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THE ABEL SUMMABILITY OF CONJUGATE MULTIPLE
FOURIER-STIELTJES INTEGRALS

S. P. PHILIPP, V. L. SHAPIRO AND W. H. SILLS

Let K{x) = Ω(xl\%\)\x\~k where Ω(ζ), | ζ \ = 1, is a real

valued function which is in Lip a, 0 < a < 1, on the unit
(k — l)-sphere S in A>dimensional Euclidean space, Ek, k Ξ> 2

with the additional property that l Ω(ξ)dσ(ξ) = 0 where a is
Js

the natural surface measure for S. (K(x) is usually called a

Calderόn-Zygmund kernel in Lip a.) Let μ be a Borel measure

of finite total variation on Ek and set μ(y) = (2π)-k\ e-%{y'w)dμ{w).

Also designate the principal-valued Fourier transform of K
by K(y) and the principal-valued convolution of K with μ by

μ(x). Define 7̂ 0*0 = (2π)k\ e-^{IRκ(y)μ(y)ei{y'x)dy. Then if A:
JEk

is an even integer or if k = 3, the following result is estab-
lished: limβ_>oo IB(x) = /ί(x) almost everywhere.

In [5] V. L. Shapiro proved that the conjugate Pourier-Stieltjes
integral of a finite Borel measure μ in the plane E2, taken with re-
spect to a Calderόn-Zygmund kernel K(x) in Lip a, 1/2 < a < 1, is
almost everywhere Abel summable to the principal-valued convolution
K*μ. The purpose of this paper is to extend this result to E3 and
to even-dimensional Ek for K{x) in Lip a, 0 < a < 1. The first author
will obtain the corresponding result for the odd-dimensional cases
Jc = 2s + 1, s ^ 2, in a paper to appear, by the use of special functions.
Also, the results of the present paper should be compared with
Theorem 2 of [6, p. 44].

2* Definitions and notation* For x = (χlf •••, xk) and y =
(Vi, , 2/Λ) P u t 0 , y) = x , y , + . . . + χ k y k , \χ\ = (x, χ)112 a n d B{x, t) =
{y: \x — y\ < t}. We will work with a fixed Calderόn-Zygmund kernel
K(x) = Ω(x/\x\)/\x\k where Ω(ζ), \ξ\ = 1, is a real-valued function de-
fined on the unit (k — 1)-dimensional sphere S in Euclidean space Ek,

k ^ 2, and 1 Ω(ζ)dσ(ξ) — 0, where σ is the natural surface measure
Js

for S [2, Chapter 11]. We define K(x) to be in Lip a if [i2(f) - Ω(η) \ =
0(1 ί — V\a) for some α, 0 < a < 1. The Fourier transform of a Borel
measure μ in 2£Λ of finite total variation is denoted as usual by

( 1 ) μ(y) = (2π)-k\ e~i{y>
$Ek

and by the principal-valued convolution μ(x) we mean
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(2) limί K(x-y)dμ(y)
ί-»0 JEjc—BixΛ)

which is known to exist and be finite almost everywhere [1, p. 118],
The formal conjugate Fourier-Stieltjes integral of μ is given by

(3) (2τr)*[ β'<

where

K(y) = (2π)-k lim ( e~i{y>x)K(x)dx
t->0;T-+oo JB(O,T)-B(θ,t)

is the principal-valued Fourier transform. We will denote the Abel
means of (3) by

(4 ) IR{x) = (2π)

With λ = (k — 2)/2, PI will designate the Gegenbauer polynomials de-
fined by the equation

( 5 ) (1 - 2ρ cos θ + ρ2)~λ = Σ pnP*(co8 0), 0 ^ p < 1 .
%=0

These functions allow us to form the Laplace series Σ~=i ̂ ( ί ) of
surface harmonics attached to Ω(ξ) on the unit sphere S in Ek by
means of the equation

Γ { X ) ^ λ ) f ^ [ ( g > V)]Ω(V)dσ(V)

(see [2, C h a p t e r 11]). F o r m u l a s (5) a n d (6) give t h e Poisson i n t e g r a l
representation

p2)2)λ+ι

which is valid for 0 <; p < 1. The assumptions on β(f) imply that

- o.

