y) \in S$. This shows that $\left(N^{\cdot 2} N\right) N \subseteq S$ and $N\left(N^{\cdot 2} N\right) \subseteq S$ which proves that S is an ideal of A. The fact that $S \subseteq N$ follows directly from Lemma 2.

Theorem 1. There do not exist any simple nodal algebras satisfying (I) and (II) over any field F whose characteristic is not two.

Proof. We show that if A is a simple nodal algebra satisfying (I) and (II) then the nilindex of A is two contradicting Lemma 1. By Lemma 3, S is an ideal of A contained in N. Then by the simplicity of $A, S=0$. Let y be any element of N. Clearly $y^{2} \in S$. Therefore $y^{2}=0$ and the nilindex of A is two.

ThEOREM 2. There do not exist any nodal algebras satisfying (I) and (II) over any field whose characteristic is not two.

Proof. For if B is such an algebra it would have a homomorphic image which is a simple nodal algebra contradicting Theorem 1.

Corollary 1. There are no nearly commutative nodal algebras satisfying $(x, x, z)=(z, x, x)$ over any field F whose characteristic is not two.

Proof. Let A be such an algebra with x, z in N. From $(x, x, z)=$ (z, x, x) we obtain: $(z x) x+x(x z)=z x^{2}+x^{2} z$. The right hand side is in N by [3] and the left hand side is just $2(x z) x$ by (I). Therefore $(x z) x$ is in N. Using (I) it is an easy matter to show that $x(z x)$ is also in N. Thus (x, z, x) is in N if x and z are in N. Therefore A satisfies condition (II) and by Theorem 2, A cannot be nodal.

An algebra satisfying the identity $(x, x, z)=(z, x, x)$ is called an anti-flexible algebra [6].

Corollary 2. If A is a nearly commutative algebra over a field F of characteristic not two and if A has an anti-automorphism then A cannot be nodal.

Proof. Let ϕ be the anti-automorphism and let $x \phi=x^{\prime}$ for every x in A. Applying ϕ to the identity (I) we get:

$$
\begin{equation*}
x^{\prime}\left(x^{\prime} y^{\prime}\right)+\left(y^{\prime} x^{\prime}\right) x^{\prime}=2 x^{\prime}\left(y^{\prime} x^{\prime}\right) \tag{4}
\end{equation*}
$$

But by (I) $x^{\prime}\left(x^{\prime} y^{\prime}\right)+\left(y^{\prime} x^{\prime}\right) x^{\prime}=2\left(x^{\prime} y^{\prime}\right) x^{\prime}$. Therefore we have $\left(x^{\prime} y^{\prime}\right) x^{\prime}=$ $x^{\prime}\left(y^{\prime} x^{\prime}\right)$ for all x^{\prime}, y^{\prime} in A. But ϕ is onto. Therefore $(x y) x=x(y x)$ for all x, y in A and A is flexible. By Theorem 2, A cannot be nodal.

References

1. A. A. Albert, A theory of power-associative commutative rings, Trans. Amer. Math. Soc. 69 (1950), 503-527.
2. L. A. Kokoris, Nodal noncommutative Jordan algebras, Canad. J. Math. 12 (1960), 487-492.
3. R. H. Oehmke, Flexible power-associative algebras of degree one, Proc. Nat. Acad. Sci., U.S.A. 53 (1969), 40-41.
4. M. Rich, On a class of nodal algebras, Pacific J. Math. 32 (1970), 787-792.
5. On Nearly commutative nodal algebras in characteristic zero, Proc. Amer. Math. Soc. 24 (1970), 563-565.
6. D. Rodabaugh, A generalization of the flexible law, Trans. Amer. Math. Soc. 114 (1965), 468-487.

Received December 19, 1969, and in revised form February 5, 1970.
Monmouth College
AND
Temple University