3* The main theorem* Our principal theorem is

T H E O R E M 1. Let K(x) = Ω(x/\x\)/\x\k be a Colderόn-Zygmund
kernel in Lip a, 0 < a < 1. Let μ be a Borel measure in Ek of finite
total variation. Let k = 3 or k = 2s where s is a positive integer.
Then limB—oIB(x) = μ(x) almost everywhere.
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Our proof will closely follow the original proof in [5]. We shall
use, in addition, generalizations of certain statements in [5] obtained
by V. L. Shapiro in [6]. Before outlining the proof, we will need
some lemmas.

4* Basic lemmas* Throughout the balance of this paper, Σ~=i Yn(£)
will designate the Laplace series for Ω(ζ) on the unit sphere S in Ek.
We will denote sup{Γ.(ί): \ξ| = 1} by || Yn\\~. The proof of the fol-
lowing lemma is given in [6, p. 69].

LEMMA 1. (i) For each 7, 0 < 7 < α, Σ*=i II Yn\\°°nr/n{k-i)l2 < <*>.
(ii) K(y) exists everywhere and if

y^O, K{y) = Σ (-i)nY»(vl\v\)Γ(nl2)l2kπk»Γ((n + k)/2) .

Also, K(0) = 0 and the series converges absolutely and uniformly.
Next we set

Hk(R) = {Γ(n/2)/2k'2Γ((n + k)/2)}\~e-tlEtk'2Jn+{kl2Ut)dt ,
Jo

R > 1; n = 1, 2, k = 2, 3, , where Jn+i(t), λ = (k - 2)/2, is a
Bessel function of the first kind of order n + λ. The Hk{R) arise
naturally in the computation of IB(x).

LEMMA 2. ( i ) 0 ^ Hi(R) ^ 1, l im Λ ^ H£(R) = 1,
(ii) 0 g HΪ(R) ^ Const. Rkn~k'\
(iii) Σ~= 1 II Yn\\~m(R) = 0(Rk) as Λ - oo.

The first statement of (i) is proved in [6, Lemma 24, p. 64].
Also, as in formula (25) of [6, p. 56], we may express Hk(R) by use
of Euler's integral representation for hypergeometric functions as
follows:

<8) Hk{R) = (5(1/2, (n - l ) ^ ) ) - 1 ^ - 1 ^ ! - tyn~3)l2(l + l/tR2)-<n+k)l2dt,
Jo

where B(p, q) is the usual Beta function. From this follows the second
statement of (i). Part (ii) is a consequence of the inequalities \Jn+λ(t) \<tλ

[8, p. 60, Ex. 5] and Γ(nl2)/2k'2Γ((n + k)/2) ̂  Const. n~k'2 [8, p. 58].
Part (iii) is a consequence of (ii) and Lemma 1, (i).

In what follows we will set p = VTTΎ/R2 - 1/R, R > 1. We
note that 0 < p < 1 and p —•* 1 as R —* co. Our proof of the main
theorem is based upon showing that Σn=i Hk(R)Yn(ζ) behaves some-
what like Σn=ii0ΛFΛ(f). Next we state some lemmas which relate pn

to the Hk(R). In the case that k is a positive even integer, Hk{R)
can be computed in closed form. Consider, for example, the formula
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\°°e-atJMdt = ((1 + α2)1/2 - ay 1(1 + α2)1'2, a > 0, v > - 1 [7, p. 202]. By
Jo

differentiating the integral and replacing a by R~ι and v by the ap-
propriate integer, one shows that

( 9 ) Hl{R) = nA~e-tlRtJn{t)dt = pn(l + l/RY'il + n-'iRVΊ + 1/R2)-1}
Jo

and that

n(n + 2)

(10) = ^

+
π + 2)

and so on. The general formula for Hls(R) = (n(n + 2) (n + 2s —2))~:.

\ e^^tfJais-iifydt, s ^ 1, is obtained by induction. We formalize this
Jo

in the next lemma, whose proof we leave to the reader.

LEMMA 3. For s = 1 put Co

s(n) = 1, Cl(n) = 1/%. For s ^ 2 ίe£
ί/iβ coefficients Cj(n), n^tl,l^j^s be determined by

Cl(n) = b(n, s - l){(i + 8 - l)C;=i(n + 1)
( } +(n + s l)Cr(n + 1) (j + l)C^l(n + 1)}

where b(n, s) = (n + l)(w + 3) (n + 2s — l)/n(n + 2) (n + 2s)
w/iere we αgrree to set C0'~'(n + 1) = 1 and C'r^n + 1) = C;+[(«, + 1) = 0.
Then

(12) f β (Λ) = lO +

Next let S(f, 1 - p) = {η: \η\ = 1, (£, 37) > cos (1 -/o)}, |f| = l , 0 <
1 — p < 1, denote the spherical cap centered at ξ of curvilinear radius
1 - p. Fix the North pole of S at ξ and write Σ?=i P* Γn(£) - Ω(ξ)
in the Poisson integral form

Γ(X + 1) Γ (1 - p2)(Ω(V) -
) , rj)

X = (k — 2)/2. Using the standard argument [10, p. 90 and Th. 3.15]
we split the integral over the sets S(ζ, 1 — p), S — S(ξ, 1 — p) and
use the inequality (1 - p2)(l - 2p(ξ, rj) + p2)-^ ^ Const. (1 - p) x
(1 - (f, η))~a+ι\ 1/2 ^ p < 1, in the second integral to obtain, for Ω{ξ)
in Lip α',
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(13)

uniformly in ξ as p —> 1.

= 0(1 - Pγ)

LEMMA 4. Let Cs

ό{n), 1 ^ j <̂  s; n^l be as in (11). Let 0^p<l.
Then \Σ,n^pnYn(ξ)Csj(n)\ = 0(1) uniformly in P,ξ.

To establish the lemma we note that the recursion formula (11)
implies that the coefficients Cj(ri) are ratios of polynomials in n with
integer coefficients and that the denominators are products of unre-
peated factors of the form n + p, p a nonnegative integer. Also,
because b(n, s) = O^"1) and C\(n) = 1/n, an obvious induction argument
shows that C){n) = 0(n~j) as n—> oo. It follows that each Cs

ά{n) can
be written as a finite sum of the form Σ A%j{n + p)q, the A% being
independent of n. Hence, in order to establish the lemma it is enough
to prove that for q a positive integer ΣΓ=ii°ny»(f)/(w + ί?)g is uni-
formly bounded in p, ζ. This follows at once from induction, integra-
tion, Lemma 1, and the fact that by Lemma 3, ρp~L Σ~=i Pn Yn(0
is uniformly bounded for 1/2 < p < 1 and ζ in S.

LEMMA 5. Let K(x) = Ω(x/\x\)/\x\k be a Calderon-Zygmund kernel
in Lip a, 0 < a < 1 on the unit sphere S in Ek. Let ξ = x/\x\ and
suppose k — 2s where s is a positive integer. Then

Σ H?(R) YM - Ω{ξ) --

uniformly in ζ as R—+oo.

To establish the lemma, let 0 ^ p < 1 and put

+1) - pn)Yn{ζ)\,

Recall that p = Vl + 1/R2 - l/i2. It is easy to see that 0(R-a) as
R -> co is equivalent to 0((l — ρ)«) as ^ —> 1. Thus, /3 = 0(iu~*) follows
from (13). The same bound for J2 follows from \ρs~ι(Vl + l/ie2)-(s+1) - 1 | =
0(J?-]) and (13). By formula (12) of Lemma 3 and by Lemma 4, I,
is dominated by a finite sum of terms of the form

Const. (RΛ/1 + l/R2)-j Σ ρnYn{ξ)Cs

3{n)

all of which are 0(R~ι).

, 1 ^ i ^
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Lemma 5 is needed to prove the main theorem in the even-dimen-
sional cases. For the case E3 we shall have need of

LEMMA 6. Let K(x) ~ Ω(xl\x\)l\x\* be a Calderόn-Zygmund kernel
in Lip α, 0 < a < 1, in E3. Let ξ — x/\x \ and 0 < 7 < a, then
\ΣJn^Hl{R)Yn{ζ) - Ω(ξ)\ = 0(i2"0 uniformly in ξ as R->^.

To prove the lemma we put Ao = 0 and An = Σϊ=i1| Yk\\o. We
sum (1 - p)Σ£=i\\Y \\-P* by Parts to obtain (1 - p)2^n=l Anp

n +
(1 - ρ)pNAN. By Lemma 1, (i) Σ»=i II Yn\\~nr/n = C < oo. Since AN ^
Σ?=i II Yn\UN/ny-r g N'-'C, we have

(1 - p)± p*\\ Γ J U <£ (1 - ^) 2 CΣ w 1 - ^ ^ (1 - ^)2Const. (1 - ^>)-2^ ,

where we have used the inequality Σ«-=i nβPn = Const. 1/(1 — ρ)lΛβ,
/ 9 > 0 , 0 g i o < l . Next we observe from (8) that Hk

n{R) is decreasing
as a function of k, in particular, H'n{R) ^ Hl(R) ^ ίf%

2(i?). By (10)
and (9) we have ρn+1/(l + 1/R2)312 ^ Jϊw

3(iί) ^ /o—7(1 + l/β2)3 / 2. It fol-
lows that

||θw+1/(l + l/i22)3/2 -p*\ + 1 ^ 7 ( 1 + VRΎ12 - Pn\

^ ιθn Const. R~ι ^ Const. (1 - ρ)pn .

Therefore,

Σ
n — 1

+

^ Const. (1 - p)Σ, II Y.|IH°"
n — 1

= 0(5-0 + OCR-*) = O(JB-0 .

5* Proof of the main theorem* Let (DSγmμ)(x) denote the
symmetric derivative of μ [4, p. 175, Ex. 1]. Let \E\ denote the
Lebesgue measure of E. If the total variations of the measures μ{E) —

(DSymμ)(x)\E\ are denoted by I \dμ(y) — (DSymμ)(x)dy\ then it follows
JE

as in the proof of Lebesgue's Theorem [4, Th. 8.8] that

(14) lim I B(x, t) \A I dμ(y) - (DSymμ)(x)dy \ = 0
t-*0 jB(x,t)

almost everywhere. Thus, in order to prove Theorem 1, it is sufficient
to prove that at each point x for which (14) holds,

(15) lim \lR{x) - \ K(x- y)dμ(y)\ = 0 .
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With no loss in generality we will assume that x — 0. Set x — 0
in (4) and interchange the order of integration using (1). Next in-
troduce spherical coordinates rk~ιdrdσ(ξ') = dy where ξ' = y/\y\ and
r = \y\ and use Lemma 1, (ii) to obtain

h(0) = \ dμ{w)\°°rk-'e~rlEdrit (-i)nΓ(n/2)/2kπk'zΓ((n + k)/2)
JEk JO w = l

where η = w/\w\. By [9, p. 368 (2)] (with v = X = (k ~ 2)/2) the
integral over S is (2π)λ+ι(-i)nJn+x{r\w\){τ\w\)-λYn{η). Next, inter-
change summation and the integral in r. Letting ΔR denote the term
in brackets in (15) we obtain

ΔR = \ Σ Hk

n(R\w\)Yn(ζ)\w\-kdμ(w) - \ Ω{ζ)\w\-kdμ{w)

where ς — —w/\w\. Next we write ΔR — Jx + J2 + J3 where

Σ
)J*=\ Γ Σ F.(f)iί*(Λ|tt;|) - i2(f)l|w|-*dA/(w), and

L l J

ΓΣ
ζ = — w/\w\. If c£μ(w) is replaced by dw in Jx or J3 the resulting
integral is zero. This follows from the uniform convergence of the
series and \ Ω(ξ)dσ(ξ) = 0. By Lemma 2, (ii),

Js

\J1\ ̂  Const. |£(0, llR)-\ \dμ(w) - (DSymμ)(0)dw\ = o(ΐ)
JB(OΛIR)

as R —> oo. In the case & = 2s, Lemma 5 gives | J2 \ ̂  Const. Γ~&

where T can be taken arbitrarily large. For J3 we again use Lemma
5 to obtain

J 3 | ^ Const. R~a\ \w\-ίk+a)\dμ{w) - (DSγmμ)(0)dw
JB(O,T)--B(O,1IR

The proof of the fact that for fixed T, J3 = o(l) as i2 —• oo is similar
to that given in [5, p. 14]. In the case k = 3, we replace a in the
above integrals by 7, where 7 is chosen so that 0 < 7 < a, and use
Lemma 6.
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